用户名: 密码: 验证码:
2-丙基-4,5-咪唑二甲酸金属配合物的合成、表征及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用溶剂挥发法与水热合成法,以2-丙基-4,5-咪唑二甲酸作为有机配体与过渡金属反应,共合成得到了八个结构新颖的金属配合物。配合物[1] [Ca(C8H8N2O4)2(H2O)2]配合物[2] [Sr(C8H8N2O4)2(H2O)2]配合物[3] [Mn(C8H8N2O4)2(H2O)2]?4H2O配合物[4] [Cd(C8H8N2O4)2(H2O)2]?4H2O配合物[5] [Zn(C8H8N2O4)2(H2O)2]?4H2O配合物[6] [Mn (C8H8N2O4)2(H2O)2] ?2C3H7NO配合物[7] [Ni (C8H8N2O4)2(H2O)2] ?2C3H7NO配合物[8] [Cd(C8H8N2O4)2(H2O)2] ?2C3H7NO
     通过单晶X-射线衍射仪对配合物的晶体结构进行了测定,并对配合物[1]、配合物[4]、配合物[6]进行了热稳定性分析,结果表明:
     (1)配合物[1]与配合物[2]同构,属于八配位十二面体的空间构型。配体中一个羧基氧原子、咪唑环双键氮原子与中心离子形成双齿螯合环,另一个羧基氧原子则与配体单齿配位;配合物[3]、[4]、[5]同构,六配位空间八面体构型。配体中一个羧基氧原子、咪唑环双键氮原子与中心离子形成双齿螯合环,另一个羧基并未参与配位,有两个游离水分子;配合物[6]、[7]、[8]同构,六配位空间八面体构型。配体中一个羧基氧原子、咪唑环双键氮原子与中心离子形成双齿螯合环,两分子DMF游离。
     (2)通过配合物[1]、[4]、[7]的热稳定性分析发现,配合物[4]在32.5℃即开始分解,骨架结构在148.9℃是稳定的;配合物[7]在72.88℃时开始分解,配合物三维骨架结构在146.95℃开始分解。配合物[1]在152.4℃之前是稳定的。对比三者热稳定性:配合物[1]>配合物[4]>配合物[7]。
     运用评价化学品毒性藻类测试的标准实验方法,选择扁藻(Platymonas subcordiformis)作为藻种,配合物[5]与配合物[6]及其同金属离子的金属盐为研究对象开展了藻毒理实验,发现当金属离子达到一定浓度时能够抑制扁藻生长,随着浓度不断增大,该抑制作用不断增强。通过金属盐和配合物的对比,Zn2+、Ni2+的最低致毒浓度为1.5 mg/L,96h半数有效浓度分别为11.19 mg/L、9.73 mg/L,配合物[5]与配合物[7]的最低致毒浓度为20 mg/L,96h半数有效浓度分别为61.38 mg/L、79.07mg/L。金属盐对扁藻的最低致毒浓度更低,抑制作用更强。
     本论文选择菌种为大肠杆菌(E.coli),通过酶标仪在600nm处扫描测定吸光值,研究了配合物对大肠杆菌生长的抑制作用。
     (1)配体2-丙基-4,5-咪唑二甲酸在浓度达到1250μg/mL时能够完全抑制大肠杆菌的生长;
     (2)在所测的六种金属盐中,CdCl2在浓度达到2500μg/mL时能够完全抑制大肠杆菌生长,CaCl2在浓度达到625μg/mL时对于大肠杆菌的生长表现出很明显的促进作用,随着浓度继续增加,大肠杆菌生长速度明显增大并迅速达到稳定期,Zn(CH3COO)2、Ni(NO3)2、SrCl2与Mn(CH3COO)2对于大肠杆菌的生长均均有一定的抑制作用;
     (3)本论文合成得到的八种金属配合物中,配合物[1]、[2]、[3]、[6]、[8]在浓度达到1250μg/mL时完全抑制大肠杆菌的生长,配合物[5]在浓度达到625μg/mL时完全抑制大肠杆菌的生长,配合物[4]、[7]在浓度达到312μg/mL时完全抑制大肠杆菌的生长;
     (4)对比配体、配合物与金属盐对大肠杆菌的抑制,配合物具有更好的抑制作用。配合物的抑制作用的加强跟配体与金属盐的配位结合有关,配位后二者均表现出对于大肠杆菌的抑制作用,比单个的配体及金属盐更强。
In our research, 2-propyl-4,5- imidazoledicarboxlic acid was used to react with metal salts and eight novel metal complexes were synthesized by the solution crystallization and hydrothermal method. Complexes [1] [Ca(C8H8N2O4)2(H2O)2] Complexes [2] [Sr(C8H8N2O4)2(H2O)2] Complexes [3] [Mn(C8H8N2O4)2(H2O)2]?4H2O Complexes [4] [Cd(C8H8N2O4)2(H2O)2]?4H2O Complexes [5] [Zn(C8H8N2O4)2(H2O)2]?4H2O Complexes [6] [Mn (C8H8N2O4)2(H2O)2] ?2C3H7NO Complexes [7] [Ni (C8H8N2O4)2(H2O)2] ?2C3H7NO Complexes [8] [Cd(C8H8N2O4)2(H2O)2] ?2C3H7NO
     These complexes were characterized by single crystal X-ray diffraction, and the complex [1],complex [4] and complex [6] were analyzed by thermogravimetric analyses.
     (1) The result shows that Complex [1] is isostructural with complex [2], which is eight-coordinated in a distorted square antiprismatic environment, The ligand donor atoms are the tertiary N atoms of the imidazole rings and the carboxylate O atoms of two chelating 2-propyl-4,5- imidazoledicarboxlic acid ligands, the carboxy oxygen atoms of two additional imidazole ligands and two water molecules. complex [3], complex [4] and complex [5] are isostructural, six-coordinated in a slightly distorted octahedral geometry defined by the tertiary N atoms of the imidazole rings and the carboxylate O atoms of two chelating 2-propyl-4,5- imidazoledicarboxlic acid ligands and two coordinate water molecules. Two free water molecules are also present in the asymmetric system. complex [6], complex [7] and complex [8] are isostructural, six-coordinate by two N,O-bidentate 2-propyl-4,5- imidazoledicarboxlic acid ligands and two DMF mole cules in a distorted octahedral environment.
     (2) The thermogravimetric analyses show that the complex [4] begins to decompose at 32.5℃and the structure is stable before 148.9℃, complex [7] begins to decompose at 72.88℃and the structure is stable before 146.95℃,however, complex [1] is stable until 152.4℃, therefore, the thermal stability of complex [1] is strongest, complex [4] is more stable than complex [7].
     A standard method of algal bioassay for evaluating the toxicity of toxic chemical was applied in the experiments. when the concentration of the metal ion reached a certain value, Platymonas subcordiformis was inhibitted, with the increasement of the concentration, the inhibitory effect become much stronger, furthermore, the toxicities of the complex [5] and [6] with the corresbonding metal salts was compared, The lowest no observable effect concentrations (LNOEC) of Zn2+、Ni2+ on the growth of Platymonas subcordiformis were obversed to be 1.5 mg/L, and respectively, and 96h-EC50s were found to be 11.19 mg/L and 9.73 mg/L, respectively.However, The lowest no observable effect concentrations (LNOEC) of complex 5 and 6 were 20 mg/L and, and 96h-EC50s were 11.19 mg/L and 9.73 mg/L respectively. Therefore the toxicities of the metal salts on the growth of Platymonas subcordiformis is much stronger than that of the complexes.
     The antibacterial activities against Escherichia coli bacteria under different concentrations of metallic complexes were measured by measuring the value of the absoption at the wavelength of 600nm by Microplate reader.
     (1) 2-propyl-4,5-imidazoledicarboxlic acid inhibitted the Escherichia coli completely at the concentration of 1250μg/mL.
     (2) In the selected six metal salts, CdCl2 inhibited the Escherichia coli completely at the concentration of 2500μg/mL, Cacl2 promoted the growth of Escherichia coli Apparently when the concentration reached at 625μg/mL, the speed of Escherichia coli increased significantly and quickly to achieve stable as the concentration of Cacl2 increased. Zn(CH3COO)2、Ni(NO3)2、SrCl2 and Mn(CH3COO)2.can inhibit the Escherichia coli also
     (3) The eight synthesized metal complexes can inhibit the growth of Escherichia coli completely. complex [1],[2],[3],[6],[8] shows eqivalent inhibitory effect with 2-propyl-4,5- imidazoledicarboxlic acid with completed Inhibitory conc entration at the value of 1250μg/mL;however, the inhibitory effect of complex [5] is stronger than the 2-propyl-4,5-imidazoledicarboxlic acid with completed Inhibitory concentration at the value of 625μg/ml; Complex [4] and complex [7] shows the strongest inhibitory effect on Escherichia coli, with completed Inhibitory concentration at the value of 312μg/mL.
     (4) Complexes has a much stronger inhibition on Escherichia coli than ligand and metal salts.The enhance of the inhibition related the coordination of ligand and meta salts,both oh them shown the inhibition on Escherichia coli, stronger than singal ligand or metal salt.
引文
[1]徐志固.现代配位化学[M].科学工业出版社,1987.
    [2] John D R,Jagadese J V,Yu MW.[J].Inorg Chem,1998,37:1226-1231.
    [3] Matthew S,Sigman,Eric N J.Synapitic organisation of neuroptide-containing preganglionic boutons in lumbar sympathetic ganglia of guinea pigs [J].Am Chem,1998,120:4901-4902.
    [4]孙为银.配位化学[M].化学工业出版社,2004.3.
    [5]杨帆,林纪筠,单永奎.配位化学[M].华东师范大学出版社,2002.4.
    [6] Tang C W,VanSlyke S A.Randomized double-blind study on the dosage of ranitidine (China-made) in the treatmen of duodenalulcer[J].Appl Phys Lett,1987,51(12):913-915.
    [7] R.X.Yuan, R.G.Xiong, Z.F.Chen, X.Z.You, S.M.Peng, G.H.Lee. Preparation,chara-cterization,and x-ray crystal structure of a one-dimensional calcium-based coordination polymer with strong blue fluorescent emission[J].Inorg.Chem.Commun. 2001,4:430-433.
    [8] Y.F.Zhou,Y.J.Zhao,D.F.Sun,J.B.Weng,R.Cao,M.C.Hong,Syntheses,crystal structures and photoluminescent properties of two isophthalate-bridged complexes[J]. Polyhedron.2003,22(9):1231-1235.
    [9] R.Bertoncello,M. Bettinelli,M. Cassrin,A. Gulino,E. Tondello and A.Vittadini,Hexakis(acetato)oxotetrazinc,a well-tailored molecular model of zinc oxide.Anexperimental and theoretical investigation of the electronic structure of Zn4O(acetate)6 and ZnO by means of UV and x-ray photoelectron spectroscopies and first principle local densitymolecular cluster calculations Inorg[J].Chem.,1992,31:1558-1565.
    [10] H.K.Fun,S.S.S.Ray,R.G.xiong,J.L.Zuo and X.Z.You.A three dimensional network coordination polymer,(terephthalato)(pyridine)cadmium,with blue flurorecent emission[J].Chem.Soc.,Dalton Trans.1999:1915-1917.
    [11]彭俊彪,孙润光,马淤光,等.8-羟基喹啉稀土螯合物有机薄膜电致发光研究[J].发光学报,1994,15(3):263-266.
    [12]李斌,马东阁,张洪洁,等.铕三元配合物红色薄膜电致发光器件[J].化学通报,1997,12:46-49.
    [13] Curry R J, Gillin W P. 1·54μm eletroluminscent from ErQ-based organic light-emitting devices[J].Appl. Phys. Lett.,1999,75 (10):1380-1382.
    [14] Ma,D.G.;Wang,G.;Hu,Y.F.;Zhang,Y.G.;Wang,L.X.;Jing,X.B.;Wang,F.S.Appl.Phys.Lett.2003,82:1296.
    [15] W.P.Su,M.C.Hong,J.B.Weng,R.Cao,S.F.Lu,A semiconducting lamella polymer[Ag(C5H4NS)]n with a graphite-like array of silver(I)ions and its analogue with a layered structure[J].Angew.Chem.Int.Ed.2000,39:2911-2914.
    [16] B.Chen,M.eDDaoudi,J.W.Kampf,M.O’Keefe,O.M.Yaghi.Cu2(ATC)·6H2O:Design of Open Metal Sits in Porous Metal-Organic Crystals(ATC:1,3,5,7-Adamantane Tertracarboxylate)[J].Am.Chem.Soc.2000,122:11559-11560.
    [17] L.G.Beauvais,J.R.Long.Co3[Co(CN)5]2:A Microporous Magnet with an Ordering Temperature of 38 K[J].Am.Chem.Soc.2002,124:12096-12097.
    [18] N.Guillou,C.Livage,;W.van Beek,M.Noguès,G.Férey,A Layered Nickel Succinate with Unprecedented Hexanickel Units:Structure Elucidation from Powder-Diffraction Data,and Magnetic and Sorption Properties[J].Angew.Chem., Int.Ed.,2003,42:643-647.
    [19] B.Zhao,P.Cheng,Y.Dai,C.Cheng,D.Liao,S.Yan,Z.Jiang,G.Wang,A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J].Angew.Chem.,Int.Ed.,2003,42:934-936.
    [20] E.Coronado,J.R.Galán-Mascarós,C.J.Gómez-García,V.Laukhin,.Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound[J].Nature,2000,408:447-449.
    [21] H H Wickman,A M Trozzolo,H J Williams,et al.Phys.Rev.1967,155:563.
    [22] Y Pei,M Verdauger,O Kahn,et al.Ferromagnetic transition in a bimetallic molecular system[J].J.Am.Chem.Soc.,1986,108:7428-7430.
    [23] B.Moulton,J.J.Lu,R.Hajndl,S.Harkkharan,M.J.Zaworotko,Angew.Chem.Int.Ed.,Crystal Engineering of a Nanoscale KagoméLattice[J].2002,41:2821-2824.
    [24] R.Robson,B.F.Abrahams,S.R.Batten,R.W.Gable,B.F.Hoskins,J.Liu.Supramolecular Architecture,Bein,T.,Ed.,ACS Symposium Series 499:AmericanChemical Society:Washington,DC,1992:19.
    [25] Cai,C.X.;Toupet,L.;Lehmann,C.W.;Carpentier,J.F.J.Organomet.Chem.2003,683:131.
    [26] Ma,H.Y.;Spaniol,T.P.;Okuda,J.J.Chem.Soc.,Dalton Trans.2003:4470.
    [27] Kerton,F.M.;Whitwood,A.C.;Willans,C.E.J.Chem.Soc.,Dalton Trans.2004:2237.
    [28] Deng,M.Y.;Yao,Y.M.;Shen,Q.;Zhang,Y.;Sun,J.Dalton Trans.2004:944.
    [29] Rosenberg,B.et al.,Nature,1969,222:385.
    [30]杨静,何其庄,郁慧,封婕,孙剑剑.稀土苯丙氨酸邻菲咯啉三元配合物的合成、表征及抗菌活性研究[J].中国稀土学报,2006,24(01):103-109.
    [31]赵国良,张萍华,冯云龙.金刚烷胺邻香兰素Schiff碱稀土配合物的合成、表征及抗菌活性研究[J].无机化学学报,2005,21(3):421-424.
    [32]张仲生,吴集贵.硼合山梨醇稀土化合物的制备和抑菌作用[J].兰州大学学报,1989,25(3):157-158.
    [33] (a)Faulkner D J.Highlghts of marine natural produets cheinistr[J].Nat.Prod.Rep,2000,17(1):1-6. (b) Lewis J R.Amaryllidaceae,Sceletium,imidazole,oxazole,thiazole,Peptide and miscellaneous alkaloids[J].Nat.Prod.Rep.,2002,19:223. (c) Jin Z,Li Z, Huang R.Muscarine,imidazole,oxazole,thiazole,Amaryllidaceae and Sceletium alkaloids[J].Nat.Prod.Rep.,2002,19,454.(d)Ho J Z,Hohareb R M,Ahn J H.et al.Enantiospecific Synthesis of Carbapentostatins[J].J.Org.Chem.,2003,68(1):109-114.
    [34]邢其毅.基础有机化学[M].北京:高等教育出版社,1983.1029.
    [35] Obethaven K J, Riehardson J P, Bvehanan R M.et al. Synthesis and charaeterizati-on of Dinuclear copper complexes of the dinuclearing ligand 2,6-bis[(bis((1-methylimidazole-2-yl)methyl)amino)methyl]-4-methylphenol[J].Inorg.Chem.1990, 30: 1357.
    [36] (a)BistlineR.G.J.,HamPsonJ.W.,LinfieldW.M.,JAm.011.Chem.Soe.,1983,(60):823-828. (b) WhiteD.M.,SonnenbergJ.,JAm.Chem.Soc.,1966,(88):3825-3831. (c) Staaf H.A.,Angew. Chem,Int,Ed. 1962,(l),351-355. (d)PaulR.,AndersonG.W.,JOrg.Chem.,1962,(27),2094-2098.
    [37] RiehardJ.B,RobertF.B.,LeonardG.C.,etal.Fugieidal Complexes of MetalSalts with Imidazoles GB 1567521 1980.
    [38]杨鲁勤,阎世平,廖代正,等.锌锅汞苯并咪哇配合物合成及生物活性[J].化学通报,1994,6:35-36.
    [39]杨鲁勤,阎世平,廖代正,等.新型过渡金属配合物合成、磁性和生物活性[J].应用化学,1994,11(6):37-40.
    [40]杨一心,赵天成,张泉珍,等.稀土氧化物与咪哇配合物的合成、表征及抑菌作用[J].西北农业大学学报,1998,26(1):94-98.
    [41]林明丽,刘醒民,崔秀兰等.稀土与苯并咪唑甲墓酮缩二乙三胺Shciff碱配合物的合成、表征及生物活性[J].稀土,2004,25(6):38-40.
    [42]李文连.稀土有机配合物发光研究的新进展[J].化学通报,1991,8:1-5.
    [43] Eddaoudi,M.;Moler,D.B.;Li,H.L.;Chen,B.L.;Reineke,T.M.;O,Keefe,M.;Yaghi,O.M.. Modular Chemistry:Secondary Building Units as a Basis forthe Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J].Acc.Chem.Res.,2001,34:319-330.
    [44] Yaghi,0.M.:Li,G.M.;Li,H.L..Seleetive Binding and Removal of Guests ina Microporous Metal-organic Framework [J].Nature,1995,378:703-706.
    [45] Loos,F.J.R.;Delaunoit,G.H.C.;Mestach,D.E.P..Water Borne BinderComposition[P].PCT Int.Appl.WO0196485,2001,12:20.
    [46] John,S.R.;Copper,J..Copper Chelates as Possible Active Forms of the Antiarthritic Agents[J].Med.Chen.,1976,19(l):135-148.
    [47] Kohji O,Yuhsuke W,Tetsuo U,et al.Catalyst development for methanol synthesis using parallel reactors for high-throughput screening based on a 96 well microplate system[J].Journal of the Japan Petroleum Institute,2003,46 (5):328-334.
    [48] Li Y,Frank P,Bentley W E.Conditioned medium from listeria innocua stimulates emergence from a resting state:not a response to E. col i quorum sensing autoinducer AI -2[J].Biotechnol Prog,2006,22:387-393.
    [49]孔繁翔,陈颖,章敏.镍,锌,铝对羊角月芽藻生长及酶活性影响研究[J].环境科学学报,1997,17:193-197.
    [50]阎海,王杏君等.铜、锌和锰抑制蛋白核小球藻生长的毒性效应[J].环境科学,2001,22(l):23-26.
    [51] N.Rangsayatonr E.S.Uphatma,et.al Phytoremediation Potential of Spiurlina (Arthrospira) Platensis:biosoprtion and toxicity studies of cadmium[J].Enviormnental Pollution,2002(119):45-53.
    [52]周永欣,章宗涉,水生生物毒性试验方法[M].北京:农业出版社,1989.170-190.
    [53]陈盼,贺稚非,等.食品中大肠杆菌的快速检测方法[J].食品工程,2007,1:58-61.
    [54]徐建国.O157∶H7大肠杆菌知识问答[M].北京:科学普及出版社,1997.19-28.
    [55]郭维植,林成水,程发稷,等.福建省家畜、家禽O157大肠杆菌[J].中国人兽共患病杂志,1998,14 (2):3-6.
    [56] Bell B P,GoldoftM,Griffin PM,et al. Amultistate out break of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic symdrome from hamburgers:the Washington experierce[J].JAMA,1994,272:1349-1353.
    [57] I zumiya H,Terajima J,Wada A,et al.Molecular typing of enter ohemorr hagic Escherichia coli O157:H7 isllates in Japan by using pulsedfield gel esectrophoresis[J].J Clin Mi-crobiol,1997,35:1 675-1680.
    [58]唐靓,李跃中,朱染枫.微生物对食品安全造成的危害及其控制.浙江省医学科学院学报[J].2006,3:46-48.
    [59] P C Hariharan.J A Pople[J].Theor.chim.Acta.,1973,28:213-222.
    [60] P J Hay, W R Wadt, Ab initio effective core Potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg[J].Chem.Phys., 1985,82:270-283;P.J.Hay,W.R.Wadt,Ab initio effective core Potentials for molecular caleulations. Potentials for K to Au including the outermost core orbitals[J],Chem.Physs., 1985,82:299-310.
    [61] A D Becke, Density-functional thermoehemistryⅢ:The role of exact exchange[J]. Chem.Phys.,1993,98:5648-5652.
    [62] R H Holm, P Kennepohl,E l Solomon, Structural and functional aspects of metalsites in biology[J].Chem.Rev.,1996,96:2239-2314.
    [63] G Yu, D Z Shen, Y Q Liu,D B Zhu, Fluorescence stability of 8-hydroxyquinoline aluminum[J],Chem.Phys.Lett., 2001,333:207-211.
    [64] B J Ransil, J.Chem.Phys., 1961,34:2109.
    [65] C Lee, W yang and R G Parr,Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J].Phyical Rev.B, 1988,37:785.
    [66] C Peng, P Y Ayala,H B Schlegel and M J Friseh,Using redundant internal coordinates to optimizegeometries and transition states [J].Comp.Chem.,1996,17:49.
    [67]胡鸿钧,郑怡,陈启发.螺旋藻一养殖原理、技术、应用[J].中国农业出版社,2002,5(l):120-126.
    [68]龚云伟,王平,董伟力.长春地区家禽(家畜)中心E.coli O157∶H7调查[J].微生物学杂志,2006,26(6):102-104.
    [69] Whitton B A.Toxiciyofheavymebal to algae[J].Aerview.Phykos,1970,9:116-125.
    [70] Dvaies A G.Skep J A.J Mar Biol Asso UK[J].1976,56:39-57.
    [71] Leland H V and Luoma S N.J Waetr Pollutyon Comtrol Federation[J].1977,49:1340-1357.
    [72] Gadd GM and Griffiths A.J Miero Eeol[J].1978,4:303-310.
    [73] Rai L C.Bio.Rev,1981,56:99.
    [74]姜彬慧,林碧琴,镍对纤维藻的毒性作用研究[J].环境保护科学,1995,21:26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700