用户名: 密码: 验证码:
高压水射流辅助压裂机理与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂技术经过了半个多世纪的发展,在缝高控制技术、高渗层防砂压裂及大砂量多级压裂等方面都取得了长足进展,但仍存在不少问题,如裂缝位置及方向难以控制、起裂压力较高、压裂裸眼段时压裂液的大量漏失(有天然裂缝时更为严重)、裸眼水平井段只在端部开裂等,这些问题增加了压裂成本、降低了压裂效果。采用水力喷射辅助压裂可望解决上述问题。
     本文采取了理论研究、数值模拟、室内实验和现场试验相结合的研究方法。根据岩石断裂力学、破碎力学等基础知识,分析裂缝起裂、扩展的机理;应用有限元软件,数值模拟不同射孔参数下裂缝起裂、扩展规律;制作岩样,改变岩样中孔眼参数,室内实验不同条件下的起裂压力、起裂时间、裂缝扩展形态等,并采用分形几何的有关理论,对裂缝形态进行了分析;制订现场施工工艺,设计施工参数,初步进行了现场试验,取得了显著效果。
     本文的研究取得以下主要成果:(1)理论分析了射孔孔眼壁面应力分布,得出了孔眼壁面裂缝起裂位置和地应力的关系;从分析应力强度因子入手,得出了岩石中微裂纹达到临界扩展状态需要满足的条件,推导了维持裂纹继续扩展的条件;(2)通过数值方法得到了孔眼参数对起裂压力的影响规律以及裂缝扩展形态;(3)室内实验得出了孔眼参数对起裂压力、起裂时间的影响规律;(4)采用分形方法分析了压裂实验后形成的裂缝面问题,计算得出了确定的分形维数,证实压裂实验的裂缝面具有明显的分形特征,对现场压裂作业中判断裂缝形态奠定了基础;(5)提出了“水力密封环”的概念,计算了水力喷射过程中地层孔眼内外的压差,制定了多种现场施工方案;(6)根据理论和实验研究结果及施工方案,进行了初步现场试验,增产效果十分显著。
After developing for more than half a century, the fracturing technology has made a great progress in such aspects as fracture height control, fracturing to control sand in high penetration formation, and multi-grade fracturing with a large amount supporting sand, etc. However, there still exists the following problems: hard to control its initial position and propagation direction, higher initial pressure, liquid loss in open hole fracturing(especially with natural fractures), only initiation at the top of the horizontal open hole, etc. These will increase the fracturing cost and negate its effectiveness. Fracturing assisted with water jet will be possible to solve the above problems.
     This dissertation used theoretic analysis, numerical simulation, experiments and field test, to study those problems. The principles of fracture initiation and propagation was analyzed according to Fracture Mechanics of Rock and Rock Breaking Mechanics; adopted finite element method, the author simulated the law of fracture initiation and propagation; the initial pressure, initial time and the fracture shape were experimented by changing the perforation perimeters in cement samples; also, the fracture shape was analyzed using Fractal Theory; finally, on the basis of the previous results and establishing operation procedure, field test was performed and brought an obvious effectiveness.
     The main results include: (1) in theoretical aspect, we analyzed the stress distribution on the perforation wall, getting the relationship between the initial position and the in-situ stress; the condition of micro-fracture reaching critical propagation state and its continuing propagating were concluded from the point of analyzing the stress intensity factor; (2) the effect of perforation parameters on initial pressure and fracture shape were made through numerical method; (3) the author experimented the effect of perforation parameters on initial pressure and initial time, and the results were shown in different curves; (4) the author analyzed the fracture shape, extracted from the experiments, using fractal theory, and calculated the fractal dimensions. This proves that the fractures has the obvious fractal features, which provided guides for judging the fracture shape in field fracturing operation; (5) the author put forward a new concept of“hydro-seal”, calculated the pressure difference between the inside and outside of the perforation when blasting, and worked out several operation schemes for field test; (6) according to the above results, we conducted a field test in a well, enhancing its production remarkably after the performance.
引文
1. 杨秀夫,刘希圣,陈勉,陈志喜. 国内外水力压裂技术现状及发展趋势,钻采工艺,1998,21(4):21-26
    2. 王晓泉,陈作,姚飞. 水力压裂技术现状及发展展望,钻采工艺,1998,21(2):28-33
    3. 姜瑞忠,蒋廷学,汪永利. 水力压裂技术的近期发展及展望,石油钻采工艺,2004,26(4):52-58
    4. C.H.Yew, J.H. Schmidt. On Fracture Design of Deviated Wells[R], SPE19722, October 1989
    5. 刘莉,崔丽颖,杨旭,张桂花. 地层主应力的确定及在低渗透油田开发中的应用,测井技术,2001,25(5):373-377
    6. 李志明,张金珠 主编.《地应力与油气勘探开发》,1997,北京:石油工业出版社,第二章:矿场地应力测量: 28-73
    7. C.M.Pearson, A.J.Bond, M.E.Eck, J.H.Schmidt. Results of Stress-Oriented Perforating in Fracturing Deviated Wells[R], SPE 22836, October 1991
    8. Jon E. Olson. Fracturing from Highly Deviated and Horizontal Wells: Numerical Analysis of Non-planar Fracture Propagation[R], SPE 29573, March 1995
    9. 李海涛,王永清,李洪建,戈应文. 压裂施工井的射孔优化设计方法,天然气工业,1998,18 (2) :43~46
    10. 徐向荣,马利成,唐汝众. 地应力及其在致密砂岩气藏压裂开发中的应用,钻采工艺,2000,23(6):17-21
    11. M.M. Hossain, M.K. Rohman, Sheik S Rahman. A Comprehensive Monograph for Hydraulic Fracture Initiation form Deviated Wellbore under Arbitrary Stress Regimes[R], SPE 54360, April 1999
    12. B.W. Hainey, X.Weng, R. F.Stoisits. Mitigation of Multiple Fractures from Deviated Wellbores[R], SPE30482, Oct 1995.
    13. D.G. Crosby, M.M. Rahman, M.K. Rahman, S.S. Rahman. Single and multiple transverse fracture initiation from horizontal wells. Journal of Petroleum Science and Engineering,2002(35):191– 204
    14. 胡永全,赵金洲,曾庆坤,徐树汉,谢慧华. 计算射孔井水力压裂破裂压力的有限元方法,天然气工业,2003,23(2):57-59
    15. 周代余,郭建春,赵金洲,邓燕. 裸眼完井下的大位移井裂缝起裂研究,西南石油学院学报,2002,24(6):33-38
    16. 王晓泉,王振铎,卢拥军. 全三维压裂设计软件在超深井压裂设计中的应用,天然气工业,1999,19(6):60-63
    17. 楼一珊,杨群,向东. 利用地应力计算压裂裂缝几何参数的新方法,江汉石油学院学报,2000,22(3):57-59
    18. 李传亮,孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究,石油钻采工艺,2000,22(2):54-57
    19. J.L. 吉德利等 著,蒋阗, 单文文等译. 《水力压裂技术新发展》,1995,北京:石油工业出版社,第一章::16-27;第五章:296-324
    20. M.J. 埃克诺米斯德, K.G. 诺希狄 等著. 《油藏增产措施》,1991,北京:石油工业出版社,第二章:65-99;第九章:422-423
    21. 姚飞,王晓泉. 水力裂缝起裂延伸和闭合的机理分析,钻采工艺,2000,23(2):21-24
    22. 卢立泽. 拟三维压裂设计软件在户部寨气田压裂中的应用,天然气工业,2002,22 (6):61-62
    23. 刘舟波,姚飞. 层间最小主应力差对水力裂缝扩展的影响——F3D 软件的应用(一),钻井液与完井液,1998,15(4):16-18
    24. 李永明,赵金洲,郭建春. 考虑缝高压降的裂缝三维延伸数值模拟,钻采工艺,2001,24(1):34-37
    25. 刘建军,冯夏庭,裴桂红. 水力压裂三维数学模型研究,岩石力学与工程学报,2003,22(12):2042-2046
    26. 张明海. 水压裂纹扩展有限元法分析及计算,焦作工学院学报,2001,20(6):480-482
    27. Zhongming Chen, M.J. Economides. Effect of Near-wellbore Fracture Geometry on Fracture Execution and Post-treatment Well Production of Deviated and Horizontal Wells[R], SPE 39425, Mar 1999.
    28. 张广清,陈勉,殷有泉,孙华纯. 射孔对地层破裂压力影响的研究,岩石力学与工程学报,2003,22(1):40-44
    29. R.H.Morales, B.H.Brady. Three-Dimensional Analysis and Visualtion of the Wellbore and the Fracturing Process in Inclined Wells[R], SPE 25889, April 1993
    30. 潘迎德. 应大力提倡高孔密射孔完井[J],石油钻采工艺,1994,16 (1):51-59
    31. J.F.Manrique, A.Venkitaraman. Oriented Fracturing ---- A Practical Technique for Production Optimization[R], SPE 71652, Oct 2001.
    32. 冷雪峰, 唐春安,李连崇,杨天鸿. 非均匀孔隙压力下水压致裂的数值试验,东北大学学报,2003,24(3):288-291
    33. 冷雪峰, 国怀专,杨天鸿,李连崇. 单孔岩石水压致裂过程的数值模拟分析,世界有色金属,2002(10):32-34 李东传,唐国海,孙新波,姜国庆. 射孔压实带研究[J],石油勘探与开发, 2002, 27(5):112-114
    34. 邓金根,王金凤,闫建华. 弱固结砂岩气藏水力压裂裂缝延伸规律研究,岩土力学,2002,23(1):72-74
    35. 胡永全,赵金洲,曾庆坤,徐树汉,谢慧华. 计算射孔井水力压裂破裂压力的有限元方法,天然气工业,2003,23(2):58-60
    36. S.D. Hallam, N.C. Last. Geometry of hydraulic Fractures from Modestly Deviated Wellbores[R], SPE20656, June 1991
    37. R. G. van de Ketterij, C.J. de Pater. Experimental Study on the Impact of Perforation on Hydraulic Fracture Tortuosity[R], SPE 38149, June 1997
    38. H.H.Abass, Saeed Hedayati, D.L.Meadows. Nonplanar Fracture Propagagtion from a Horizontal Wellbore: Experimental Study[R], SPE 24823, October 1992
    39. L. A. Behrmann, J. L. Elbel. Effect of Perforation on Fracture Initiation[R], SPE 20661, May 1991
    40. D.G. Crosby, M.M. Rahman, M.K. Rahman, S.S. Rahman. Single and multiple transverse fracture initiation from horizontal wells,Journal of Petroleum Science and Engineering,2002,35:191-204
    41. EI Rabaa, W. Experimental Study of Hydraulic Fracture Geometry Initiated from Horizontal well[R], SPE 19720, October 1989
    42. 耿宇迪. 层状介质水力裂缝垂向扩展规律的物理模拟研究:[硕士学位论文],石油大学,北京:2004
    43. 龙政军. 压裂液性能对压裂效果的影响分析,钻采工艺,1999,22(1):49-52
    44. 沈忠厚. 水射流理论与技术[M]. 山东东营:石油大学出版社,1998
    45. Maurer W C. Advanced Drilling Techniques[M]. Petroleum Publishing Co.,Tulsa,1980
    46. Proceedings of the 9th American Waterjet Technology Conference[M],Dearborn,U.S.A,1997
    47. 崔谟慎,孙家骏. 高压水射流技术[J]. 北京:煤炭工业出版社,1993
    48. 薛胜雄.高压水射流技术与应用[J]. 北京:机械工业出版社,1998
    49. Veenhuizen S D,Butler T J,Kelly D P. Jet-Assisted Mechanical Drilling of Oil and Gas Wells[A]. Proceedings of the 7th American Waterjet Conference,Seattle,1993
    50. Rajaratnam N. Turbulent Jets[M]. Elsevier Scientific Publishing Amsterdam,1976
    51. Veenhuizen S D,et al. Ultra-High Pressure Jet-Assisted of Mechanical Drilling[A]. SPE/IADC 37579,1997 SPE?IADC Drilling Conference,Armsterdam,1997
    52. 沈忠厚. 高压水射流技术在钻井中的应用[J]. 石油钻采工艺,1981,3(1)
    53. 沈忠厚,李根生. 高压水射流技术在钻井中的应用及前景展望[A]. 中国石油学会钻井基础理论研讨会论文集,1992
    54. 李根生,沈忠厚. 空化射流及其在石油钻井中的应用研究进展[J]. 石油钻探技术,1996,24(4):51~54
    55. 袁建强,沈忠厚. 喷射角及方位影响破岩效果的研究[J]. 石油钻探技术,1992,20(4):39~42
    56. 李根生,沈忠厚.常压下淹没自振空化射流冲蚀岩石效果的实验研究,华东石油学院学报,1987,11(3):12~21
    57. 沈忠厚,李根生,徐依吉,周长山. 自激空化射流冲击压力特性及冲蚀岩石效果,高压水射流,1991(增刊):108~114
    58. 李根生,沈忠厚. 风琴管自激空化喷嘴的设计原理,石油大学学报,1992,16(5):35~39
    59. 李根生,沈忠厚. 空化射流及其在石油钻井中的应用研究,石油钻探技术,1996,24(4):51~54
    60. 李根生,沈忠厚,周长山,张德斌,廖华林. 自振空化射流研究与应用进展[J],中国工程科学,2005,7(1):27~32
    61. 李根生,沈忠厚,李在胜,易灿. 自振空化射流提高钻井速度可行性研究[J],石油钻探技术,2004,32(3):1~4
    62. . 李根生,沈忠厚,张召平,廖华林.自振空化射流钻头喷嘴研制及现场试验[J],石油钻探技术,2003,31(5):11~13
    63. 李根生,沈忠厚,周长山,张德斌,易灿. 自振空化射流冲击压力脉动特性实验研究[J],水动力学研究与进展,2003,18(5):570~575
    64. 易灿,李根生,郭春阳,张定国. 自振空化射流改善油层特性实验研究[J],石油学报,2006,27(1):81~85
    65. 易灿,李根生,张定国. 自振喷嘴空化起始能力实验研究[J],中国机械工程, 2005,16(21 ):1945~1949
    66. 易灿,李根生,张定国. 围压下自振喷嘴空化起始能力试验及应用研究[J],机械工程学报, 2005,41(3):218~223
    67. 易灿,李根生,张定国. 围压下双射流喷嘴空化起始能力的实验研究[J],石油大学学报,2005,29(4):44~47
    68. 雍自强,沈忠厚. 加长喷嘴钻头井底压力场的实验研究[J], 石油大学学报),1995,19(3):28~33
    69. 袁建强,沈忠厚. 水力和机械联合破岩的力学模型[J]. 江汉石油学院学报,1993,15(4):53~57
    70. 沈忠厚,李根生,周长山. 牙轮钻头自激振荡脉冲喷嘴的实验研究[J],石油大学学报,1991,15(3):
    71. 孙宝江,王汝元,沈忠厚. 一种新型自振脉冲喷嘴的设计[J],石油大学学报,1994,18(3):31-33
    72. 熊继有,廖荣庆,陈德颉,孙文涛. 振荡脉冲射流喷嘴钻头井底压力特性研究[J],西南石油学院学报,1995,17(1):46-49
    73. 蒋世全,廖荣庆,焦培林. 串联型自振脉冲射流喷嘴的实验研究[J],天然气工业,1995,15(3):31-33
    74. 李根生,牛继磊,刘泽凯,张毅. 水力喷砂射孔机理实验研究[J],石油大学学报(自然科学版),2002,26(2):31~35
    75. . 牛继磊,李根生,宋剑,黄中伟. 磨料射流射孔增产技术研究与应用[J],石油钻探技术,2003,31(5):55~57
    76. 牛继磊,李根生,宋剑. 水力喷砂射孔参数实验研究[J],石油钻探技术,2003,31(2):14~16
    77. J S 考伯特著,刘新福译. 喷砂射孔技术及其在立陶宛的应用[J]. 石油勘探开发情报,2000(5):45~53
    78. 李忠华,章兵,邰英楼. 水力喷砂割缝增产机理及有关参数的研究[J]. 辽宁工程技术大学学报(自然科学版),2001,20(2):155~157
    79. 张永利,王来贵,吴恩成. 水力喷砂割缝增产增注技术的作用原理及展望[J]. 钻采工艺,1998,21(2):19~21
    80. 邰英楼,张永利,章梦涛,杨琳,朱福宝. 水力喷砂破岩技术应用于油井扩孔的试验研究[J],辽宁工程技术大学学报(自然科学版),1998,17(3):269-271
    81. 刘丽,李根生,黄中伟. 高压水射流射孔井眼应力数值模拟研究[J],石油钻采工艺,2005,27(4):64~67
    82. Labus T , et al. Fluid Jet Technology-Fundamentals and Applications[M]. Waterjet Technology Association,U.S.A.,1995
    83. Summers. Waterjetting Technology[M] ,London ,1995
    84. A D Peters 著,马宏斌译. 高压水射流射孔技术简介[J]. 采油工艺情报,1995(2):57~64,67
    85. 王立军等. 深穿透水力射孔产能的计算机影响因素[J]. 大庆石油学院学报,2001,25(2):22~24
    86. 赵彦整,刘方玉. 水力喷射射孔效果初探[J]. 测井技术,2002,26(1):86~88
    87. 王科社等. 水力射孔钻水平孔设备中软管推进的理论分析[J]. 北京机械工业学院学报,1999,14(3):21~24
    88. Giger F M. Horizontal Wells Production Techniques in Heterogeneous Reservoirs[J] . SPE 13710 ,1985.
    89. Giger F M. LowPermeability Reservoirs Development Using Horizontal Wells[J] . SPE 16406 ,1987.
    90. Brown J E , Economides MJ . An Analysis of Hydraulically Fractured Horizontal Wells[J] . SPE 24322 ,1992.
    91. 刘振宇,刘洋,贺丽艳,翟云芳. 人工压裂水平井研究综述,大庆石油学院学报,2002,26(4):96-100
    92. 谢建华,赵恩远,李平,张伟臣. 大庆油田水平井多段压裂技术,石油钻采工艺,1998,20(4):72-77
    93. J.B. Surjaatmadja, S.R. Grundmann, B. McDaniel, W.F.J. Deeg, J.L. Brumley, and L.C. Swor,. Hydrajet Fracturing: An Effective Method for Placing Many Fractures in Openhole Horizontal Wells,SPE48856, November 1998
    94. Dewi Triarti Hidayati, Her-Yuan Chen. Flow-Induced Stress Reorientation in a Multiple-Well Reservoir, SPE 71091,May 2001
    95. 张毅,阎相祯,颜庆智. 三维分层地应力模型与井眼岩石破裂准则[J],西安石油学院学报,2000,15(4):42-45
    96. 王红才,王薇,王连捷,孙宝珊,夏柏如. 油田三维构造应力场数值模拟与油气运移[J],地球学报,2002,23(2):175-178
    97. 楼一珊,金业权 编著. 岩石力学与石油工程[M],石油工业出版社,2006:59-64
    98. 杨丽娜,陈勉. 水力压裂中多裂缝间相互干扰力学分析[J],石油大学学报,2003,27(3):43~45
    99. B.K 阿特金森 主编,尹祥初,修济刚 等译. 岩石断裂力学[M],地震出版社,1992:128-135
    100. 徐秉业,刘信声. 应用弹塑性力学[M],清华大学出版社,1995:510-529
    101. 张济忠. 分形[M],清华大学出版社,1995:Ⅳ-Ⅴ;138-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700