用户名: 密码: 验证码:
几类矩阵的逆特征值问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩阵逆特征值问题的研究领域非常广泛,主要来自于离散的数学物理反问题、控制设计、系统参数识别、地震断层成像技术、主成分分析与勘测、遥感技术、天线讯号处理、地球物理、分子光谱、粒子物理、结构分析、电路理论、机械系统模拟等许多应用领域.矩阵逆特征值问题的研究内容是:对给定的特征值或特征对,能否构造出所要求的特定类的矩阵及满足一定谱约束的最佳逼近.
     本文主要讨论了几类矩阵的逆特征值问题.全文共分为五章.第一章介绍了矩阵逆特征值问题的来源、研究内容、发展现状、矩阵逆特征值问题的不同的提法以及本文的结构.
     第二章讨论了一类具有特殊形式的矩阵A_n的两类逆特征值问题.问题Ⅰ是由A_n的顺序主子阵A_j(j=1,2,…,n)的最小、最大特征值来构造矩阵A_n;问题Ⅱ是由A_n的顺序主子阵A_j(j=1,2,…,n)的所有特征值来构造矩阵A_n.我们分别给出了两类问题有解的充分必要条件,提供了相应的算法和数值例子,并用数值结果表明我们的算法是很有效的.
     第三章研究了两个参数的Jacobi矩阵逆特征值问题(IEP2p):给定两对不同的实数(λ_1,μ_1),(λ_2,μ_2);两非零实向量x=(x_1,x_2,…,x_n)~T,y=(y_1,y_2,…,y_n)~T;对角阵D=diag(d_1,d_2,…,d_n)(d_i≠0,i=1,2,…,n),求n阶Jacobi矩阵A,B,使得((λ_1,μ_1),x),((λ_2,μ_2),y)为广义特征问题的特征对,且D~(-1)A,D~(-1)B可交换.我们得到了IEP2p存在唯一解的充分必要条件,并给出了相应的算法和数值例子.
     第四章考虑的是一类逆奇异值问题.给定非负实数σ_1,σ_2,…,σ_n,两非零实向量x=(x_1,x_2,…,x_m)~T,y=(y_1,y_2,…,y_n)~T,求m×n阶实矩阵A,使得σ_1,σ_2,…,σ_n为A的奇异值,并且x,y分别为A的左右奇异向量.我们基于Householder变换和矩阵秩1的修正的方法得到了问题的算法,而且算法比较经济易于并行,同时给出了相应地数值例子.
     第五章讨论了次对角元是正数的为酉上Hessenberg矩阵H的逆特征值问题.当k<n时,H的k阶顺序主子阵H_k不再是酉阵,其特征值在单位圆的内部,修正H_k得到酉上Hessenberg矩阵(?)_k,使得(?)_k的特征值位于单位圆上.然后由(?)_k(k=1,2,…,n)的最小、最大特征值来构造出唯一的H,我们得到了问题有解的充分必要条件,并通过数值例子加以说明.
The inverse eigenvalue problems (IEP) for matrices are studied in manyfields,they arise in a remarkable variety of applications,the list includes dispersedmathematical physical inverse problem,control design,system parameter iden-tification,seismic tomography,principal component analysis,exploration andremote sensing,antenna array processing,geophysics,molecular spectroscopy,particle physics,structural analysis,circuit theory,and mechanical system simu-lation.An inverse eigenvalue problem is concentrated on the following problem:given eigenvalue and eigenpairs,whether or not we can construct the specific ma-trix or the optimal approximation of a matrix under given spectral restriction.
     In this paper,we mainly discuss several kinds of matrix inverse eigenvalueproblems.This thesis comprises five chapters.In Chapter 1,we firstly give a briefreview of the background of the inverse eigenvalue problem,then list differentkinds of inverse eigenvalue problem,finally introduce the structure of this paper.
     In Chapter 2,we discuss two inverse eigenvalue problems of a special kindof matrices A_n. ProblemⅠis to construct A_n by the minimal and maximaleigenvalues of its all leading principal submatrices A_j(j = 1,2,…,n).ProblemⅡis to construct A_n by all eigenvalues of its all leading principal submatricesA_j(j = 1,2,…,n).The necessary and sufficient conditions for the solvabilityof the two problems are derived,respectively,and results are constructive.Wealso give the corresponding numerical algorithms and examples,numerical resultsshow good efficient of the algorithms.
     In Chapter 3,we study the following inverse eigenvalue problem oftwo-parameter (IEP2p):given two pairs of distinct real number (λ_1,μ_1)and (λ_2,μ_2),two nonzero real vectors x,y,and a diagonal matrix D =diag(d_1,d_2,…,d_n)(d_i≠0,i=1,2,…,n),find n×n Jacobi matrices A,B,such that ((λ_1,μ_1),x) and ((λ_2,μ_2),y) are the eigenpairs of the coupled general- ized eigenvalue problemand D~(-1) A,D~(-1)B are commutative.We propose the necessary and sufficientconditions for existence and uniqueness of IEP2p's solution.Furthermore,cot-responding numerical algorithm and example are included.
     In Chapter 4,we concern a kind of matrix inverse singular value prob-lem. Given real nonnegative numberσ_1,σ_2,.…,σ_n,two nonzero real vectorsx = (x_1,x_2,…,x_m)~T,y = (y_1,y_2,…,y_n)~T,find m×n real matrix A,such thatσ_1,σ_2,…,σ_n are the singular values of A,and x,y are the left and right singularvectors,respectively.Based on Householder transformation and rank-one updat-ing,we propose a algorithm which is economical and easily to parallel to solvethe inverse singular value problems,we also give the corresponding numericalexample.
     In Chapter 5,we consider the inverse eigenvalue of unitary upper Hessen-berg matrix H whose subdiagonal elements are all positive.Let H_k be the k-thleading principal submatrix of H,H_k is not unitary for k<n,and it's eigen-values are inside the unit circle,we introduce the modified unitary submatrices(?)_k,such that it's eigenvalues are on the unit circle.H is constructed uniquelyif the minimal and maximal eigenvalues of (?)_k(k = 1,2,…,n) are known,(?)_k isthe modified submatrices of H.We give the necessary and sufficient conditionsfor existence and uniqueness of the solution. Numerical experiment is alsopresented to illustrate our results.
引文
[1] A.G. Downing, A.S. Householder. Some inverse characteristic value prob- lems[J]. J. Assoc. Comput. Mach., 1956, 3: 203-207.
    [2] M.R. Osborne. On the inverse eigenvalue problem for matrices and related problems for difference and differential equations [J]. Lecture Notes in Mathematics, 1971, 228: 155-161.
    [3] O.H. Hald. On discrete and numerical inverse sturm-liouville problem[D]. PhD. thesis, New York univ., 1972.
    [4] S.A. Andrea, T.G. Berry. Continued fractions and periodic Jacobi matri- ces[J]. Lin. Alg. Appl., 1992, 161: 117-134.
    [5] D. Boley, G.H. Golub. A modified method for reconstructing periodic Jacobi matrices[J]. Math. Comput., 1984, 24: 143-150.
    [6] S. Ferdler, A.A. Melkman. On the eigenvalue of nonnegative Jacobi matri- ces[J]. Lin. Alg. Appl., 1979, 25: 239-254.
    [7] W. Ferguson. The construction a Jacobi and periodic Jacobi matrices with prescribed spectra[J]. Math. Comput., 1980, 35: 79-84.
    [8] L.J. Gray, D.G. Wilson. Construction of a Jacobi matrices from spectral data[J]. Lin. Alg. Appl., 1976, 14: 131-134.
    [9] O.H. Hald. Inverse eigenvalue problems for Jacobi matrices[J]. Lin. Alg. Appl., 1976, 14: 63-85.
    [10] H. Hochstadt. On the construction of a Jacobi matrix from mixed given data[J]. Lin. Alg. Appl., 1979, 28: 113-115.
    [11] H.J. Landu. The inverse eigenvalue problem for real symmetric Toeplitz matrices[J]. J. Amer. Math. Soc, 1994, 7: 749-767.
    [12] D.P. Laurie. A numerical approach to the inverse Toeplitz matrices [J]. SIAM. J. Sci. Statist. Comput., 1988, 8: 410-405.
    [13] W.F. Trench. Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices[J]. SIAM J. Sci. Comput., 1997, 18: 1722- 1736.
    [14]A.Berman,R.J.Plemmons.Nonnegative matrices in the mathematical sciences[M].New York:Academic press,1994.
    [15]M.Boyle,D.Handelman.The spectra of nonnegative matrices via symbolic dynamics in the mathematical[J].Ann.Math.,1991,133:249-316.
    [16]M.Fiedler,Eigenvalues of nonnegative symmetric matrices[J].Lin.Alg.Appl.,1974,9:119-142.
    [17]W.Guo.An inverse eigenvalue problem for nonnegative matrices[J].Lin.Alg.Appl.,1996,249:67-78.
    [18]C.R.Johnson,T.J.Laffey,R.Loewy.The real and the symmetric nonnegative inverse eigenvalue problems are different[J].Proc.Amer.Math.Soc.,1996,124:3647-3651.
    [19]M.T.Chu,Q.Gao.A numerical method for the inverse stochastic spectrum problem[J].SIAM.J.Matrix.Anal.Appl.,1998,19:1027-1039.
    [20]A.Horn.Doubly stochastic matrices and the diagonal of a rotation matrix[J].Amer.J.Math.,1954,76:620-630.
    [21]G.W.Soules.Constructing symmetric nonnegative matrices[J].Lin.Multilin.Alg.,1983,13:241-251.
    [22]H.R.Suleimanova.Stochastic matrices with real characteristic number[J].Doklady Akad.Nauk SSSR(NS),1949,66:343-345.
    [23]G.S.Ammar,W.Gragg,L.Reichel.Constructing a unitary Hessenberg matrices from spectral data[M].in Numerical Linear Algebra,Digital Signal Processing and Parallel Algorithms(Leuven 1998)Springer Berlin,1991:385-395.
    [24]G.S.Ammar,C.Y.He.On an inverse eigenvalue problem for unitary Hessenberg matrices[J].Lin.Alg.Appl.,1995,218:263-271.
    [25]周树荃,戴华.代数特征值反问题[M].郑州:河南科学技术出版社,1991.
    [26]S.F.Xu.An Introduction to Inverse Eigenvalue Problems[M].Peking University Press and Vieweg Publishing,Beijing,1998.
    [27]G.M.L.Gladwell.The Inverse Problems in Vibration[M].Boston:Kluwer Aeademic Publishers,2004.
    [28]D.Boleyand,G.H.Golub.A survey of matrix inverse eigenvalue problems[J].Inverse problems,1987,3(4):595-622.
    [29]M.T.Chu,G.H.Golub.Structured inverse eigenvalue problems[J],Acta Numer.,2002,11:1-71.
    [30]M.T.Chu,G.H.Golub.Inverse Eigenvalue Problems:Theory,Algorithms,and Applications[M],Oxford University Press,2005.
    [31]J.G.Sun,Y.Qiang.The unsolvability of inverse algebraic eigenvalue problems almost everywhere[J].J.Comput.Math.,1986,4:212-226.
    [32]徐树方,经典代数特征值反问题的理论与算法[博士学位论文][D].北京:中国科学院计算中心,1990.
    [33]Y.D.Cai,L.D.Chu.A new algorithm for pole placement using state feedback[J].Math.Numer Sinica,1990,12:86-90.
    [34]S.G.Miminis,C.C.Paige.An algorithm for pole assignment of time invariant linear systems[J].Int.J.Control,1982,35:341-354.
    [35]S.G.Miminis,C.C.Paige.An direct algorithm for pole assignment of timeinvariant multi-input linear systems using state feedback[J].Automatica,1988,24:343-356.
    [36]V.R.Patel,P.Mistra.Numerical algorithm for eigenvalue assignment by state feedback[J].Proc.IEEE,1984,72:1755-1764.
    [37]A.Varga.A Schur method for assignment[J].IEEE Trans Automat Contr.,1981,26:517-519.
    [38]The MathWorks,Inc.MATLAB 7,September 2004.
    [39]V.Bareilon.Inverse problem for a vibrating beam[J].J.Appl.Math.phys.,1976,27:347-358.
    [40]N.Peter,U.Frank.Inverse eigenvalue problems associated with springmass systems[J].Lin.Alg.Appl.,1997,254:409-425.
    [41]蒋尔雄.对称矩阵计算[M].上海:上海科学技术出版社,1984.
    [42]O.H.Hald.The inverse Sturm-Liouville problem with symmetric potentials[J].Aeta.Math.,1977,27:249-256.
    [43]O.H.Hald.Discrete Inverse Sturm-Liouville problems[J].Numer.Math.,1978,141:263-291.
    [44]H.Hochstadt.On some inverse problems in matrix theory[J].Arch.Math.,1967,18:201-207.
    [45]C.de Boor,G.H.Golub.The numerical stable reconstruction of a Jacobi matrix from spectral data[J].Lin.Alg.Appl.,1978,21:245-260.
    [46]B.N.Parlett.The symmetric eigenvalue problem[M].Prentice Hall,Englewood CliffS,NJ,1980.
    [47]M.T.Chu.Inverse eigenvalue problems[J].SIAM Rev.,1998,40:1-39.
    [48]G.M.L.Gladwell.Inverse problems in vibration[J].Appl.Mech.Review,1996,49:2-27.
    [49]G.M.L.Gladwell.The inverse mode problem for lumped-mass systems[J].Quart.J.Mech.Appl.Math.,1986,39:297-307.
    [50]L.Z.Lu,W.W.Sun.On necessary conditions for reconstruction of a specially structured Jacobi matrix from eigenvalues[J].Inverse Problem,1999,15:977-987.
    [51]M.Adler,L.Haine,P.van Moerbeke.Limit matrices for the Toda flow and periodic flags for loop groups[J].Math.Ann.,1993,296:1-33.
    [52]W.Ferguson.The construction of Jacobi and periodic Jacobi matrices with prescribed spectra[J].Math.Comput.,1950,35:79-54.
    [53]张振跃.周期Jacobi矩阵的逆特征值问题[J].高等学校计算数学学报,1991,3:273-282.
    [54]D.Boley,G.H.Golub.The matrix inverse eigenvalue problem for periodic Jacobi matrices[J].in Proc.Fourth Symposium on Basic problems of Numerical Mathematics,1978,24:63-76.
    [55]Y.H.Xu,E.X.Jiang.An inverse eigenvalue problem for periodic Jacobi matrices[J].Inverse Problems,2007,23:165-181.
    [56]A.N.Kolmogorov.Markov chains with countably many possible states[J].Bull.Univ.Moscow (A) 3 (1937) 1-16 (in Russian).
    [57]H.Minc.Nonnegative Matrices[M].John Wiley and Sons,New York,1988.
    [58] K.R. Suleimanova, Stochastic matrices with real eigenvalues[J]. Soviet Math. Dokl., 1949, 66: 343-345(in Russian).
    [59] R.A. Horn, C.R. Johnson. Matrix Analysis[M]. Cambridge University Press, 1985.
    [60] R. Loewy, D. London. A note on an inverse problem for nonnegative matrices[J]. Linear and Multilinear Algebra, 1978, 6: 83-90.
    [61] C. Johnson. Row stochastic matrices similar to doubly stochastic matri- ces[J]. Linear and Multilinear Algebra, 1981, 10: 113-130.
    [62] R. Reams. An inequality for nonnegative matrices and the inverse eigenvalue problem[J]. Linear and Multilinear Algebra, 1996, 41: 367-375.
    [63] T. Laffey, E. Meehan. A characterization of trace zero nonnegative 5×5 matrices[J]. Lin- Alg- Appl.,1999, 302-303.
    [64] F. Salzmann. A note on the eigenvalues of nonnegative matrices[J]. Lin. Alg. Appl., 1972, 5: 329-338.
    [65] G.W. Soules. Constructing symmetric nonnegative matrices[J]. Linear and Multilinear Algebra, 1983, 13: 241-251.
    [66] A. Borobia. On the nonnegative eigenvalue problem[J]. Lin. Alg. Appl., 1995, 223/224: 131-140.
    [67] G. Wuwen. Eigenvalues of nonnegative matrices[J]. Lin. Alg. Appl., 1997, 266: 261-270.
    [68] R.L. Soto, Existence and construction of nonnegative matrices with prescribed spectrum[J]. Lin. Alg. Appl., 2003, 369: 169-184.
    [69] R.L. Soto, O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J]. Lin. Alg. Appl., 2006, 416: 844-856.
    [70] C. Marijuan, M. Pisonero, R.L. Soto. A map of sufficient conditions for the real nonnegative inverse eigenvalue problem[J]. Lin. Alg. Appl., 2007, 426: 690-705.
    [71] R. Hartwig, R. Loewy. Unpublished, 1989.
    [72] M.E. Meehan, Some results on matrix spectra[D]. Ph.D. Thesis, University College Dublin, 1998.
    [73]P.D.Egleston,Nonnegative Matrices with Prescribed Spectra,A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy[M].Department of Mathematics,Central Michigan University,2001.
    [74]R.B.Kellogg,Matrices similar to a positive or essentially positive matrix[J].Lin.Alg.Appl.,1971,4:191-204.
    [75]王大钧.结构动力学中的特征值反问题[J].振动与冲击,1988,2:31-34.
    [76]G.M.L.Gladwell.The inverse problems for the vibrating beam[J].Proc.Roy.Soc.,1984,393:277-295.
    [77]O.Hald.On Discrete and Numerical Sturm-Liouville problems[D].New York:New York University,1992.
    [78]K.T.Joseph.Inverse eigenvalue problems in structural design[J].AIAA.J.,1992,30:2890-2896.
    [79]N.Li,K.W.Chu.Designing the Hopfield neural network via pole assignment[J].Internet.J.Syst.Sci.,1994,25:669-681.
    [97]H.Dai.An algorithm for symmetric generalized inverse eigenvalue problems[J],Lin.Alg.Appl.,1999,296:79-98.
    [81]Y.X.Yuan,H.Dai,A generalized inverse eigenvalue problem in structural dynamic model updating[J],J.Comput.Appl.Math.,2008,226(1):42-49.
    [82]K.Ghanbari.A survey on inverse and generalized inverse eigenvalue problems for Jacobi matrices[J].Appl.Math.Comput.,2008,195:355-363.
    [83]K.Ghanbari.m-functions and inverse generalized eigenvalue problem,Inverse Problems[J],2001,17,211-217.
    [84]S.Friedland.The reconstruction of a symmetric from the spectral data[J],J.Math.Anal.Appl.,1979,71:412-422.
    [85]孙继广.实对称矩阵的两类逆特征值反问题[J].计算数学,1988,10(3):282-290
    [86]戴华.线性约束下的矩阵束最佳逼近及其应用[J],计算数学,1989,11(1):29-37.
    [87]戴华.谱约束下实对称矩阵束的最佳逼近[J],高等学校计算数学学报,1990,12(2):177-187.
    [88]田霞,戴华.一类Jacobi矩阵广义特征值反问题[J].高等学校计算数学学报,2005,27:371-377.
    [89]吴筑筑.双对称矩阵广义特征值反问题的解[J].韶关学院学报,2001,22(9):1-5.
    [90]陈亚波,彭振埘.广义特征值反问题的中心对称解及其最佳逼近[J].长沙交通学院学报,2002,18(3):4-7.
    [91]宋琦,戴华.求解广义特征值反问题的数值方法[J].南京航空航天大学学报,1999,31(6):679-685.
    [92]殷庆祥.箭状矩阵的广义特征值反问题[J].南京航空航天大学学报,2002,34(2):190-192.
    [93]周硕,吴柏生.反中心对称矩阵的广义特征值反问题[J].高等学校计算数学学报,2005,27:53-59.
    [94]M.T.Chu,Y.C.Kuo,W.W.Lin.On inverse quadratic eigenvalue problems with partially prescribed eigenstructure[J].SIAM.J.Matrix Analy.Appl.,2004,25:995-1020.
    [95]Y.C.Kuo,W.W.Jin,S.F.Xu.On a general solution of partially described inverse quadratic eigenvalue problems and its applications[J].SIAM.J.Matrix Analy.Appl.,2007,29(1):33-53.
    [96]Y.M.Ram,S.Elhay.An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application to damped oscillatory systems[J].SIAM J.Appl.Math.,1996,56(1):232-244.
    [97]戴华.一类二次特征值逆问题[J].南京大学学报半年刊,1988,5(1):132-140.
    [98]王正盛.阻尼弹簧-质点系统中的逆二次特征值问题[J].高等学校计算数学学报,2005,27(3):217-224.
    [99]#12
    [100]H.Hochstadt.On the construction of a Jacobi matrix from spectral data[J].Lin.Alg.Appl.,1974,8:435-446.
    [101]Z.Y.Peng,X.Y.Hu,L.Zhang.On the construction of a Jacobi matrix from its mixed-type eigenpairs[J].Lin.Alg.Appl.,2003,362:191-200.
    [102]徐寅峰.一类特殊矩阵的逆特征值问题[J].应用数学,1993,6(1):68-75.
    [103]A.M.Lietuofu.The Stability of the Nonlinear Adjustment Systems[M].北京:科学出版社,1959.
    [104]高为炳.非线性控制系统导论[M].北京:科学出版社,1988.
    [105]G.M.L.Gladwell.振动中的反问题[M].王大钧,何北昌译,北京:北京大学出版社,1991:20-80.
    [106]J.Peng,X.Y.Hu,L.Zhang.Two inverse eigenvalue problems for a special kind of matrices[J].Lin.Alg.Appl.,2006,416:336-347.
    [107]B.Parlett,G.Strang.Matrices with prescribed Ritz values[J].Lin.Alg.Appl.,2008,428:1725-1739.
    [108]姚慕生.高等代数[M].上海:复旦出版社,2002:71-172.
    [109]H.Volkmer,Multiparameter Eigenvalue Problems and Expansion Theorems[M],Springer-Verlag,Berlin,1988.
    [110]F.V.Atkinson,Multiparameter spectral theory[J],Bull.Amer.Math.Soc.,1968,74:1-27.
    [111]M.E.Hochstenbach,T.Ko(?)ir,B.Plestenjak.A Jacobi-Davidson type method for the nonsingular two-parameter eigenvalue problem[J],SIAM J.Matrix Anal.Appl.,2005,26:477-497.
    [112]C.de Boor,G.H.Golub.The numerical stable reconstruction of a Jacobi matrix from spectral data[J].Lin.Alg.Appl.,1978,21:245-260.
    [113]O.H.Hald.Inverse eigenvalue problems for Jacobi matrix[J],Lin.Alg.Appl.,1976,14:63-85.
    [114]H.Hochstad.On the construction of a Jacobi matrix from spectral data[J],Lin.Alg.Appl.,1974,8:435-446.
    [115]H.Hochstad.On the construction of a Jacobi matrix from mixed given data[J],Lin.Alg.Appl.,1979,28:113-115.
    [116]E.X.Jiang.An inverse eigenvalue problem for Jacobi matrices[J],J.Comput.Math.,2003,21:569-584.
    [117] O.H. Hald. On discrete and numerical Sturm-Liouville problems[D], Ph.D. Dissertation, New York University, New York, 1972.
    [118] K.T. Joseph. Inverse eigenvalue problem in structural design[J], AIAA J., 1992,30: 2890-2896.
    [119] G.M.L. Gladwell. Inverse Problems in Vibration[M]. Martinus Nijhof Publishers, 1986.
    [120] G.M.L. Gladwell. Inverse problems in vibration[J]. Applied Mechanics Reviews, 1986, 39: 1013-1018.
    [121] G.M.L. Gladwell. Inverse problems in vibration-Ⅱ[J]. Applied Mechanics Reviews, 1996, 49: 2-27.
    [122] G.H. Golub, C.F. Van Loan. Matrix Computations[M]. The Johns Hopkins University Press, 1996.
    [123] A.G. Gramm, Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering[M], Springer, 2005.
    [124] L.P. Lebedev, I.I. Vorovich, G.M. Gladwell. Functional Analysis: Applications in Mechanics and Inverse Problems[M], Kluwer Academic Publishers, 2002.
    [125] G. Uhlmann, S. Levy (Eds.). Inside Out: Inverse Problems and Applica- tions[M], Cambridge University Press, 2003.
    [126] M.T. Chu. Numerical methods for inverse singular value problems[J], SIAM J. Numer. Anal., 1992, 29: 885-903.
    [127] S. Friedland, J. nocedal, M. L. Overton. The formulation and analysis of numerical methods for inverse eigenvalue problems[J], SIAM. J. Numer. Anal., 1987, 24: 634-667.
    [128] Z.J. Bai, S.F. Xu. An inexact Newton-type method for inverse singular value problems[J]. Lin. Alg. Appl, 2008, 429: 527-547.
    [129] T. Politi. A discrete approach for the inverse singular value problem in some quadratic group[J], Lecture Notes in Comput. Sci., 2003, 2658: 121- 130.
    [130] D. Chu, M.T. Chu. Low rank update of singular values[J], Math. Comp., 2006, 75: 1351-1366.
    [131] Sheng-xin Zhu, Tong-xiang Gu, Xing-ping Liu. Solving inverse eigenvalue problems via Householder and rank-one matrices[J], Lin. Alg. Appl., 2008, doi:10.1016/j.laa.2008.07.021
    [132] A. Brauer. Limits for the characteristic roots of a matrix IV. Applications to stochastic matrices[J], Duke Math. J., 1952, 19: 75-91.
    [133] 袁亚湘 .矩阵计算[M]. 北京: 科学出版社, 2001.
    [134] G.S. Ammar, W.B. Gragg, L. Reichel. Determination of Pisarenko frequency estimates as eigenvalues of an orthogonal matrix[J], Advanced algorithm and Architectures for Signal Processing Ⅱ, 1987, Proc. SPIE 826: 143-145.
    [135] L. Reichel, G.S. Ammar. Fast approximation of dominant harmonics by solving an orthogonal eigenvalue problem [C]. Proc. second IMA Conference on Mathematices in signal processing, J.McWriter et al.(Eds), Oxford University Press, 1990,575-591.
    [136] W.B. Gragg. Positive definite Toeplitz matrices, the Arnolidi process for isometric operators and Gaussian quadrature on the unit circle [J]. J. Corn- put. Appl. Math., 1993, 46: 1835-198.
    [137] A. Bunse-Gerstner, C.Y. He, On a Sturm sequence of polynomials for unitary Hessenberg matrices[J]. SIAM J. Matrix Anal. Appl., 1995, 16(3): 1043-1055.
    [138] G.S. Ammar, L. Reichel, D. C. Sorensen. An implementation of a divide and conquer algorithm for the unitary eigenproblem[J], ACM Trans. Math. Software, 1992, to appear.
    [139] W.B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle[J]. J. Corn- put. Appl. Math. 46:183-198 (1993); originally published (in Russian) in Numerical Methods in Linear Algebra (E. S. Nikolaev, Ed.), Moscow Univ. Press, 1982, pp. 16-32.
    [140] P. Delsarte, Y. Genin. Tridiagonal approach to the algebraic environment of Toeplitz matrices, part I: Basic results[J]. SIAM J. Matrix Anal. Appl., 1991, 12: 220-238.
    [141]P.Delsarte,Y.Genin.Tridiagonal approach to the algebraic environment of ToepIitz matrices,part Ⅱ:Zero and eigenvalue problems[J].SIAM J.Matrix Anal.Appl.,1991,12:432-448.
    [142]吴春红,卢琳璋.一类特殊矩阵的逆特征值问题[J].厦门大学学报,2009,48(1):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700