用户名: 密码: 验证码:
量子点做探针共振瑞利散射法在多糖分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点,又称半导体纳米晶,三维尺度在1-10nm。由于他们特殊的发光性能,已经引起了广泛关注。量子点作为探针,已经被用于生物大分子,金属离子,药物等的分析测定。因此,量子点在新的分析测定领域具有很好的发展前景。
     共振瑞利散射(resonance Rayleigh scattering, RRS)技术是二十世纪九十年代发展起来的一门新技术,由于其高的灵敏度、较好的选择性和简易性而引起科研工作者的兴趣和关注,近年来,已在核酸、蛋白质等生物大分子、药物、以及金属和非金属离子等的测定中得到很多的应用。最新研究表明,它除了上述应用外,对于研究纳米微粒也是一种有用的技术。而且利用量子点做探针共振瑞利散射法测定多糖的报道较少。
     本论文分为两部分,第一部分是文献综述,主要介绍了量子点的制备和应用,共振瑞利散射技术及其发展以及多糖的介绍和常用分析方法。第二部分是研究报告,利用量子点做探针用共振瑞利散射光谱法分析和测定两种蛋白多糖。
     一、硫酸皮肤素的测定
     1、硒化镉量子点与硫酸皮肤素作用的共振瑞利散射光谱法研究
     本文以巯基乙胺(2-mercaptoethylamine hydrochloride, CA)为稳定剂在水相中合成了2nm左右的CdSe量子点(CdSe quantum dots, CdSe QDs),基于硫酸皮肤素(Dermatan Sulfate, DS)所引起的CdSe QDs共振瑞利散射的增强,本文提出了一种检测硫酸皮肤素(Dermatan Sulfate, DS)的新方法。在最优反应条件下,RRS增强的强度与DS的浓度在一定范围内成正比。RRS的检出限为1.3ng·mL-1。讨论了实验最佳条件和共存物质对体系的影响,结果显示该方法具有较好的选择性。该方法用于人血清与尿样中DS的检测,结果另人满意。此外,结合紫外吸收光谱和透射电子显微镜(TEM)技术对共振瑞利散射光谱的增强的机理进行了探讨。据此建立了利用CdSe量子点测定DS的新方法。
     2、CdTe量子点-硫酸皮肤素体系的共振瑞利散射光谱及其分析应用
     本文以巯基乙胺为稳定剂在水相中合成了粒径很小的CdTe量子点(QDs)。采用共振瑞利散射光谱法,研究了CA-CdTe QDs与硫酸皮肤素(DS)的相互作用。CA-CdTe QDs与DS的相互作用导致了CA-CdTe QDs-DS体系RRS的显著增强,散射强度(ΔIRRS)与DS的浓度在一定范围内成正比,其线性范围和检出限分别为0.0039~0.6μg·mL-1和1.2 ng·mL-1,据此建立了CA-CdTe QDs作探针RRS法检测DS的高灵敏度新方法。同时讨论了最佳的反应条件和影响因素,研究了该方法的选择性。此外还讨论了RRS增强的原因。实验表明该方法有较高的灵敏度,应用于血样和尿样中样品的测定,结果令人满意。
     二、葡聚糖硫酸钠的测定
     1、硒化镉量子点做探针共振瑞利光谱法测定葡聚糖硫酸钠
     以巯基乙胺为稳定剂在水相中合成CdSe量子点,在乙酸-乙酸钠缓冲溶液中,巯基乙胺自组装在量子点的表面形成带有正电的聚集体可与带负电的葡聚糖硫酸钠(Dextran Sulfate Sodium, DSS)靠静电引力及疏水作用力结合形成粒径较大的聚集体,这种聚集体的形成导致共振瑞利散射强度显著增大,最大散射峰位于536nm。建立了用CdSe量子点作为探针RRS法测定葡聚糖硫酸钠的灵敏度高,简便,快速的新方法,同时讨论了最佳反应条件和影响因素,该方法具有较好的选择性。应用于血样和尿样的测定结果令人满意。
     2、CdTe量子点-葡聚糖硫酸钠体系共振瑞利散射光谱研究及其分析应用
     合成了巯基乙氨为稳定剂的CdTe量子点(QDs)。利用吸收光谱和共振瑞利散射光谱(RRS)研究了CdTe QDs与葡聚糖硫酸钠(DSS)的相互作用。CdTe QDs与DSS的吸收光谱在反应前后发生了明显的变化,这说明CdTe QDs与DSS之间存在着强烈的相互作用。在pH 5.0的缓冲溶液中,CdTe QDs-DSS体系的结合前后RRS变化显著。据此推测DSS通过静电引力和疏水作用力吸附到CdTe QDs表面形成了结合产物,导致了CdTe QDs-DSS体系的RRS显著增强。研究了最佳的反应条件和影响因素,同时研究了该方法的选择性。应用于血样和尿样的测定,结果令人满意。
Quantum dots (QDs), which are semiconductor nanoparticles that have all three dimensions confined to the 1-10 nm length scale, have attracted considerable attention because of their unique luminescent properties. QDs have been applied to the detection of biomacromolecules, metal ions, pharmaceuticals, and so on. Therefore, it is significant for further developing new analytical application of QDs.
     Resonance Rayleigh scattering (RRS) technology was developed during 1990s. As a newly analytical technique, it has been received much attention because of its sensitivity and simplicity Therefore, this technique has been increasingly applied to the determination of macromolecules such as inorganic ions, organic compounds, nucleic acids, proteins, cationic surfactant, and some drugs. In recent years, this technique was applied to study nanometer particle. However, QDs were used as probes for the determination of polysaccharides by resonance Rayleigh scattering has few reports.
     This paper contained two parts. The first part was the literature review and it includse the preparation and application of quantum dots, the development of resonance Rayleigh scattering technology and the introduction of polysaccharides in common analysis. The second part was research paper. In this paper, quantum dots were used as probes for the determination of two proteoglycans by resonance Rayleigh scattering method.
     Determination of Dermatan Sulfate:
     1. Resonance Rayleigh scattering method for the determination of Dermatan
     Sulfate with CdSe quantum dots as probes
     The CdSe quantum dots capped by 2-mercaptoethylamine hydrochloride with an average diameter of 2 rm were synthesized in water solution. It could react with dermatan sulfate (DS) and form the large aggregates by virtue of electrostatic attraction and the hydrophobic force, which induced a great enhancement of RRS. In a certain ranges, the enhancements of scattering intensity (ΔI) were directly proportional to the concentration of DS. This method revealed good sensitiviy, and the detection limit (38) was 1.3 ng mL-1. The optimum conditions of this reaction system and the influencing factors were investigated. In addition, ultraviolet absorption spectra and transmission electron microscope were employed to discuss the reaction mechanism of RRS enhancement. A novel method for the determination of trace DS using CdSe quantum dots probes was developed.
     2. Resonance Rayleigh scattering spectra of CdTe QDs-DS system and its analytical application
     The CdTe quantum dots capped by 2-mercaptoethylamine hydrochloride was synthesized in water solution. CdTe QDs can react with dermatan sulfate and form an ion association complex. The linear relactionship between the relative intensity ofΔIRRS and concentration of DS was in the range of 0.2-0.6μg mL-1. A sensitive, simple, and selective method for the determination of DS with CdTe QDs as probe by resonance Rayleigh scattering technique was developed. The optimum conditions and the influence factors were investigated. Moreover, the composition of ion-association complexes and the reaction mechanism were discussed. The method was applied to the determination of DS in human blood with satisfactory results.
     Determination of Dextran Sulfate Sodium:
     1. Resonance Rayleigh scattering method for the determination of dermatan sulfate sodium with water solubility CdSe quantum dots as probe
     In acetic acid-sodium acetate buffer medium, the surface of QDs was assembled by 2-mercaptoethylamine hydrochloride which showed positive charge. The CdSe QDs could react with dextran sulfate sodium (DSS) and form the large aggregates by virtue of electrostatic attraction and the hydrophobic force, which leads to the remarkable enhancement of RRS. The maximum scattering peak was located at 343 nm. A sensitive and simple method for the determination of DSS with CdSe QDs as probes by resonance Rayleigh scattering technique was developed. The optimum conditions and influence factors of the reactions were investigated. It has been applied to the determination of DSS in human blood and urine samples and this method exhibited satisfactory results.
     2. Resonance Rayleigh scattering spectra of CdTe QDs-DSS system and its analytical application
     2-Mercaptoethylamine hydrochloride capped CdTe quantum dots with the diameter of 2-3 nm were synthesized in aqueous solution. At pH 5.0, CdTe QDs could react with DSS and form the large aggregates by electrostatic attraction and the hydrophobic force, which resulted in a great enhancement of resonance Rayleigh scattering. In this paper, the relationship between ultraviolet-visible absorption and resonance Rayleigh scattering was studied. The affecting factors and characteristics of RRS for the interaction of CdTe QDs with DSS were also investigated and a sensitive, simple and fast method for the determination of trace amounts of DSS using the RRS method was developed. It has been applied to the determination of DSS in human blood and urine samples with satisfactory results.
引文
[1]Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A.P., Semiconductor nanocrystals as fluorescent biological labels, Science,1998,281 (5385):2013-2016.
    [2]Murray, C.B., Norris, D.J., Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.1993,115 (19):8706-8715.
    [3]Peng, X.G., Schlamp, M.C., Kadavanich, A.V., Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc.1997,119 (30):7019-7029.
    [4]TijanaRajh, 1.MicieOlga, lNozikArthur, Synthesis and charaeterization of surface— modified colloidal cadmium telluride quantumdots.Phys.Chem.,1993,97,11999—12003.
    [5]Gao M., Kirstein S., Moehwald H., Rogach AL., Kornowski A., Eychmuller A., Weller H., Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B, 1998,102 (43):8360-8363.
    [6]Nikolai G., Dmitri V.T., Andrey L.R., Kathrin H., Elena V.S., Andreas K., Alexander E., Horst W., Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B 2002,106 (29):7177-7185.
    [7]H.He, H.Qian, C.Dong, K.Wang, J.Ren, Single NonblinLkingCdTe Quantum DotsSynthesized in Aqueous ThioProPionic Acid.Angew.Chem.Int.Ed.,2006,45,7588—7591.
    [8]Han,M.Y.,Gao,X.H.,Su,J.Z.&Nie,S.M.Quantumdot-tagged microbeads for multiplexed optical coding of biomolecules.Nat.Biotechnol.19,631-635(2001).
    [9]Parak W.J., Pellegrino T., Plank C., Labelling of cells with quantum dots, Nanotechnology,2005, 16 (2):9-25.
    [10]Hoshino A,Hanakik,Suzuki K,et al.Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body[J].biochemical and BiophysicalResearch Communications,2004,314:46-53.
    [11]Wu X.Y., Liu H.J., Haley Karin N., Liu J.Q., Haley K.N., Treadway J.A., Larson J.P., Ge N.F., Peale F., Bruchez M.P., Immunofluorescent labeling of cancer marker Her2 and other cellular targetswith semiconductor. Nature Biotechnology,2003,21 (1):41-46.
    [12]Akerman M E,Chan W C,Laakkonen P,et al.Nanacrystal targeting in vivo[J].Proc Natl Acad Sci USA,2002,99(20):12617-12621.
    [13]Goldman E R,Balighian E D,Mattoussi H,et al.Avidin:a natural bridge for quantum dot-antibody conjugates[J].J Am Chem Soc,2002,124(22):6378-6382.
    [14]Goldman E R,Balighian E D,Anderson G P,et al.Multiplexed toxin analysis using four colors of quantum dot fluoreagents.Analytical Chemstry,2004,76(3):684-688.
    [15]Larson D R, Zipfel W R, Williams R M, et al.water-solube quantum dots for multiphoton fluorescence imaging in vivo, Science,2003,300:1434-1436.
    [16]Kim S, L.Y.T, Soltesz E.G, De Grand.M., Lee J., Nakayama A., Parker J.A. Mihaljevie.T, Laurence R.G, Dor D.M., Cohn L.H., Near-infrared flourscent type II quantum dots for sentine lymph node mapping. Nature Bioteehnology,2004,22:93-97
    [17]Chen Y,Rosenzweig Z.Luminescent CdS quantum dots as selective ion probes[J]. AnalChem, 2002,74(19):5132-5138.
    [18]K.M. Gattas—Asfura, R.M.Leblane, Peptide-coated CdS quantumdots for the optical deteetion of copper (Ⅱ)and silver(Ⅰ).Chem.Cotnmun.,2003,2684-2685
    [19]W.J.Jin, M.T. Fern a ndez-Arg u elles, J.M.Costa-Fem a dez, R.Pereiro, A. Sanz-Medel,Photoaetivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions[J].Chem.Conunun.,2005,883-885.
    [20]Anglister J, Steinberg I Z. Resonance Rayleigh scattering of cyanine dyes in solution, J. Chem. Phys.1983,78(9):5358
    [21]Placzek G. In Handbuck der Radiologie, Vol.Ⅵ, Edited by Marx E. Akademische Verlagsgesellschaft Leipzig 1934, part2,20.
    [22]Pasternack R F, Bustamante C, Collings P J, Giannetto A, Gibb E. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J. Am. Chem. Soc.1993,115, 5393-5399.
    [23]Pasternack R F, Collings P J. Resonance light-scattering-A new technique for studying chromophore aggregation. Science 1995,269 (5226),935-939.
    [24]Arena G, Scolaro L M, Pasternack R F, et al., Synthesis,characterization, and interaction with DNA of the novel metallointercalator cationic complex (2,2:6, 2-terpyridine) methylplatium(III), Iorg. Chem.1995,35:2994-3002
    [25]De Paula J C, Robblee J H, Pasternack R F. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy. BioPhys. J.1995,68(1),335-341.
    [26]Shaopu Liu, Guangming Zhou, Zhongfang Liu, Resonace Rayleigh scattering for the determination of cationic surfactants with Eosin Y. Fresenius'J. Anal.Chem.,1999,363(7): 651-654.
    [27]Huang C Z, Zhu J X, Li K A, Tong S Y. Determination of Albumin and Globulin at Nanogram Levels by a Resonance Light-Scattering Technique with α,β,γ,δ-Tetrakis (4-sulfophenyl)porphine. Anal. Sci.1997,13(2),263-268.
    [28]Clays K, Persoons A. Hyper-Rayleigh scattering in solution. Phys. Rev. Lett.1991,66(23), 2980-2983.
    [29]Vance F W, Lemom B I, Ekhoff J A. Interrogation of Nanoscale Silicon Dioxide/Water Interfaces via Hyper-Rayleigh Scattering. J. Phys. Chem. B,1998,102(11),1845-1848.
    [30]Zhang Y, Wang X, Ma M, Fu D G, Liu J Z, Gu M, Lu Z H, Xu L, Clen K. Study progress in Second Order Optical Nonlinearities of Inorganic Nanoparticles. J. Chin. J. Inorg. Chem. 2002,18(12),1177-1184.
    [31]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅰ,硒(Ⅳ)-碘化物-罗丹明B体系.化学学报,1995,53(12),1178-1184.
    [32]Fu S H, Liu Z F, Liu S P, Liu J T, Yi Aoer. Study on the Resonance Rayleigh Scattering Spectra of the Interactions of Palladium (Ⅱ)-Cephalosporins Chelates with 4,5-Dibromofluorescein and Their Analytical Applications. Anal. Chim.Acta,2007,599: 271-278.
    [33]Wei X, Liu Z, Liu S, Resonance Rayleigh Scattering Spectra of tetracycline antibiotic-Cu(II)-titan yellow systems and their application in analytical chemistry, Anal. Bional. Chem.,2006,385(6),1037-1044
    [34]Liu S P, Liu Z F, Huang CZ. Resonance Rayleigh Scattering for an Indirect Determination of Trace Amounts of Selenium (Ⅳ)Iodide-Basic Triphenylmethane Dye Systems Anal. Sci., 1998,14 (4),799-802.
    [35]Liu S P.Resonance Rayleigh Scattering for Chromium (VI)-Iodide-Basic Triphenylmethane Dye System and Their Analytical Application. Anal. Chim. Acta,1999,379,53-61
    [36]Liu S P, Liu Z F, Luo H Q.Resonance Rayleigh scattering method for the determination of trace amount of cadmium with iodide-rhodamine dye system. Anal.Chim.Acta, 2000,12,255-260.
    [37]Liu, S. P., Liu, Z. F., Zhou, G. M.. Resonance Rayleigh scattering for the determination of trace amounts of mercury(II)with thiocyanate and basic triphenylmethane dyes. Anal. Lett.1998,37,1247-1259
    [38]刘绍璞,周光明,刘忠芳,李明.共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中的痕量钼.高等学校化学学报.1998,19,1040-1044
    [39]Zhao, Y. K., Cao Q. E., Hu Z. D., Xu Q. H.. Synthesis of a new triazene reagent and its application for the determination of silver(I) by the Rayleigh light-scattering. Anal. Chim. Acta.1999,388,45-50
    [40]Jiang Z. L., Liu Q. Y., Liu S. P. Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)n(Ag)s nanoparticle. Spectrochim. Acta. Part A.2002,58,2759-2764
    [41]Guo Z. X., Shen H. X. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone. Anal. Chim. Acta 2000,408, 177-182
    [42]Long X. F., Liu S. P., Kong L., Liu Z. F., Bi S. P.. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method. Talanta,2004,63,279.
    [43]刘绍璞,胡小莉,罗红群,范莉.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国科学(B辑),2002,32(1),18-26.
    [44]罗红群,西南大学博士学位论文.2002
    [45]王晓洲,西南大学硕士学位论文.2005
    [46]彭敬东,刘绍璞,刘忠芳,石燕,镧(Ⅲ)与丹参酮ⅡA磺酸钠螯合物的共振瑞利散射光谱及其分析应用,中国科学B辑,2006,36(3),227-233.
    [47]刘绍璞,胡小莉,刘忠芳,刚果红-阿米卡星体系的共振Rayleigh散射和共振非线性散射光谱及其分析应用,中国科学,B辑化学,2006,36(4),317-325.
    [48]彭敬东,西南大学博士学位论文.2005.
    [49]杨季冬,曹团武,刘绍璞.利福霉素类抗生素-Cu(Ⅱ)-核酸体系的RRS光谱研究,化学学报,2008,66(19),2131-2137.
    [50]刘江涛,刘忠芳,刘绍璞,盐酸平阳霉素玉核酸相互作用的共振瑞利Rayleigh散射光谱及其分析应用.中国科学B辑(化学),2007,37(2),178-185.
    [51]鲁群岷,刘忠芳,刘绍璞,金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物.化学学报,2007,65(9),821-828.
    [52]何佑秋,西南大学博士毕业论文.2005
    [53]李太山,刘绍璞等.碲化镉纳米晶溶液的荧光和共振瑞利散射特性及其在氨基糖苷类抗生素相互作用.中国科学(B辑),2008,38(9),798-807.
    [54]彭娟娟,西南大学硕士毕业论文.2010
    [55]王雷,西南大学硕士毕业论文.2010
    [56]Li N B, Luo H O, Liu S P. Resonance Rayleigh scattering technology as a new method for the determination of the inclusion constant of β-cyclodextrin. Spectrochim.Acta, Part A,2002, 58,501-507.
    [57]Li N B, Liu S P, Luo H Q. A new method for the determination of fist and second CMC in CTAB solution by Resonance Rayleigh scattering technology. Anal.Lett.,2002,35(7), 1229-1283.
    [58]刘绍璞,刘忠芳.硒(Ⅳ)-碘化物-结晶紫体系的共振发光和二级散射光谱.高等学校化学学报,1996,17(8),1213-1215.
    [59]刘绍璞,刘忠芳,蒋治良,李明,龙秀芬.镉(Ⅱ)-碘化物-碱性咕吨染料体系的倍频散射和二级散射及其分析应用.化学学报,2001,11,1864-1869.
    [60]高建华,林鹏,陈彬,毛陆原.Zn(Ⅱ)-硫氰酸盐-罗丹明体系二级散射光谱法测Zn.冶金分析,2000,20(4),1-3.
    [61]刘绍璞,刘忠芳.钼(Ⅴ)-硫氰酸盐-碱性三苯甲烷染料体系二级散射光谱及其应用.西南师范大学学报(自然科学版),1998,24(4),412-417.
    [62]刘绍璞,杨睿,刘忠芳.铬(Ⅵ)-碘化物-维多利亚蓝4R体系的共振瑞利散射和二级散射及其分析应用.分析化学,1998,26(12),1432-1436.
    [63]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅲ,汞(Ⅱ)-硫氰酸盐-碱性咕吨染料体系.分析化学,1996,28(5),501-505.
    [64]刘绍璞,刘忠芳.钼(Ⅴ)-硫氰酸盐-碱性三苯甲烷染料体系的二级散射光谱及其分析应用.西南师范大学学报(自然科学版).1998,24(4),412-415
    [65]杨清玲,刘忠芳,鲁群岷,刘绍璞,陈刚才.盐酸氯丙嗪作探针二级散射和倍频散射法测定环境水样中某些阴离子表面活性剂.分析化学.2007,35(6),797-802.
    [66]Luo H Q, Liu S P, Li N B, Liu Z F. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application. Anal.Chim.Acta,2002,468 (2),275-286.
    [67]Li N B, Liu S P, Luo H Q. Frequence Doubling scattering and second-ordering technology as novel methods for the determination of the inclusion constant of β-cyclodextrin. Anal.Chim.Acta.2002,472,89-98.
    [68]蒋治良,冯忠伟,刘庆业.金纳米粒子的非线性共振散射及光强度函数研究.无机化学,2001,17(3),355-360.
    [69]赵国华,李志孝,陈宗道.山药多搪RDPS-1的结构分析及抗肿瘤活性.药学学报,2003,38(1):37-41
    [70]徐康康,李嵘,钱宗云.当归多糖对脾淋巴细胞IFN-γ、IL-2免疫活性的影响.药物生物技术,2007,14(6),439-441
    [71]张莉,李娜等.糖胺聚糖分析测定的研究进展.分析化学评述与进展,2005(7):1023-1028
    [72]Sie P,Dupouy D,Caranobe C, et al. Antithrombotic properties of a dermatan sulfate hexadecasaccharide fractionated by affinity for heparin cofactor Ⅱ.Blood,1993,81 (7),1771-1777.
    [73]Fernandez JA,Petaja J,G riffin JH. Dermatan sulfate and LMM heparinenhance the anticoagulant action of activated protein C. ThrombHaemost,1999,82 (5),1462-1468.
    [74]田庚元,冯宇澄.多糖类免疫调节剂的研究和应用化学进展,1994,6(2),114-124.
    [75]刘绍璞,罗红群.维多利亚蓝4R分光光度法测定肝素钠.西南师范大学学报(自然科学版),2001,26(4),485-490.
    [76]陈莲惠,刘绍璞,罗红群,等.碱性二苯基荼基甲烷染料褪色光度法测定透明质酸钠[J].分析化学,2004,32(8),1086-1089.
    [77]王祥洪等.番红花红分光光度法测定硫酸皮肤素.化学试剂,2008,30(11),853-855.
    [78]孙伟,赵娜,徐啸等.甲苯胺蓝线扫极谱法测定硫酸软骨素[J].分析化学,2007,35(11),1548-1552.
    [79]勾华,罗红群,李念兵.甲苯胺蓝循环伏安法测定硫酸软骨素[J].西南大学学报(自然科学版),2008,30(5),58-61.
    [80]Oguma T, Tomatsu S, Montano A M, et al. Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry [J]. Analytical Biochmistry,2007,368 (1),79-86.
    [81]Shaopu liu, Hong Qun Luo, Nianbing Li, Zhongfang Liu. Resonance Rayleigh scattering study of the interaction of Heparin with some basic Diphenyl Naphthylmethane Dyes.Anal. Chem.2001,73(16),3907-3914.
    [82]蒋治良,邹明静,梁爱惠等.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用.化学学报,2006,64(2),111-116.
    [83]郝秀利,李念兵,罗红群结晶紫共振瑞利散射光谱法测定透明质酸钠.南昌大学学报,2006(30),1331.
    [84]李继桃,李念兵,罗红群.甲基紫硫酸软骨素共振瑞利散射光谱及其应用.分析测试学报,2007,26(2),183-186.
    [85]丁雅勤,青岛科技大学硕十学位论文.2006.
    [86]冯启彪,浙江大学硕士学位论文.2006
    [1]Mingyuan Gao, Bernd Richter, Stefan Kirstein et al. Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles. J. Phys. Chem. B,1998, 102 (21),4096-4103.
    [2]Nikolai P. Gaponik, Dmitri V. Talapin et al. A light-emitting device based on a CdTe nanacrystal/polyaniline composite.Chem.chem.phys.1999,1:1787-1789
    [3]M. Azad Malik, Paul O'Brien, and Neerish Revaprasad. A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides.Chem. Mater.,2002,14 (5),2004-2010
    [4]C.J. Xu, B.G. Xing, J.H. Rao, A self-assembled quantum dot probe for detecting β-lactamase activity [J]. Biochem. Biophys. Res. Commun.344 (2006):931-935
    [5]Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology,2001,19(7), 631-635.
    [6]Chan P M, Yuen T, Sealfon S C, et al.Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Research,2005,33(18),161.
    [7]Goleman E R, Anderson G P, Mattoussi H, et al. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assay. Anal Chem,2003, 75(16),4043-4049.
    [8]Goleman E R, Anderson G P, Mattoussi H, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents.Anal Chem,2004,76 (3),684-688.
    [9]Jaiswal J K, Mattoussi H, Mauro J M, et al. Longterm multiple color imaging of live cells using quantum dot bioconjugate. Nature biotechnology,2003,21(1),47-51.
    [10]G. Z. Wang, Y. W. Wang, W. Chen, C. H. Liang, et al. A facile synthesis route to CdS nanocrystals at room temperature. Mater. Lett.48 (2001),269-272.
    [11]J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, et al. Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route.Adv. Mater.15 (2003),156-159.
    [12]Junjie Zhu, O. Palchik, Siguang Chen et al. Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles. J. Phys. Chem. B,104 (2000),7344-7347.
    [13]C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.115 (1993),8706-8715.
    [14]R.F. Pasternack, C. Bustamante, P.J. Collings, et al.J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. Am. Chem. Soc.115 (1993),5393-5399.
    [15]C.Z. Huang, K.A. Li, S.Y. Tong,, Determination of Nucleic Acids by a Resonance Light-Scattering Technique withα,β,γ,δ-Tetratrics [4-(trimethylammoniumyl) phenyl porphine. Anal. Chem.68 (1996),2259-2263.
    [16]C.Z. Huang, K.A. Li, S.Y. Tong, Determination of Nanograms of Nucleic Acids by Their Enhancement Effect on the Resonance Light Scattering of the Cobalt (Ⅱ)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene Complex.Anal. Chem.69 (1997),514-520.
    [17]S.P. Liu, Q. Liu, Z.F. Liu, et al.J. Resonance Rayleigh scattering of chromium (Vl)-iodide-basic triphenylmethane dye systems and their analytical application. Anal. Chim. Acta.379 (1999),53-61.
    [18]S.P. Liu,Z.Y. Zhang,H.QLuo,et al.Resonace Raylaigh scattering method for the determination of vitamin B1 with methyl orange.Anal.Sci,2002,18(9):971-978
    [19]石滨,郭学平,苏涛.硫酸皮肤素的研究概况.中国生化药物杂志.2001,22(2),105-106.
    [20]Alina Zamfir, Jasna Peter-Katalinic. Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research.Electrophoresis,2004,25 (13) 1949-1963.
    [21]Reinhard M, Job H, Lukas P, et al. Chromat ographic andelectr ophoretic app licati ons for the analysis of heparin anddermatan sulfate. Journal of Chrom atography B: B iom edical Sciences and Applications,1996,685 (2),223-231.
    [22]Oguma T, Tomatsu S, Montano A M, et al. Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry.
    [23]Rogach A L,Kornowski A,Gao M Y,et al.Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals.J.Phys.Chem B,1999,103,3065~3069.
    [24]Luo H.Q., Liu S.P., Liu Z.F., Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications, Analytica Chimica Acta,2001,449 (1),261-270.
    [25]Liu S.P., Jiang Z.L., Kong L., Liu Q., Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles, Science in China Series B,Chemistry,2002,45 (6),616-624
    [26]李太山,刘绍璞,刘忠芳等.碲化镉纳米晶溶液的荧光和共振瑞利散射特性及其与氨基糖苷类抗生素的相互作用[J].中国科学(B辑),2008,38(9),798-807.
    [27]王祥洪,张世娜,刘江涛.溴化十六烷基必定吡啶光谱探针RRS法测定硫酸皮肤素.化学应用与研究,2009,21(3),312-316.
    [28]彭娟娟,西南大学硕士学位论文.2010
    [1]张天民,吴梧桐,王友同,等.动物生化制药学[M].北京:人民卫生出版社,1981.210-215.
    [2]Ofosu FA, Buchanan MR, Anvari N, et al. Plasma anticoagulant mechanisms of heparin, heparan sulfate, and dermatan sulfate[J]. Ann N Y Acad Sci,1989, 556,123
    [3]谢继青,姬胜利,王凤山.硫酸皮肤素的药理作用研究进展.药物生物技术,2001,8(4),234-238.
    [4]王祥洪.硫酸皮肤素的共振瑞利散射法测定.分析实验室,2009,28(1),53-55
    [5]王晓洲,西南大学硕士学位论文.2008.
    [6]Deng D.W., Yu J.S., Pan Y., Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route, Journal of Colloid and Interface Science,2006,299 (1),225-232.
    [7]Liu S.P., Jiang Z.L., Kong L., Liu Q., Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles, Science in China Series B:Chemistry,2002,45 (6),616-624.
    [8]刘绍璞,蒋治良,孔玲,刘芹[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱.中国科学(B辑),2002,32(6),554-560.
    [1]王兆梅,李琳,李冰等.半合成β-1,4-葡聚糖硫酸钠的抗凝血特性.药学学报,2006,41(4),323-327
    [2]Mingyuan Gao, Bernd Richter, Stefan Kirstein et al. Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles. J. Phys. Chem. B,1998, 102 (21),4096-4103.
    [3]Nikolai P. Gaponik, Dmitri V. Talapin et al. A light-emitting device based on a CdTe nanacrystal/polyaniline composite.Chem.chem.phys.1999,1787-1789
    [4]M. Azad Malik, Paul O'Brien, and Neerish Revaprasad. A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides.Chem. Mater.,2002,14 (5): 2004-2010
    [5]Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology,2001,19(7): 631-635.
    [6]Chan P M, Yuen T, Sealfon S C, et al.Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Research,2005,33(18):161.
    [7]Goleman E R, Anderson G P, Mattoussi H, et al. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assay. Anal Chem,2003, 75(16):4043-4049.
    [8]Goleman E R, Anderson G P, Mattoussi H, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents.Anal Chem,2004,76 (3):684-688.
    [9]Jaiswal J K, Mattoussi H, Mauro J M, et al. Longterm multiple color imaging of live cells using quantum dot bioconjugate. Nature biotechnology,2003,21(1):47-51.
    [10]G. Z. Wang, Y. W. Wang, W. Chen, C. H. Liang, et al. A facile synthesis route to CdS nanocrystals at room temperature. Mater. Lett.48 (2001):269-272.
    [11]J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, et al. Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route.Adv. Mater.15 (2003) 156-159.
    [12]Goleman E R, Anderson G P, Mattoussi H, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents.Anal Chem,2004,76 (3):684-688.
    [13]Jaiswal J K, Mattoussi H, Mauro J M, et al. Longterm multiple color imaging of live cells using quantum dot bioconjugate. Nature biotechnology,2003,21(1): 47-51.
    [14]Wu X Y, Liu H J, Bruchez M P,et al. Immunofluorescent labeling of cancer marker Her2 and other celluar targets with semiconductor quantum dot. Nature biotechnology,2003,21(1):41-46.
    [15]Deng D W, Yu J S, Pan Y. Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route. Journal of Colloid and Interface Science,2006,299: 225-232.
    [1]Brent G P, Paul S L. Pharmacokinetics, Toxicity, and Activity of Intravenous Dextran Sulfate in Human Immunodeficiency Virus Infection[J]. American Society for Microbiology,1991.25(12):2544-2550.
    [2]Hong Qun Luo, Shao Pu Liu, Nian Bing Li. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application. Analytica Chimica Acta.2002.468:275-286.
    [3]Resonance Rayleigh scattering study of the interaction of Heparin with some basic Diphenyl Naphthylmethane Dyes, Shaopu liu, Hong Qun Luo, Nianbing Li, Zhongfang Liu, Anal. Chem.,2001,73(16),3907-3914
    [4]王祥洪,杨季冬,刘绍璞,胡小莉.碱性三苯甲烷染料共振瑞利散射法测定藻酸钠.分析测试学报.2007,26(5),603-607.
    [5]王晓洲.西南大学硕士学位论文,2008.
    [6]M.Gao,A.L.Rogach,A.Kornowski,S.Kirstein,et.Strongly Photolumineseent CdTe nanocrystals by proper surface modifieation.J.Phys.Chem.B,1998,102,8360-8363.
    [7]彭娟娟.西南大学硕士学位论文.2010.
    [8]彭敬东,刘绍璞,刘忠芳,石燕.氯金酸-小檗碱离子缔合物体系的共振瑞利散射光谱研究及其分析应用.化学学报,63(8),745-751.
    [9]何佑秋,刘绍璞,刘忠芳等.金纳米微粒作探针共振瑞利散射法测定卡那霉素.化学学报,2005,63(11),997-1002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700