用户名: 密码: 验证码:
PGE2对肝癌细胞生长与侵袭能力的影响及相关机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     前列腺素E_2(PGE_2)是花生四烯酸代谢产物,国内外研究表明PGE_2合成增加与多种肿瘤的生长与扩散有关。PGE_2合成关键酶为环加氧酶(cyclooxygenase, COX),目前已发现三种环加氧酶,其中COX-2主要由某些细胞因子、激素等诱导合成,因而在炎症与肿瘤组织中往往呈高表达。所合成的PGE2主要通过与细胞膜表面的四种EP受体(EP1、EP2、EP3、EP4)结合,激活下游信号转导通路,而发挥生物学调节作用。本实验室前期实验证明肝细胞癌细胞表面同时表达四种EP受体;COX-2过表达或外源性PGE2都有促进肝细胞癌细胞存活、生长的作用;而选择性COX-2抑制剂celecoxib则可抑制肝癌细胞存活,促进细胞凋亡。
     本课题在此基础上继续探讨PGE_2对肝细胞癌细胞生长、粘附与侵袭能力的影响。
     研究目的:
     1.阐明PGE_2对肝细胞癌细胞生长的影响。
     2.探讨PGE_2及相关EP受体通路对肝细胞癌细胞中存活素(survivin)表达的影响。
     3.研究PGE_2对肝细胞癌细胞粘附、迁移与侵袭能力的影响。
     4.探讨粘着斑激酶(FAK)信号转导通路在PGE2诱导的肝细胞癌细胞粘附与迁移等过程中的作用。
     研究方法:
     1.常规方法培养肝细胞癌细胞株HUH-7、Hep3B与HepG2,以及人胚肾细胞株HEK293。
     2.采用WST法检测PGE_2或EP1受体激动剂(17-PT-PGE_2)对肝细胞癌细胞生长与粘附能力的影响。
     3.采用Transwell小室的方法检测PGE_2对肝细胞癌细胞生长、粘附与侵袭能力的影响。
     4.采用质粒转染实验获得过表达COX-2蛋白的HUH-7细胞,采用质粒转染实验结合筛选稳定表达株的方法获得稳定表达EP1受体蛋白的HEK293细胞,研究其对细胞生物学活性的影响。
     5.采用RNA干扰实验抑制肝癌细胞中EP1受体或FAK蛋白的表达,研究其对细胞生物学活性的影响。
     6.采用realtime PCR实验检测survivin mRNA水平的变化;采用Western Blot实验分析survivin、FAK、paxillin等蛋白水平的变化,并检测EGFR、Akt、FAK、paxillin、ERK的磷酸化水平的变化。
     研究结果:
     1.采用5μM PGE_2分别处理HUH-7、Hep3B与HepG2,24 h后WST法检测发现细胞活性分别增加到123%、112%与109%。而用50μM选择性COX-2抑制剂celecoxib分别处理三种细胞,24 h后细胞活性下降至对照组的5.4%、1.2%及25.6%。
     2.采用5μM PGE_2处理HUH-7细胞,8 h后细胞中survivin蛋白水平增加至230%;COX-2过表达实验可引起相似的survivin蛋白水平增高的现象,而celecoxib 50μM作用下此现象完全被阻断。
     3.采用5μM 17-P-T-PGE_2处理HUH-7细胞或转染EP1受体的HEK293细胞,细胞中survivin蛋白水平都增加2倍以上;而选择性EP1受体阻断剂或EP1受体RNA干扰实验完全抑制PGE_2诱导的survivin蛋白水平增加。
     4. 17-P-T-PGE_2处理HUH-7细胞中,EGFR与Akt磷酸化水平明显增加,而选择性EGFR与PI3K抑制剂显著抑制17-P-T-PGE_2诱导的survivin蛋白水平增加。
     5. PGE2处理HUH-7细胞,24h后检测发现粘附、迁移与侵袭细胞数分别增加158%、122%与128%。
     6. PGE_2促进HUH-7细胞中FAK蛋白表达与磷酸化水平分别增加170%与263%。而FAK RNA干扰实验抑制PGE2诱导的HUH-7细胞的粘附与迁移。
     7. PGE_2促进HUH-7细胞中FAK下游蛋白paxillin与ERK磷酸化水平增加,选择性ERK抑制剂(PD98059)显著抑制PGE_2诱导的HUH-7细胞的粘附与迁移。
     结论:
     PGE_2明显促进肝细胞癌细胞生长、粘附、迁移与侵袭,其中可通过EP1受体/ EGFR/ PI3K通路上调survivin蛋白水平而促进细胞生长,并通过FAK/ paxillin/ ERK通路上调细胞粘附、迁移与侵袭的能力。
Background:
     Prostaglandin E_2 (PGE_2) one of predominant metabolic products of arachidonic acid. It is widely known that PGE_2 synthesis is associated with cell growth and spread in many cancer cells. Cyclooxygenase (COX) is known as prostaglandin endoperoxide synthase. Cyclooxygenase has three isoforms: COX-1, COX-2 and COX-3. Among them, COX-2 is induced by a lot of stimuli such as cytokines, hormones, mitogens, and growth factors, which explains its up-regulation in various inflammatory diseases and human cancers. PGE_2 mediates its effects by binding to and activating 4 different G-protein-coupled receptors, EP1, EP2, EP3 and EP4. In our previous studies, all of the 4 EP receptors were expressed on the surface of hepatocellular carcinoma cells. Both COX-2 overexpression and exogenous PGE_2 improved cell growth, while the selective COX-2 inhibitor, celecoxib, suppressed cell survival and induced cell apoptosis in hepatocellular carcinoma cells.
     In current studies, we went on to explore the effects of PGE_2 on cell growth, adhesion, migration and invasion in hepatocellular carcinoma cells.
     Aims:
     1. To clarify the effects of PGE_2 on cell growth in hepatocellular carcinoma cells.
     2. To explore the effects of PGE_2 and related EP receptor on survivin expression in hepatocellular carcinoma cells.
     3. To investigate the effects of PGE_2 on cell adhesion, migration and invasion in hepatocellular carcinoma cells.
     4. To define a role of focal adhesion kinase (FAK) in PGE_2-induced cell adhesion and migration in hepatocellular carcinoma cells.
     Materials and methods:
     1. The hepatocellular carcinoma cell lines HUH-7, Hep3B and HepG2 cells, and human embryonic kidney HEK293 cells, were all cultured in conventional conditions.
     2. The WST reagents were used to detect the cell viability rate and relative adhesion rate in hepatocellular carcinoma cells with PGE_2 or selective EP1 agonist (17-P-T-PGE_2) treatments.
     3. 12-well transwell units were used to detect relative migration rate and invasion rate in hepatocellular carcinoma cells with PGE_2 treatments.
     4. The pcDNA3 plasmid encoding human COX-2 (COX-2-pcDNA3) and EP1 receptor (EP1R-pcDNA3) were transfected in HUH-7 cells and HEK293 cells, respectively, to gain COX-2-overexpressed cells and EP1 receptor-stably expressed cells.
     5. RNA interference was used to suppress EP1 receptor or FAK protein expression in HUH-7 cells, in order to study the effects of these protein on cell biologic activities.
     6. Realtime PCR was used to detect survivin mRNA level in HUH-7 cells. Western Blot was used to detect the protein level of survivin, FAK and paxillin, and the phosphorylation of EGFR, Akt, FAK, paxillin and ERK.
     Results:
     1. In WST assays, the cell viabilities were increased to 123%, 112% and 109% in HUH-7, Hep3B and HepG2 cells when treated with 5μM PGE_2 for 24 h. However, 50μM celecoxib suppressed the cell viabilities to 5.4%, 1.2% and 25.6% of control, respectively.
     2. 5μM PGE_2 treatment increased survivin expression 2.3-fold in HUH-7 cell. COX-2 overexpression caused similar survivin upregulation, which was suppressed by 50μM celecoxib.
     3. 5μM selective EP1 agonist (17-P-T-PGE_2) or EP1 receptor transfection increased survivin expression more than 2 fold. Conversely, the PGE_2-induced survivin upregulation was blocked by selective EP1 antagonist or EP1 RNA interference.
     4. The phosphorylation of EGFR and Akt were elevated in 17-P-T-PGE_2-treated cells, while both EGFR and PI3K inhibitors suppressed survivin upregulation induced by 17-P-T-PGE_2.
     5. PGE_2 treatment significantly increased the relative adhesion rate, migration rate, and invasive rate by 158%, 122% and 128% in HUH-7 cells.
     6. PGE_2 treatment increased the synthesis and phosphorylation of FAK by 170% and 263%. RNA interference targeting FAK suppressed PGE_2-mediated cell adhesion and migration.
     7. PGE_2 treatment increased the phosphorylation of paxillin and Erk2, the down stream protein of FAK. PD98059, the specific inhibitor of MEK, suppressed PGE_2-mediated cell adhesion and migration.
     Conclusion:
     PGE_2 improved cell growth, adhesion, migration and invasion in hepatocellular carcinoma cells. The PGE_2/EP1/EGFR/PI3K pathway promoted cell growth by upregulating survivin expression. And the FAK/paxillin/ERK pathway was associated with PGE_2-induced cell adhesion, migration, and invasion.
引文
[1] Wu T. Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev, 2006, 32: 28-44.
    [2]陈杰,李甘地.病理学.北京:人民卫生出版社, 2005. 293-297.
    [3] Zhao QT, Yue SQ, Cui Z, Wang Q, Cui X, Zhai HH, Zhang LH, Dou KF. Potential involvement of the cyclooxygenase-2 pathway in hepatocellular carcinoma-associated angiogenesis. Life Sci, 2007, 80: 484-492.
    [4] Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL. COX-3, a cyclooxygenase-1 variant inhibited byacetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA, 2002, 99: 13926-13931.
    [5] Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett, 2004, 215: 1–20.
    [6] Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest, 2001, 107: 1491-1495.
    [7] Hussain T, Gupta S, Mukhtar H. Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett, 2003, 191: 125-135.
    [8] Grossman EM, Longo WE, Panesar N, Mazuski JE, Kaminski DL. The role of cyclooxygenase enzymes in the growth of human gall bladder cancer cells. Carcinogenesis, 2000, 21: 1403-1409.
    [9] Wendum D, Masliah J, Trugnan G, Flejou JF. Cyclooxygenase-2 and its role in colorectal cancer development. Virchows Arch, 2004, 445: 327-333.
    [10] Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res, 2005, 7: R422-R435.
    [11] Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther, 2004, 3: 299-307.
    [12] Sandler AB, Dubinett SM. COX-2 inhibition and lung cancer. Semin Oncol, 2004, 31: 45-52.
    [13] Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology, 2003, 38: 756-768.
    [14] Mayoral R, Fernandez-Mart?′nez A, Bosca L, Martín-Sanz P. Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis, 2005, 26: 753-761.
    [15] Dohadwala M, Luo J, Zhu L, Lin Y, Dougherty GJ, Sharma S, Huang M, Pold M, Batra RK, Dubinett SM. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem, 2001, 276: 20809-20812.
    [16] Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem, 2003, 278: 35451-35457.
    [17] Pai R, Nakamura T, Moon WS, Tarnawski AS. Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J, 2003, 17: 1640-1647.
    [18] Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem, 2007, 282: 11613-11617.
    [19] Cusimano A, Fodera D, D'Alessandro N, Lampiasi N, Azzolina A, Montalto G, Cervello M. Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition of the MEK/ERK pathway. Cancer Biol Ther, 2007, 6: 1461-1468.
    [20] Yamanaka Y, Shiraki K, Inoue T, Miyashita K, Fuke H, Yamaguchi Y, Yamamoto N, Ito K, Sugimoto K, Nakano T. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med, 2006, 18: 41-47.
    [21] Shariat SF, Ashfaq R, Karakiewicz PI, Saeedi O, Sagalowsky AI, Lotan Y. Survivin expression is associated with bladder cancer presence, stage, progression, and mortality. Cancer, 2007, 109: 1106-1113.
    [22] Morinaga S, Nakamura Y, Ishiwa N, Yoshikawa T, Noguchi Y, Yamamoto Y, Rino Y, Imada T, Takanashi Y, Akaike M, Sugimasa Y, Takemiya S. Expression of survivin mRNA associates with apoptosis, proliferation and histologically aggressive features in hepatocellular carcinoma. Oncol Rep, 2004, 12: 1189-1194.
    [23] Futakuchi H, Ueday M, Kanda K, Fujino K, Yamaguchi H, Noda S.Transcriptional expression of survivin and its splice variants in cervical carcinomas. Int J Gynecol Cancer, 2007, 17: 1092-1098.
    [24] Ye CP, Qiu CZ, Huang ZX, Su QC, Zhuang W, Wu RL, Li XF. Relationship between survivin expression and recurrence, and prognosis in hepatocellular carcinoma. World J Gastroenterol, 2007, 13: 6264-6268.
    [25] Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res, 1998, 58: 5315-5320.
    [26] Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 2001, 40: 1117-1123.
    [27] Ito T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A. Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology, 2000, 31: 1080-1085.
    [28] Fields AC, Cotsonis G, Sexton D, Santoianni R, Cohen C. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol, 2004, 17: 1378-1385.
    [29] Suzuki A, Hayashida M, Ito T, Kawano H, Nakano T, Miura M, Akahane K, Shiraki K. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16~(INK4a) and Cdk2/Cyclin E complex activation. Oncogene, 2000, 19: 3225-3234.
    [30] Liu NB, Peng T, Pan C, Yao YY, Shen B, Leng J. Overexpression of cyclooxygenase-2 in human HepG2, Bel-7402 and SMMC-7721 hepatoma cell lines and mechanism of cyclooxygenase-2 selective inhibitor celecoxib-induced cell growth inhibition and apoptosis. World J Gastroenterol, 2005, 11: 6281-6287.
    [31] Cary LA, Guan JL. Focal adhesion kinase in integrin-mediated signaling. Front Biosci, 1999, 4: d102-113.
    [32] Cox BD, Natarajan M, Stettner MR, Gladson CL. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem, 2006, 99: 35-52.
    [1] Shariat SF, Ashfaq R, Karakiewicz PI, Saeedi O, Sagalowsky AI, Lotan Y. Survivin expression is associated with bladder cancer presence, stage, progression, and mortality. Cancer, 2007, 109: 1106-1113.
    [2] Morinaga S, Nakamura Y, Ishiwa N, Yoshikawa T, Noguchi Y, Yamamoto Y,Rino Y, Imada T, Takanashi Y, Akaike M, Sugimasa Y, Takemiya S. Expression of survivin mRNA associates with apoptosis, proliferation and histologically aggressive features in hepatocellular carcinoma. Oncol Rep, 2004, 12: 1189-1194.
    [3] Futakuchi H, Ueday M, Kanda K, Fujino K, Yamaguchi H, Noda S. Transcriptional expression of survivin and its splice variants in cervical carcinomas. Int J Gynecol Cancer, 2007, 17: 1092-1098.
    [4] Ye CP, Qiu CZ, Huang ZX, Su QC, Zhuang W, Wu RL, Li XF. Relationship between survivin expression and recurrence, and prognosis in hepatocellular carcinoma. World J Gastroenterol, 2007, 13: 6264-6268.
    [5] Sakoguchi-Okada N, Takahashi-Yanaga F, Fukada K, Shiraishi F, Taba Y, Miwa Y, Morimoto S, Iida M, Sasaguri T. Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem Pharmacol, 2007, 73: 1318-1329.
    [6] Cusimano A, Fodera D, D'Alessandro N, Lampiasi N, Azzolina A, Montalto G, Cervello M. Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition of the MEK/ERK pathway. Cancer Biol Ther, 2007, 6: 1461-1468.
    [7] Yamanaka Y, Shiraki K, Inoue T, Miyashita K, Fuke H, Yamaguchi Y, Yamamoto N, Ito K, Sugimoto K, Nakano T. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med, 2006, 18: 41-47.
    [8] Han C, Michalopoulos GK, Wu T. Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol, 2006, 207: 261-270.
    [9] Perez S, Maldonado EN, Aspichueta P, Ochoa B, Chico Y. Differential modulation of prostaglandin receptor mRNA abundance by prostaglandins in primary cultured rat hepatocytes. Mol Cell Biochem, 2004, 266: 183-189.
    [10] Zhang L, Jiang L, Sun Q, Peng T, Lou K, Liu N, Leng J. Prostaglandin E2 enhances mitogen-activated protein kinase/Erk pathway in human cholangiocarcinoma cells: involvement of EP1 receptor, calcium and EGF receptors signaling. Mol Cell Biochem, 2007, 305: 19-26.
    [11] Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology, 2003, 38: 756-768.
    [12] Wendum D, Masliah J, Trugnan G, Flejou JF. Cyclooxygenase-2 and its role in colorectal cancer development. Virchows Arch, 2004, 445: 327-333.
    [13] Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest, 2001, 107: 1491-1495.
    [14] Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett, 2004, 215: 1–20.
    [15] Zhao QT, Yue SQ, Cui Z, Wang Q, Cui X, Zhai HH, Zhang LH, Dou KF. Potential involvement of the cyclooxygenase-2 pathway in hepatocellular carcinoma-associated angiogenesis. Life Sci, 2007, 80: 484-492.
    [16] Hussain T, Gupta S, Mukhtar H. Cyclooxygenase-2 and prostate carcinogenesis. Cancer Letters, 2003, 191: 125-135.
    [17] Mayoral R, Fernandez-Mart?′nez A, Bosca L, Martín-Sanz P. Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis, 2005, 26: 753-761.
    [18] Bai XM, Zhang W, Liu NB, Jiang H, Lou KX, Peng T, Ma J, Zhang L, Zhang H, Leng J. Focal adhesion kinase: Important to prostaglandin E2-mediated adhesion, migration and invasion in hepatocellular carcinoma cells. Oncol Rep, 2009, 21: 129-136.
    [19] Dohadwala M, Luo J, Zhu L, Lin Y, Dougherty GJ, Sharma S, Huang M, Po?ld M, Batra RK, Dubinett SM. Non-small Cell Lung Cancer Cyclooxygenase-2-dependent Invasion Is Mediated by CD44. J Biol Chem,2001, 276: 20809-20812.
    [20] Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem, 2003, 278: 35451-35457.
    [21] Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther, 2004, 3: 299-307.
    [22] Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol, 2004, 286: F693-701.
    [23] Rao R, Redha R, Macias-Perez I, Su Y, Hao C, Zent R, Breyer MD, Pozzi A. Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem, 2007, 282: 16959-16968.
    [24] Barnes N, Haywood P, Flint P, Knox WF, Bundred NJ. Survivin expression in situ and invasive breast cancer relates to COX-2 expression and DCIS recurrence. Br J Cancer, 2006, 94: 253-258.
    [25] Atikcan S, Unsal E, Demirag F, Koksal D, Yilmaz A. Correlation between survivin expression and prognosis in non-small cell lung cancer. Respir Med, 2006, 100: 2220-2226.
    [26] Lee MA, Park GS, Lee HJ, Jung JH, Kang JH, Hong YS, Lee KS, Kim DG, Kim SN. Survivin expression and its clinical significance in pancreatic cancer. BMC Cancer, 2005, 5:127.
    [27] Yonesaka K, Tamura K, Kurata T, Satoh T, Ikeda M, Fukuoka M, Nakagawa K. Small interfering RNA targeting survivin sensitizes lung cancer cell with mutant p53 to adriamycin. Int J Cancer, 2006, 118: 812-820.
    [28] Nakao K, Hamasaki K, Ichikawa T, Arima K, Eguchi K, Ishii N. Survivin downregulation by siRNA sensitizes human hepatoma cells to TRAIL-induced apoptosis. Oncol Rep, 2006, 16: 389-392.
    [29] Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC.Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396: 580-584.
    [30] Ito T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A. Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology, 2000, 31: 1080-1085.
    [31] Suzuki A, Hayashida M, Ito T, Kawano H, Nakano T, Miura M, Akahane K, Shiraki K. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16INK4a and Cdk2/Cyclin E complex activation. Oncogene, 2000, 19: 3225-3234.
    [32] Yang D, Welm A, Bishop JM. Cell division and cell survival in the absence of survivin. PNAS, 2004, 101: 15100-15105.
    [33] Erkanli S, Bolat F, Kayaselcuk F, Demirhan B, Kuscu E. COX-2 and survivin are overexpressed and positively correlated in endometrial carcinoma. Gynecologic Oncology, 2007, 104: 320-325.
    [34] Mori F, Piro FR, Della Rocca C, Mesiti G, Giampaoli S, Silvestre G, Lazzaro D. Survivin and Cyclooxygenase-2 are co-expressed in human and mouse colon carcinoma and in terminally differentiated colonocytes. Histol Histopathol, 2007, 22: 61-77.
    [35] Konturek PC, Rembiasz K, Burnat G, Konturek SJ, Tusinela M, Bielanski W, Rehfeld J, Karcz D, Hahn E. Effects of cyclooxygenase-2 inhibition on serum and tumor gastrins and expression of apoptosis-related proteins in colorectal cancer. Dig Dis Sci, 2006, 51: 779-787.
    [36] Krysan K, Merchant FH, Zhu L, Dohadwala M, Luo J, Lin Y, Heuze-Vourc’h N, P?ld M, Seligson D, Chia D, Goodglick L, Wang H, Strieter R, Sharma S, Dubinett S. COX-2-dependent stabilization of survivin in non-small cell lung cancer. The FASEB Journal, 2003, 18: 206-208.
    [37] Krysan K, Dalwadi H, Sharma S, Pold M, Dubinett S. Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res, 2004, 64: 6359-6362.
    [38] Baratelli F, Krysan K, Heuze′-Vourc'h N, Zhu L, Escuadro B, Sharma S, Reckamp K, Dohadwala M, Dubinett SM. PGE2 confers survivin-dependent apoptosis resistance in human monocyte-derived dendritic cells. J Leukoc Biol, 2005, 78: 555-564.
    [39] Cui W, Yu CH, Hu KQ. In vitro and in vivo effects and mechanisms of celecoxib-induced growth inhibition of human hepatocellular carcinoma cells. Clin Cancer Res, 2005, 11: 8213-8221.
    [40] Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 1997, 122: 217-224.
    [41] Fulton AM, Ma X, Kundu N. Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res, 2006, 66: 9794-9797.
    [42] Ushikubi F, Sugimoto Y, Ichikawa A, Narumiya S. Roles of prostanoids revealed from studies using mice lacking specific prostanoid receptors. Jpn J Pharmacol, 2000, 83: 279-285.
    [43] O' Callaghan G, Kelly J, Shanahan F, Houston A. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer, 2008, 99: 502-512.
    [44] Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem, 2005, 280: 24053-24063.
    [45] Fields AC, Cotsonis G, Sexton D, Santoianni R, Cohen C. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol, 2004, 17: 1378-1385.
    [46] Fischer OM, Hart S, Gschwind A, Ullrich A. EGFR signal transactivation in cancer cells. Biochem Soc Trans, 2003, 31: 1203-1208.
    [47] Asanuma H, Torigoe T, Kamiguchi K, Hirohashi Y, Ohmura T, Hirata K, Sato M, Sato N. Survivin expression is regulated by coexpression of humanepidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Res, 2005, 65: 11018-11025.
    
    [1]陈杰,李甘地,病理学. 2005,北京:人民卫生出版社. 293-297.
    [2] Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology, 2003, 38: 756-768.
    [3] Dohadwala M, Luo J, Zhu L, Lin Y, Dougherty GJ, Sharma S, Huang M, Pold M, Batra RK, Dubinett SM. Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem, 2001, 276: 20809-20812.
    [4] Han C, Michalopoulos GK, Wu T. Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol, 2006, 207: 261-270.
    [5] Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem, 2003, 278: 35451-35457.
    [6] Mayoral R, Fernandez-Mart?′nez A, Bosca L, Martín-Sanz P. Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis, 2005, 26: 753-761.
    [7] Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol, 2004, 286: F693-701.
    [8] Rao R, Redha R, Macias-Perez I, Su Y, Hao C, Zent R, Breyer MD, Pozzi A. Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERKactivation and angiogenesis in vivo. J Biol Chem, 2007, 282: 16959-16968.
    [9] Mon NN, Ito S, Senga T, Hamaguchi M. FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Ann N Y Acad Sci, 2006, 1086: 199-212.
    [10] Cox BD, Natarajan M, Stettner M R, Gladson CL. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem, 2006, 99: 36-52.
    [11] Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H, Sabe H. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J Cell Biol, 2002, 159: 673-683.
    [12] Pai R, Nakamura T, Moon WS, Tarnawski AS. Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J, 2003, 17: 1640-1647.
    [13] Itoh S, Maeda T, Shimada M, Aishima S, Shirabe K, Tanaka S, Maehara Y. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res, 2004, 10: 2812-2817.
    [14] Lightfoot HM Jr, Lark A, Livasy CA, Moore DT, Cowan D, Dressler L, Craven RJ, Cance WG. Upregulation of focal adhesion kinase (FAK) expression in ductal carcinoma in situ (DCIS) is an early event in breast tumorigenesis. Breast Cancer Res Treat, 2004, 88: 109-116.
    [15] Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol, 1999, 146: 389-403.
    [16] Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, Cance WG. Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res, 2003, 9: 215-222.
    [17] Cowell LN, Graham JD, Bouton AH, Clarke CL, O'Neill GM. Tamoxifen treatment promotes phosphorylation of the adhesion molecules, p130Cas/BCAR1, FAK and Src, via an adhesion-dependent pathway.Oncogene, 2006, 25: 7597-7607.
    [18] Natarajan M, Hecker TP, Gladson CL. FAK signaling in anaplastic astrocytoma and glioblastoma tumors. Cancer J, 2003, 9: 126-133.
    [19] Schneider GB, Kurago Z, Zaharias R, Gruman LM, Schaller MD, Hendrix MJ. Elevated focal adhesion kinase expression facilitates oral tumor cell invasion. Cancer, 2002, 95: 2508-2515.
    [20] Jones G, Machado J Jr, Merlo A. Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Res, 2001, 61: 4978-4981.
    [21] Han EK, Mcgonigal T, Wang J, Giranda VL, Luo Y. Functional analysis of focal adhesion kinase (FAK) reduction by small inhibitory RNAs. Anticancer Res, 2004, 24: 3899-3905.
    [22] Obara S, Nakata M, Takeshima H, Kuratsu J, Maruyama I, Kitajima I. Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer Lett, 2002, 185: 153-161.
    [23] von Sengbusch A, Gassmann P, Fisch KM, Enns A, Nicolson GL, Haier J. Focal adhesion kinase regulates metastatic adhesion of carcinoma cells within liver sinusoids. Am J Pathol, 2005, 166: 585-596.
    [24] Crowe DL, Ohannessian A. Recruitment of focal adhesion kinase and paxillin to beta1 integrin promotes cancer cell migration via mitogen activated protein kinase activation. BMC Cancer, 2004, 4: 18.
    [25] Carloni V, Mazzocca A, Pantaleo P, Cordella C, Laffi G, Gentilini P. The integrin, alpha6beta1, is necessary for the matrix-dependent activation of FAK and MAP kinase and the migration of human hepatocarcinoma cells. Hepatology, 2001, 34: 42-49.
    [26] Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci, 2005, 118: 4415-4425.
    [27] Ilic D, Genbacev O, Jin F, Caceres E, Almeida EA, Bellingard-Dubouchaud V, Schaefer EM, Damsky CH, Fisher SJ. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am J Pathol, 2001, 159: 93-108.
    [28] Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem, 2004, 279: 9565-9576.
    [29] van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B. Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res, 2005, 65: 4698-4706.
    [30] Brown MC, Turner CE. Paxillin: adapting to change. Physiol Rev, 2004, 84: 1315-1339.
    [31] Schaller MD, Parsons JT. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol, 1995, 15: 2635-2645.
    [32] Hecker TP, Grammer JR, Gillespie GY, Stewart J Jr, Gladson CL. Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res, 2002, 62: 2699-2707.
    [33] Ding Q, Grammer JR, Nelson MA, Guan JL, Stewart J E, Jr. Gladson CL. p27(Kip1) and cyclin D1 are necessary for focal adhesion kinase (FAK) regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem, 2005, 280: 6802-6815.
    [34] Huang D, Khoe M, Befekadu M, Chung S, Takata Y, Ilic D, Bryer-Ash M. Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways. Am J Physiol Cell Physiol, 2007, 292: C1339-C1352.
    [35] Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 2004, 6: 154-161.
    [36] Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV,Morrione A. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res, 2006, 66: 7103-7110.
    [37] Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci, 2004, 117: 4619-4628.
    [1] van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem Pharmacol, 2007, 73: 597-609.
    [2] Mon NN, Ito S, Senga T, Hamaguchi M. FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Ann N Y Acad Sci, 2006, 1086: 199-212.
    [3] Cox BD, Natarajan M, Stettner MR, Gladson CL. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem, 2006, 99: 35-52.
    [4] Cary LA, Guan JL. Focal adhesion kinase in integrin-mediated signaling. Front Biosci, 1999, 4: d102-113.
    [5] Crowe DL, Ohannessian A. Recruitment of focal adhesion kinase and paxillin to beta1 integrin promotes cancer cell migration via mitogen activated protein kinase activation. BMC Cancer, 2004, 4: 18.
    [6] Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem, 2004, 279: 9565-9576.
    [7] Zhai J, Lin H, Nie Z, Wu J, Ca?ete-Soler R, Schlaepfer WW, Schlaepfer DD. Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem, 2003, 278: 24865-24873.
    [8] Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci, 2005, 118: 4415-4425.
    [9] Ilic D, Genbacev O, Jin F, Caceres E, Almeida EA, Bellingard-Dubouchaud V, Schaefer EM, Damsky CH, Fisher SJ. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am J Pathol, 2001, 159: 93-108.
    [10] Caron-Lormier G, Berry H. Amplification and oscillations in the FAK/Src kinase system during integrin signaling. J Theor Biol, 2005, 232: 235-248.
    [11] Siesser MF, Hanks SK. The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res, 2006, 12: 3233-3237.
    [12] Cooper LA, Shen TL, Guan JL. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol Cell Biol, 2003, 23: 8030-8041.
    [13] Cohen LA, Guan JL. Residues within the first subdomain of the FERM-like domain in focal adhesion kinase are important in its regulation. J Biol Chem, 2005, 280: 8197-8207.
    [14] Lim Y, Han I, Jeon J, Park H, Bahk YY, Oh ES. Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem, 2004, 279: 29060-29065.
    [15] Thamilselvan V, Basson MD. The role of the cytoskeleton in differentially regulating pressure-mediated effects on malignant colonocyte focal adhesion signaling and cell adhesion. Carcinogenesis, 2005, 26: 1687-1697.
    [16] Parsons JT. Focal adhesion kinase: The first ten years. J Cell Sci, 2003, 116: 1409-1416.
    [17] van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B. Requirement for focal adhesion kinase in the early phase of mammaryadenocarcinoma lung metastasis formation. Cancer Res, 2005, 65: 4698-4706.
    [18] Kim S, Kim SH. Antagonistic effect of EGF on FAK phosphorylation/ dephosphorylation in a cell. Cell Biochem Funct, 2008, 26: 539-547.
    [19] Wang SE, Xiang B, Zent R, Quaranta V, Pozzi A, Arteaga CL. Transforming growth factorβinduces clustering of HER2 and integrins by activating Src-FAK and receptor association to the cytoskeleton. Cancer Res, 2009, 69: 475-482.
    [20] Calandrella SO, Barrett KE, Keely SJ. Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells. J Cell Physiol, 2005, 203: 103-110.
    [21] Aponte M, Jiang W, Lakkis M, Li MJ, Edwards D, Albitar L, Vitonis A, Mok SC, Cramer DW, Bin Y. Activation of PAF-receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/Paxillin in ovarian cancer. Cancer Res, 2008, 68: 5839-5848.
    [22] Abedi H, Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem, 1997, 272: 15442-15451.
    [23] Ashton AW, Ware JA. Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor–induced endothelial cell differentiation and migration. Circ Res, 2004, 95: 372-379.
    [24] Boeuf FL, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem, 2004, 279: 39175-39185.
    [25] Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003, 17: 590-603.
    [26]陈杰,李甘地,病理学. 2005,北京:人民卫生出版社. 45-49.
    [27] Thamilselvan V, Craig DH, Basson MD. FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via aSrc-dependent PI3K/Akt pathway. The FASEB Journal, 2007, 21: 1730-1741.
    [28] van Nimwegen MJ, Huigsloot M, Camier A, Tijdens IB, van de Water B. Focal adhesion kinase and protein kinase B cooperate to suppress Doxorubicin-induced apoptosis of breast tumor cells. Mol Pharmacol, 2006, 70: 1330-1339.
    [29] Kornberg LJ, Shaw LC, Spoerri PE, Caballero S, Grant MB. Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Invest Ophthalmol Vis Sci, 2004, 45: 4463-4469.
    [30] Lee DY, Li YS, Chang SF, Zhou J, Ho HM, Chiu JJ, Chien S. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by alphavbeta3 and beta1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J Biol Chem, 2010, 285: 30-42.
    [31] Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci, 2004, 117: 4619-4628.
    [32] Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol, 2003, 206: 1107-1115.
    [33] Schlaepfer DD, Hunter T. Focal adhesion kinase overexpression enhances Ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem, 1997, 272: 13189-13195.
    [34] Huang D, Khoe M, Befekadu M, Chung S, Takata Y, Ilic D, Bryer-Ash M. Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways. Am J Physiol Cell Physiol, 2007, 292: C1339-C1352.
    [35] Cheung PF, Wong CK, Ip WK, Lam CW. FAK-mediated activation of ERK for eosinophil migration: a novel mechanism for infection-induced allergic inflammation. Int Immunol, 2008, 20: 353-363.
    [36] Hunger-Glaser I, Fan RS, Perez-Salazar E, Rozengurt E. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser910: dissociationfrom Tyr397 phosphorylation and requirement for ERK activation. J Cell Physiol, 2004, 200: 213-222.
    [37] Brown MC, Turner CE. Paxillin: adapting to change. Physiol Rev, 2004, 84: 1315-1339.
    [38] Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H, Sabe H. Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J Cell Biol, 2002, 159: 673-683.
    [39] Schaller MD, Parsons JT. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol, 1995, 15: 2635-2645.
    [40] Lightfoot HM Jr, Lark A, Livasy CA, Moore DT, Cowan D, Dressler L, Craven RJ, Cance WG. Upregulation of focal adhesion kinase (FAK) expression in ductal carcinoma in situ (DCIS) is an early event in breast tumorigenesis. Breast Cancer Res Treat, 2004, 88: 109-116.
    [41] Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol, 1999, 146: 389-403.
    [42] Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, Cance WG. Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res, 2003, 9: 215-222.
    [43] Itoh S, Maeda T, Shimada M, Aishima S, Shirabe K, Tanaka S, Maehara Y. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res, 2004, 10: 2812-2817.
    [44] Yuan Z, Zheng Q, Fan J, Ai KX, Chen J, Huang XY. Expression and prognostic significance of focal adhesion kinase in hepatocellular carcinoma. J Cancer Res Clin Oncol, 2010, Feb 12 [Epub ahead of print].
    [45] Cowell LN, Graham JD, Bouton AH, Clarke CL, O'Neill GM. Tamoxifen treatment promotes phosphorylation of the adhesion molecules, p130Cas/BCAR1, FAK and Src, via an adhesion-dependent pathway.Oncogene, 2006, 25: 7597-7607.
    [46] Natarajan M, Hecker TP, Gladson CL. FAK signaling in anaplastic astrocytoma and glioblastoma tumors. Cancer J, 2003, 9: 126-133.
    [47] Schneider GB, Kurago Z, Zaharias R, Gruman LM, Schaller MD, Hendrix MJ. Elevated focal adhesion kinase expression facilitates oral tumor cell invasion. Cancer, 2002, 95: 2508-2515.
    [48] Jones G, Machado J Jr, Merlo A. Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Res, 2001, 61: 4978-4981.
    [49] Han EK, McGonigal T, Wang J, Giranda VL, Luo Y. Functional analysis of focal adhesion kinase (FAK) reduction by small inhibitory RNAs. Anticancer Res, 2004, 24: 3899-3905.
    [50] Obara S, Nakata M, Takeshima H, Kuratsu J, Maruyama I, Kitajima I. Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer Lett, 2002, 185: 153-161.
    [51] von Sengbusch A, Gassmann P, Fisch KM, Enns A, Nicolson GL, Haier J. Focal adhesion kinase regulates metastatic adhesion of carcinoma cells within liver sinusoids. Am J Pathol, 2005, 166: 585-596.
    [52] Ding Q, Grammer JR, Nelson MA, Guan JL, Stewart JE, Jr Gladson CL. p27(Kip1) and cyclin D1 are necessary for focal adhesion kinase (FAK) regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem, 2005, 280: 6802-6815.
    [53] Hecker TP, Grammer JR, Gillespie GY, Stewart J Jr, Gladson CL. Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res, 2002, 62: 2699-2707.
    [54] Schuppan D, Ocker M. Integrin-mediated control of cell growth. Hepatology, 2003, 38: 289-291.
    [55] Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer, 2005, 4: 37.
    [56] Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 2004, 6: 154-161.
    [57] Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, Morrione A. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res, 2006, 66: 7103-7110.
    [58] Carloni V, Mazzocca A, Pantaleo P, Cordella C, Laffi G, Gentilini P. The integrin, alpha6beta1, is necessary for the matrix-dependent activation of FAK and MAP kinase and the migration of human hepatocarcinoma cells. Hepatology, 2001, 34: 42-49.
    [59] Li Y, Samuvel DJ, Sundararaj KP, Lopes-Virella MF, Huang Y. IL-6 and high glucose synergistically upregulate MMP-1 expression by U937 mononuclear phagocytes via ERK1/2 and JNK pathways and c-Jun. J Cell Biochem, 2010, Mar 11 [Epub ahead of print].
    [60] Dutta A, Sen T, Chatterjee A. Culture of K562 human myeloid leukemia cells in presence of fibronectin expresses and secretes MMP-9 in serum-free culture medium. Int J Clin Exp Pathol, 2010, 3: 288-302.
    [61] Endo H, Watanabe T, Sugioka Y, Niioka M, Inagaki Y, Okazaki I. Activation of two distinct MAPK pathways governs constitutive expression of matrix metalloproteinase-1 in human pancreatic cancer cell lines. Int J Oncol, 2009, 35: 1237-1245.
    [62] Lee JW, Kwak HJ, Lee JJ, Kim YN, Lee JW, Park MJ, Jung SE, Hong SI, Lee JH, Lee JS. HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression. Eur J Cell Biol, 2008, 87: 377-387.
    [63] Park D, Shim E, Kim Y, Kim YM, Lee H, Choe J, Kang D, Lee YS, Jeoung D. C-FLIP promotes the motility of cancer cells by activating FAK and ERK, and increasing MMP-9 expression. Mol Cells, 2008, 25: 184-195.
    [64] Canel M, Secades P, Garzón-Arango M, Allonca E, Suarez C, Serrels A, Frame M, Brunton V, Chiara MD. Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer, 2008, 98: 1274-1284.
    [65] Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol, 2004, 265: 23-32.
    [66] Bai XM, Zhang W, Liu NB, Jiang H, Lou KX, Peng T, Ma J, Zhang L, Zhang H, Leng J. Focal adhesion kinase: Important to prostaglandin E2-mediated adhesion, migration and invasion in hepatocellular carcinoma cells. Oncol Rep, 2009, 21: 129-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700