用户名: 密码: 验证码:
国人内侧旋转中心膝关节假体的设计和运动学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分适合国人股骨远端截面及股骨外旋角度的膝关节假体设计
     目的:根据国人股骨远端截骨面及根据国人的股骨远端截面和股骨远端外旋角度放置的研究,根据国人解剖特点进行修改设计。
     方法:回顾研究国人股骨远端截骨面及根据国人的股骨远端截面和股骨远端外旋角度放置的数据,提出以国人解剖基础设计的膝关节假体股骨组件,利用Imageware软件(Unigraphics solutions公司,美国),根据膝关节假体原型,和国人解剖特点进行修改设计。
     结果:设计的股骨假体包括优化股骨前后径和左右径的比值,在相同前后径的条件下增大左右径,按测量的中值扩大1.207倍;股骨外旋角度的优化,增大股骨外旋角度为5°,采用Build-in的方式,增加股骨外后髁的厚度来优化股骨外旋角度。
     结论:优化膝关节股骨原型假体的前后径/左右径比值,在相同的前后径情况下,将左右径扩大到原来的1.207倍。选用build-in的方式增加股骨外后髁厚度,使外旋为5°。
     第二部分适合国人胫骨截面胫骨托假体设计及胫骨托茎的优化
     目的:根据国人胫骨近端截骨面解剖研究,以国人解剖基础设计的膝关节假体胫骨托。
     方法:根据国人胫骨近端截骨面解剖研究,以及不同胫骨托茎的固定特点和内侧旋转中心假体的要求,提出以国人解剖基础设计的膝关节假体胫骨托和胫骨茎的设计,利用Imageware软件(Unigraphics solutions公司,美国),根据假体原型,进行设计。
     结果:国人胫骨近端截骨面前后径/左右径比值较现有进口假体大,我们选取中值0.716,在相同胫骨左右径条件下,增大前后径1.07倍;交叉型茎能更好的分散负荷,内侧骨质吸收更为常见,为此在内侧增加一个翼。
     结论:优化胫骨假体原型前后径扩大1.07倍,胫骨茎内侧增加一个翼。
     第三部分胫股关节内侧旋转中心屈伸运动的优化设计
     目的:通过对自然膝的运动学研究,设计出模仿自然膝运动内侧旋转中心屈曲运动的假体。利用Imageware软件(Unigraphics solutions公司,美国),在软件上反求出胫骨衬垫的形状。。
     方法:利用Imageware软件(Unigraphics solutions公司,美国),胫骨被初始为平面,在正上方成型。在屈曲0°,股骨部件嵌入胫骨表面6mm,应用逻辑剪影产生胫骨凹陷。股骨部件屈曲,向后移位,并且以内侧为中心旋转,进行另外一个逻辑剪影。重复这个过程从0°到135°,在期间股骨线性移位12mm,旋转20°。当它向后移位时,股骨髁始终在胫骨凹陷的底部,潜在能量最小的位置也随屈曲向后移位。
     结果:对自然膝运动研究显示在屈曲过程中,股骨中心向后移位伴随通过内侧胫骨平台的垂直轴进行的内旋,屈曲伴随胫骨内旋,膝关节在侧位几乎是铰链运动。模仿自然膝的运动,采用软件逻辑剪影技术反求出胫骨垫片的形状。
     结论:模仿自然膝的运动,采用软件逻辑剪影技术反求出胫骨垫片的形状,通过胫骨垫片的形状。无论那一部分软组织被保留或被切除,根据特殊的设计,运动特征应与正常膝关节相似。
     第四部分国人内侧旋转中心膝关节假体在全膝关节置换术后运动学分析
     目的:在建立的自然膝数字模拟模型,进行初步的运动学验证。
     方法:与交通大学机械和动力学研究所合作建立自然膝数字模拟模型;在自然膝模型上,模拟常规膝关节置换手术,安装设计的膝关节假体,进行相关运动学进行研究。分别测量股骨胫骨的相对运动和接触面的位置。
     结果:股骨屈曲和运动时间的关系和胫骨内旋和运动时间的关系比较可以看出,随着股骨的屈曲,胫骨逐渐内旋,屈曲到120°,达到内旋20°,达到了设计要求的随屈曲角度增加,胫骨逐渐内旋的要求。从股骨外髁在胫骨垫片的接触面的位置可以看出,股骨外髁随屈曲角度的增加向后滑移,在整个屈曲过程中,未发现有向前的反常运动。
     结论:在建立的自然膝数字模拟模型的膝关节置换模拟显示,设计的膝关节假体可以模拟自然膝的运动,未发现反常运动。
PART ONE Design of femoral component based on study on Morphometrical measurements of resected surface and lateral rotated degree of femur of Chinese
     Objective:To Design of femoral component based on study on morphometrical measurements of resected surface and external rotation degree of femur of Chinese.
     Methods:Review the literatures about the morphometrical measurements of resected surface and external rotation degree of femur of Chinese. Using software Imageware (Unigraphics solutions, USA),the femoral component was designed in the prime type of a dual-radius knee system, based on Chinese anatomical characteristics.
     Results: Chinese femoral aspect rate(medial-lateral width/ anterior-posterior length) is larger than that of the Western people. We enlarge medial-lateral width 1.207 times. Femoral external rotation degree is 5°in Chinese, so we increase the external rotation degree by thickening lateral femoral posterior condyle.
     Conclusion: Medial-lateral width was enlarged 1.207 times and lateral femoral posterior condyle was thickened by build-in.
     Part Two Design of tibial component based on study on Morphometrical measurements of resected surface of tibia of Chinese
     Objective : To Design tibial component based on study on morphometrical measurements of resected surface of tibia of Chinese and the mechanical properties of tibial component fixation.
     Methods:Review the literatures about the morphometrical measurements of resected surface of tibia of Chinese, and the mechanical properties of tibial component fixation.Using software Imageware (Unigraphics solutions, USA), the tibial component was designed in the prime type based on Chinese anatomical characteristics, and the mechanical properties of tibial component fixation to ensure good stability and provide a homogeneous loading distribution.
     Results:The AP/ML ratio of proximal tibial resected surface of Chinese population was larger than those of several commonly imported tibial baseplates of total knee prosthesis. The cylindrical stem produces heterogeneous BMD changes under the tibial platform in knee arthroplasties, and this could be a potential risk factor for asymmetrical subsidence of this component, and large decrease in the medial region.however, the cruciform stem allows a more uniform loading distribution, resulting in a more homogeneous BMD decrease in the three analysed ROIs.
     Conclusion:The tibial component was enlarge the anteroposterior dimension 1.07 times, and the stem of the cruciform stem was added a new flange under the medial plane.
     Part Three Design of The Medial Pivot knee
     Objective:To design a medial pivot knee system to achieve a normal neutral anatomical path of motion with a total knee arthroplasty (TKA) using specific motion-guiding design features.
     Methods:The tibia initially was shaped correctly in the overhead view but was flat on its upper surface. At 0°flexion, the femoral component was embedded into the tibial surface by 6 mm, and a boolean subtraction was carried out creating a depression in the tibia. The femoral component was flexed, displaced posteriorly, and rotated about the center, and another boolean subtraction performed. This procedure was repeated at flexion intervals from 0°to 135°, during which the femur was displaced linearly with flexion to a total of 12 mm and was rotated linearly with flexion to a total of 20°.
     Results: Describing three-dimensional knee motion by rigid body analysis has shown that during flexion, there is a posterior translation of the center of the femur and an internal tibial rotation. This motion is closely equivalent to only an internal rotation about a vertical axis through the medial tibial plateau. A special insert was generated.
     Conclusion: Knee kinematics of nature knee is medial pivot.The tibial bearing surfaces are shaped so that normal knee motion is possible without a cam.
     Part Four Kinematics Study on the Medial Pivot Knee of Chinese in Total Knee Arthroplasty
     Objective:To develop a three dimensional anatomical configuration model of the human knee , and validated to compute the kinematics of the medial pivot knee of Chinese in total knee arthroplasty. Methods:According to the model building principle from point to line to area to volume of mimics software, a three dimensional anatomical configuration model of the knee joint was reconstructed on the basis of the images of CT and MRI. In addition, quadriceps, ligaments and other soft tissues are defined as non-linear fiber, meanwhile simulating knee extension activity with input variable of quadriceps forces. We used the validated computer simulation of the knee joint to virtually insert the medial pivot knee of Chinese, then, flexed the knee from 0°to 120°。Recorded the angles of flexion of the knee and rotation of the tibia along time; the contact area of lateral femoral condyle with the insert.
     Results:When the knee was flexed to 120°, the angle of rotation of the tibia was 20°,and the lateral femoral condyle moved posteriorly.
     Conclusion:The medial pivot knee of Chinese can mimesis the nature knee, and the paradoxical movement was not presented.
引文
1. Monika SZ, Alex Stacoff, et al. Biomechanical background and clinical observations of rotational malalignment in TKA: Literature review and consequences. Clin Biomechanics. 2005,20:661-668.
    2. Uehara K, Kadoya Y, Kobayashi A, et al. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop. 2002,402:196–201.
    3. Akagi M, Masamichi Oh, Tohgo Nonaka, etc: An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clin Orthop. 2004,420:213-219.
    4. Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop. 2001,392:38–45.
    5. Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49–64.
    6. Boyd AD, Frederick CE, Thomas WH, Poss R, Sledge CB: Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg 1993, 75A: 674~681.
    7. Pagnano MW, Cushner FD, Scott WN: Role of the posterior cruciate ligament in total knee arthroplasty. J Am Acad Orthop Surg. 1998, 6: 176~87.
    8. Stiehl JB, Abbott BD. Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty. J Arthroplasty.1995,10:785–789.
    9. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop 2001;392:46-55.
    10. Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001,16:493–497.
    11. Insall JN. Surgical Techniques and Instrumentation in Total Knee Arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds). Surgery of the Knee. Ed 2. New York: Churchill-Livingstone; 1993:739–804.
    12. Dalury DF. Observations of the proximal tibia in total knee arthroplasty. ClinOrthop.2001;389:150–155.
    13. Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop 1995,321:28-31.
    14. Ikeuchi M., Yamanaka N., Okanoue Y., et al. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Joint Surg. 2007, 89(B):45-49,2007
    15. Eckhoff DG, Johnston RJ, Stamm ER, et al. Version of the osteoarthritic knee. J Arthroplasty. 1994,9:73–79.
    16. Yoshioka Y, Siu DW, Scudamore RA, et al. Tibial anatomy and functional axes. J Orthop Res. 1989,7:132–137.
    17. Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop.1988,226:49–64.
    18. Merkow RL, Soudry M, Insall JN. Patellar dislocation following total knee replacement. J Bone Joint Surg [Am] 1985;67-A:1321-7.
    19. Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop 1998;356:144-53.
    20. Lewis P, Rorabeck CH, Bourne RB, Devane P. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop 1994;299:11-17.
    21. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop 1994;299:31-43.
    22. akahashi T, Wada Y, Yamamoto H. Soft-tissue balancing with pressure distribution during total knee arthroplasty. J Bone Joint Surg [Br] 1997;79-B:235-9.
    23. Worland RL, Jessup DE, Vazquez-Vela Johnson G, et al. The effect of femoral component rotation and asymmetry in total knee replacements. Orthopedics,2002,25:1045
    24. Berger RA, Crossett LS, Jacobs JJ,et al. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res,1998, 356:144-153.
    25. Akagi M, Matsusue Y, Mata T, et al. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop,1999, 366:155
    26. Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop,1995, 321:168
    27. Poilvache PL, Insall JN, Scuderi GR, et al. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop ,1996, 331:35
    28. Berger RA, Rubash HE, Seel MJ, et al. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop,1993, 286:40
    29. Churchill DL, Incavo SJ, Johnson CC, et al. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop,1998,356:111
    30. Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop,2001,392:38
    31. Olcott CW, Scott RD. Determining proper femoral component rotational alignment during total knee arthroplasty. Am J Knee Surg.,2000,13:166
    32. Yip DK, Zhu YH, Chiu KY, et al. Distal rotational alignment of the Chinese femur and its relevance in total knee arthroplasty. J Arthroplasty,2004,19:613
    33. Larson CM, Lachiewicz PF. Patellofemoral complications with the Insall-Burstein II posterior-stabilized total knee arthroplasty. J Arthroplasty, 1999,14(3):288-292.
    34. Liau JJ, Cheng CK, Huang CH, et al. The effect of malalignment on stresses in polyethylene component of total knee prostheses--a finite element analysis. Clin Biomech (Bristol, Avon), 2002 ,17(2):140-146.
    35. Romero J, Stahelin T, Wyss T, et al. Significance of axial rotation alignment of components of knee prostheses. Orthopade, 2003, 32(6):461-468.
    36. Pagnano MW, Trousdale RT, Stuart MJ, et al. Rotating platform knees did not improve patellar tracking: a prospective, randomized study of 240 primary total knee arthroplasties. Clin Orthop, 2004, 428:221-227.
    37. Liau JJ, Cheng CK, Huang CH, et al. The influence of contact alignment of the tibiofemoral joint of the prostheses in in vitro biomechanical testing. Clin Biomech (Bristol, Avon), 1999,14(10):717-721.
    38. Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop Relat Res,1995, 321:28-31.
    39. Barrack RL, Schrader T, Bertot AJ, et al. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop, 2001, 392:46-55.
    40. Hofmann S, Romero J, Roth-Schiffl E, et al. Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade, 2003, 32(6):469-476.
    41. Incavo SJ, Coughlin KM, Pappas C, et al. Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment intotal knee arthroplasty. J Arthroplasty, 2003,18(5):643-648.
    42. Bindelglass DF. Rotational alignment of the tibial component in total knee arthroplasty. Orthopedics, 2001, 24(11):1049-1051.
    43. Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty, 2001,16(4):493-497.
    44. Rovick JS, Reuben JD, Schrager RJ, et al: Relation between knee motion and ligament length patterns. Clin Biomech 6:213, 1991
    45. Thompson WO, Thaete FL, Fu FH, et al: Tibial meniscus dynamics using three-dimensional reconstruction of the magnetic resonance images. Am J Sports Med 19:210, 1991
    46. Draganich LF, Andriacchi TP, Andersson GBJ: Interaction between intrinsic knee mechanics and the knee extensor mechanism. J Orthop Res 5:539, 1987
    47. Insall JH, Clarke HD: Historic development, classifi-cation, and characteristics of knee prostheses. p.1516. In: Surgery of the knee, ed 3, Churchill Livingstone, Philadelphia, 2001
    48. Walker PS, Sathasivam S: Design forms of total replacement.Proc Inst Mech Eng 214:101, 2000
    49. Insall JN, Lachiewicz PF, Burstein AH: The posterior stabilized condylar prosthesis: a modification of the total condylar design. J Bone Joint Surg Am 64:1317,1982
    50. Walker PS, Sathasivam S: Controlling the motion of total knee replacement using intercondylar guide surfaces. J Orthop Res 18:48, 2000
    51. Dennis DA, Komistek RD, Hoff WA, et al: In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop 331:107, 1996
    52. Akagi M, Nakamura T, Matsusue Y, et al: The Bisurface total knee replacement: a unique design for flexion. J Bone Joint Surg Am 82:1626, 2000
    1.吴海山,吴宇黎.人工膝关节外科学.北京:人民军医出版社,2005:155-156.
    2. Tang WM, Chiu KY, Zhu YH. Axial alignment of lower extremity in Chinese adults. J Bone Joint Surg Am, 2000, 82A: 1603-1608.
    3. Yip DK, Zhu YH, Chiu KY, et al. Distal rotational alignment of the Chinese femur and its relevance in total knee arthroplasty. J Arthroplasty, 2004,19: 613-619.
    4.储小兵,吴海山,祝云利,等.全膝关节置换术中股骨假体旋转参照轴的影像学比较研究.解放军医学杂志, 2006, 31(1): 69-70.
    5. Ranawat CS. History of total knee replacement. J South Orthop Assoc, 2002, 11: 218-226.
    6. Aglietti P, Buzzi R, Gaudenzi A. Posteriorly stabilized total-condylar knee replacement. Three to eight year follow-up of 85 knees. J Bone Joint Surg Br, 1988, 70B: 211-216.
    7. Stern SH, Insall JN. Posterior stabilzed prosthesis: Results after follow-up of nine to twelve years. J Bone Joint Surg Am, 1992, 74(7): 980-986.
    8. Vince KG, Insall JN, Kelly MA.The total condylar prosthesis: 10-to 12-year results of a cemented knee replacement. J Bone Joint Surg Br, 1989, 71(5): 793-797.
    9. Rand JA, Bryan RS.Revision after total knee arthroplasty. Orthop Clin North Am, 1982, 13: 201-212.
    10. Fehring TK, Odum S, Griffin WL,et al.Early failures in total knee arhtroplasty. Clin Orthop, 2001, 392: 315-318.
    11. Sharkey PF, Hozack WJ, Rothman RH, et al. Why are total knee arthroplasties failing today? Clin. Orthop, 2002, 404: 7-13.
    12. Hofmann AA, Evanich JD, Ferguson RP, et al. Ten-to 14 year clinical followup of the cementless Natural Knee System. Clin Orthop, 2001, 388: 85-94.
    13. Freeman M.A., Todd R.C., Bamert P., et al. ICLH arthroplasty of the knee: 1968-1977. J Bone Joint Surg Br, 1978, 60B:339-344.
    14. Insall JN. Revision of aseptic failed total knee arthroplasty. In:Insall JN. Surgery of the Knee, 2nd ed. Churchill Livingston, New York, 1993:935-957.
    15. Krackow KA. Prostheses selection. The technique of total knee arthroplasty. C.V. Mosby, St Louis, 1991:49-74.
    16. Insall JN. Surgical techniques and instrumentation in total knee arthroplasty. In: Insall JN. Surgery of the knee. 2nd ed.Churchill Livingston, New York, 1993:935-57.
    17. Liu H.C.. Review of gross anatomy of the Chinese knee. Taiwan Yi Xue Hui Za Zhi, 1984, 83:317-325.
    18. Mensch J.S., Amstutz H.C.. Knee morphology as a guide to knee replacement. Clin Orthop, 1975, 112:231-241.
    19. Erkman MJ, Walker PS. A study of knee geometry applied to the design of condylar prostheses. Biom Eng, 1974, Jan:14-17.
    20. Seedham BB,Longton EB,Wright V, et al.Dimensions of the knee. Radiographic and autopsy study of sizes required by a knee prosthesis.Ann Rheum Dis, 1972,31(1):54-58.
    21. Wang S.W.,Feng C.H.,Lu H.S..Original articles: a study of Chinese knee joint geometry for prosthesis design.Chinese Medical J, 1992, 105(3): 227-233.
    22. Ishinishi T, Ogata K, Nishino I, et al.Comparison of Asian and Caucasian normal and osteoarthritic knees.In 40th Ann Meeting, Orthop Research Society,1994:663-664.
    23. Poilvache PL, Insall JN, Scuderi GR,et al.Rotation landmarks and sizing of the distal femur in total knee arthroplasty.Clin Orthop, 1996, 331:35-46.
    24. Berger RA, Rubash HE, Seel MJ,et al.Determining the rotational alignment of the femoral component in total kneearthroplasty using the epicondylar axis. Clin Orthop, 1993, 286:40-47.
    25. Churchill DL, Incavo SJ, Johnson CC, et al.The transepicondylar axis appro- ximates the optimal flexion axis of the knee.Clin Orthop, 1998, 356: 111-118.
    26. Miller MC, Berger RA, Petrella AJ, et al.Optimizing femoral component rotation in total knee arthroplasty.Clin Orthop, 2001, 392:38-45.
    27. Hollister AM, Jatana S, Singh AK, et al.The axes of rotation of the knee.Clin Orthop, 1993, 290:259-268..
    28. Shrinand V.Vaidya,Chitranjan S.Ranawat, Alaric Aroojis, et al. Anthropo- memtric measurements to design total knee prosthese for the Indian Population.J Arthroplasty, 2000, 15:79-85.
    29.孙明举,王岩,陈继营,等.国人正常膝关节几何学及参数的测量.解放军医学杂志, 2002, 27(12):1050-1052.
    30. Bindeglass DF, Cohen JL, Dorr LD. Current principles of design for cemented knees. Tech Orthop, 1991, 6: 80-85.
    31. Insall JN. Historic development, classification, and characteristics of knee prostheses. In: Insall JN. Surgery of the Knee, 2nd Edition. Churchill Livingston, New York, 1993:723-738.
    32. Schreppers G.J.,Sauren A.A.,Huson A.. A numerical model of the load transmission in the tibio-femoral contact area.Proc Inst Mech Eng,1990,204(1): 53-59.
    33. Walker P.S.. Design of Kinemax total knee replacement,bearing surface.Acta Orthop Belgica, 1991, 57(supple 2):108-113.
    34. Whiteside L.A.,Pafford J..Load transfer characteristics of a noncemented total knee arthroplasty.Clin Orthop, 1989, 239:168-177.
    35. Hofmann AA, Evanich JD, Ferguson RP, et al. Ten-to 14 year clinical follow-up of the cementless Natural Knee System. Clin Orthop, 2001, 388: 85-94.
    36. K. Hitt, J.R. Shurman, K. Greene, J. McCarthy, J. Moskal and T. Hoeman et al., Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty system, J Bone Jt Surg 85-A (2003), pp. 115–122.
    37. Worland RL, Jessup DE, Vazquez-Vela Johnson G, et al. The effect of femoral component rotation and asymmetry in total knee replacements. Orthopedics,2002,25:1045
    38. Berger RA, Crossett LS, Jacobs JJ,et al. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res,1998, 356:144-153.
    39. Akagi M, Matsusue Y, Mata T, et al. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop,1999, 366:155
    40. Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop,1995, 321:168
    41. Poilvache PL, Insall JN, Scuderi GR, et al. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop ,1996, 331:35
    42. Berger RA, Rubash HE, Seel MJ, et al. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop,1993, 286:40
    43. Churchill DL, Incavo SJ, Johnson CC, et al. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop,1998,356:111
    44. Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop,2001,392:38
    45. Olcott CW, Scott RD. Determining proper femoral component rotational alignment during total knee arthroplasty. Am J Knee Surg.,2000,13:166
    46. Yip DK, Zhu YH, Chiu KY, et al. Distal rotational alignment of the Chinesefemur and its relevance in total knee arthroplasty. J Arthroplasty,2004,19:613
    47. Larson CM, Lachiewicz PF. Patellofemoral complications with the Insall-Burstein II posterior-stabilized total knee arthroplasty. J Arthroplasty, 1999, 14(3):288-292.
    48. Liau JJ, Cheng CK, Huang CH, et al. The effect of malalignment on stresses in polyethylene component of total knee prostheses--a finite element analysis. Clin Biomech (Bristol, Avon), 2002 ,17(2):140-146.
    49. Romero J, Stahelin T, Wyss T, et al. Significance of axial rotation alignment of components of knee prostheses. Orthopade, 2003, 32(6):461-468.
    50. Pagnano MW, Trousdale RT, Stuart MJ, et al. Rotating platform knees did not improve patellar tracking: a prospective, randomized study of 240 primary total knee arthroplasties. Clin Orthop, 2004, 428:221-227.
    51. Liau JJ, Cheng CK, Huang CH, et al. The influence of contact alignment of the tibiofemoral joint of the prostheses in in vitro biomechanical testing. Clin Biomech (Bristol, Avon), 1999,14(10):717-721.
    52. Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop Relat Res,1995, 321:28-31.
    53. Barrack RL, Schrader T, Bertot AJ, et al. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop, 2001, 392:46-55.
    54. Hofmann S, Romero J, Roth-Schiffl E, et al. Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty.Orthopade, 2003, 32(6):469-476.
    55. Incavo SJ, Coughlin KM, Pappas C, et al. Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty, 2003,18(5):643-648.
    56. Bindelglass DF. Rotational alignment of the tibial component in total knee arthroplasty. Orthopedics, 2001, 24(11):1049-1051.
    57. Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty, 2001,16(4):493-497.
    1. Thornhill TS.1990 Proceedings of the Knee Society Editorial.Clin Orthop, 1990, 260:2.
    2. Goldberg VM, Figgie HEⅢ, Figgie MP.Technical consideration in total knee surgery:management of patellar problems.Orthop Clin North Am,1989,20: 189-199.
    3. Ranawat CS.The patellofemoral joint in total condylar knee arthroplasty.Clin Orthop, 1986, 205:93-99.
    4. Freeman M.A.R., Todd R.C., Bamert P.. ICLH arthroplasty of the knee: 1968- 1977. J Bone Joint Surg Br, 1978, 60B:339-344.
    5. Insall JN. Revision of aseptic failed total knee arthroplasty. In:Insall JN. Surgery of the Knee, 2nd ed. Churchill Livingston, New York, 1994:935-957.
    6. Krackow KA. Prostheses selection. The technique of total knee arthroplasty. C.V. Mosby, St Louis, 1991:49-74.
    7. Insall JN. Surgical techniques and instrumentation in total knee arthroplasty. In: Insall JN. Surgery of the knee. 2nd ed.Churchill Livingston, New York, 1994:935-957.
    8. Liu H.C.. Review of gross anatomy of the Chinese knee. Taiwan Yi Xue Hui Za Zhi, 1984, 83:317-325.
    9. Mensch J.S., Amstutz H.C.. Knee morphology as a guide to knee replacement. Clin Orthop, 1975, 112:231-241.
    10. Erkman MJ, Walker PS. A study of knee geometry applied to the design of condylar prostheses. Biom Eng, 1974, Jan:14-17.
    11. Seedham BB,Longton EB,Wright V, et al.Dimensions of the knee. Radiographic and autopsy study of sizes required by a knee prosthesis.Ann Rheum Dis, 1972,31(1):54-58.
    12. Wang S.W., Feng C.H., Lu H.S.. Original articles: a study of Chinese knee joint geometry for prosthesis design. Chinese Medical J, 1992, 105(3): 227- 233.
    13. Ishinishi T, Ogata K, Nishino I, et al.Comparison of Asian and Caucasian normal and osteoarthritic knees. In: 40th Ann Meeting, Ortho Research Sociey, 1994:663-664.
    14. Geoffrey H. Westrich, Marc A. Agulnick, Richard S. Laskin, et al. Current analysis of tibia1 coverage in total knee arthroplasty. The Knee, 1997, 4: 87- 91.
    15. Bindeglass DF, Cohen JL, Dorr LD. Current principles of design for cemented knees. Tech Orthop, 1991, 6: 80-85.
    16. Branson PJ, Steege J, Wixson RL, et al. Rigidity of initial fixation with uncemented tibial knee implants.J Arthroplasty, 1989, 4(1): 21-26.
    17. Westrich GH, Laskin RS, Haas SB, et al. Resection specimen analysis of tibia1 coverage in total knee arthroplasty.Clin Orthop, 1994, 309: 163-175.
    18. K.Uehara, Y.Kadoya, A.Kobayashi, et al.Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplaty, 2002,17:1028-1032.
    19. Takai S, Kobayashi M, Yoahino N.Asian knee.In Callaghan JJ,Rosenberg AG, Rubash HE,et al(eds):The adult knee. Lippincott Williams Wilkins ,Philadeophia,in press.
    20. Kirby Hitt, John R.ShurmanⅡ, Kenneth Greene, et al. Anthropomentric measurents of the human knee:Correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Br, 2003, 85: 115-122.
    21. Cheng-Kung Cheng, Chen-Yu Lung, Ye-Ming Lee, et al.A new approach of designing the tibia1 baseplate of total knee prostheses. Clinical Biomechanics, 1999, 14:112-l17.
    22.王岩,周飞虎,周勇刚,等.国人正常膝关节三维几何形态测量及相关研究.中国矫形外科杂志, 2004, 12(8):617-619.
    23. Roy D, Kent N.Bachus, William Mitchell, et al.Analysis of bone surface area in resected tibia--implications in tibial component subsidence and fixation. Clin Orthop, 1994, 309:2-10.
    24. Bourne RB, Finlay JB. The influence of tibia1 component intramedullary stems and implant cortex contact on the straindistribution of the proximal tibia following total knee arthroplasty. Clin Orthop, 1986, 208: 95-99.
    25. Incavo SJ, Ronchetti PJ, Howe JG, et al. Tibial plateau coverage in total knee arthroplasty. Clin Orthop, 1994, 299: 81-85.
    26. Insall JN. Surgical techniques and instrumentation in total knee arthroplasty. In: Insall JN. Surgery of the Knee, 2nd Edition.Churchill Livingston, New York,1993: 739-804.
    27. Walker PS. Design of total knee arthroplasty. In: Insall JN. Surgery of the Knee, 2nd Edition,.Churchill Livingston, New York,1993: 723-738.
    28. Moran CG, Pinder IM, Lees TA, et al.Survivorship analysis of the uncemented porouscoated anatomic knee replacement.J Bone Joint Surg Am, 1991,73(6): 848-857.
    29. Murase K, Pederson DR, Chang TS.An analysis of tibial component design in total knee arthroplasty.J Biomech, 1983, 16:13-22.
    30. Walker PS, Greene D, Reilly D, et al.Fixation of tibial components of knee arthroplasty.J Bone Joint Surg Am, 1981,63(2):258-267.
    31. Wright TM, Reilly DT.Biomechanics of total knee failure.In Scott WN(ed). Total Knee Revision Arthroplasty.Orlando,Grune and Stratton.Inc 35-49,1987.
    32. Stulberg BN, Dombrowski RM, Froimson M, et al. Computed tomography analysis of proximal tibia1 coverage. Clin Orthop, 1995, 311: 148-156.
    33. Wevers HW, Simurda M, Griffin M, et al. Improved fit by asymmetric tibia1 prosthesis for total knee arthroplasty. Med Eng Phys, 1994, 16: 297-300.
    34. Westrich GH, Haas SB, Insall JN, et al. Resection specimen analysis of proximal tibia1 anatomy based on 100 total knee replacement specimens. J Arthroplasty, 1995, 10:47-51.
    35. Smith.J.R.,and Hofmann,A.A..Morphology of the proximal tibia in the arthritic knee.Proc.AAOS 59th Annual Meeting Washington D.C., 1992, Feb: 20-25.
    36. Hofmann AA, Murdock LE, Wyantt RW, et al.Total knee arthroplasty: Two-to four-year experience using an asymmetric tibia tray and a deep trochlear-grooved femoral component.Clin Orthop, 1991,269:78-88.
    37. Ducheyne P, Kagan A, Lacey JA. Failure of total knee arthroplasty due to loosening and deformation of the tibial component. J Bone Joint Surg Am 1978; 60:384.
    38 .Insall JN, Dorr LD, Scott RD, et al. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 1989;13.
    39. Bourne RB, Finlay JB. The influence of tibial component intramedullary stems and implant-cortex contact on the strain distribution of the proximal tibia following total knee arthroplasty. An in vitro study. Clin Orthop Relat Res 1986;95.
    40. Walker PS, Greene D, Reilly D, et al. Fixation of tibial components of knee prostheses. J Bone Joint Surg Am 1981;63:258.
    41. Hvid I. Mechanical strength of trabecular bone at the knee. Dan Med Bull 1988;35:345.
    42. Karbowski A, Schwitalle M, Eckardt A, Heine J. Periprosthetic bone remodelling after total knee arthroplasty: early assessment by dual energy X-ray absorptiometry. Arch Orthop Trauma Surg 1999,119:324–326
    43. Lee RW, Volz RG, Sheridan DC.The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop 1991,273:177–183
    44. Levitz CL, Lotke PA, Karp JS. Long-term changes in bone mineral desnsity following total knee replacement. Clin Orthop 1995 321:68–72
    45. Li MG, Nilsson KG.The effect of the preoperative bone quality on the fixation of the tibial component in total knee arthroplasty. J Arthroplasty,2000 15:744–753
    46. Peters CL, Craig MA, Mohr RA, Bachus KN (2003) Tibial component fixation with cement: full- versus surface-cementation techniques. Clin Orthop 409:158–168
    47. Petersen MM, Nielsen PT, Lebech A, Toksvig-Larsen S, Lund B (1999)Preoperative bone mineral density of the proximal tibia and migration of the tibial component after uncemented total knee arthroplasty. J Arthroplasty 14:77–81
    48. Regner LR, Carlsson LV, Karrholm JN, Hansson TH, Herberts PG, Swanpalmer J (1999) Bone mineral and migratory patterns in uncemented total knee arthroplasties: a randomized 5-year follow up study of 38 knees. Acta Orthop Scand 70:603–608
    49. Soininvaara T, Kroger H, Jurvelin JS, Miettinen H, Suomalainen O, Alhava E (2000) Measurement of bone density around total knee arthroplasty using fan-beam dual energy X-ray absorptiometry. Calcif Tissue Int 67:267–272
    50. Soininvaara TA, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava M, Kroger HP (2004) Periprosthetic tibial bone mineral density changes after total knee arthroplasty: one-year follow-up study of 69 patients Acta Orthop Scand 75:600–605
    51. Stern SH, Wills RD, Gilbert JL (1997) The effect of tibial stem design on component micromotion in knee arthroplasty. Clin Orthop 345:44–52
    52. Trevisan C, Bigoni M, Denti M, Mmarioni EC, Ortolani S (1998) Bone assessment after total knee arthroplasty by dual-energy X-ray absorptiometry: analysis protocol and reproducibility. Calcif Tissue Int 62:359–361
    53. Daniel Hernandez-Vaquero & Manuel A. Garcia-Sandoval & Jose M. Fernandez-Carreira & Richard Gava .Influence of the tibial stem design on bone density after cemented total knee arthroplasty: a prospective seven-year follow-up study. International Orthopaedics (2008) 32:47–51
    1. Aiello, L., Dean, C., 1990. An Introduction to Human Evolutionary Anatomy. Academic Press, London, San Diego.
    2. Asano, T., Akagi, M., Tanaka, K., Tananca, J., Nakamura, T., 2001.In vivo three-dimensional knee kinematics using a bi-planar imagematching technique. Clinical Orthopaedics and Related Research 388, 157–166.
    3. Blaha, J.D., Mancinelli, C.A., Simons, W.H., Kish, V.L., Thyagarajan, G.,. Kinematics of the human knee using an open chain cadaver model. Clinical Orthopaedics and Related Research 2003,410, 25–34.
    4. Blankevoort, L., Huiskes, R., de Lange, A. The envelope of passive knee joint motion. Journal of Biomechanics , 1988,21, 705–720.
    5. Bull, A.M., Amis, A.A.,. Knee joint motion: description and measurement. Proceedings of the Institute of Mechanical Engineers.Part H. Journal of Engineering in Medicine,1998, 212, 357–372.
    6. Churchill, D.L., Incavo, S.J., Johnson, C.C., Beynon, B.D., The transepicondylar axis approximates the optimal flexion axis of the knee. Clinical Orthopadics 1998, 356, 111–118.
    7. Dye, F.S. Functional morphologic features of the human knee. Clinical Orthopaedics and Related Research 2003,410, 19–24.
    8. Freeman, M.A.R., Pinskerova, V. The movement of the knee studied bymagnetic resonance imaging. Clinical Orthopaedics and Related Research 2003, 41, 35–43.
    9. Hart, R.A., Mote Jr., C.D., Skinner, H.B.,. A finite helical axis as a landmark for kinematic reference of the knee. Journal of Biomechanical Engineering 1991,113, 215–222.
    10. Hefzy, M.S., Kelly, B.P., Cooke, T.D., Kinematics of the knee joint in deep flexion: a radiographic assessment. Medical Engineering and Physics 1998,20, 302–307.
    11. Hill, P.F., Vedi, V., Iwaki, H., Pinskerova, V., Freeman, M.A.R., Williams, A., Tibio-femoral movement 2: the loaded and unloaded living knee studied by MRI. Journal of Bone and Joint Surgery—British Volume 82B, 2000 1196–1198.
    12. Dimensional kinematics of the human knee with intracortical pin fixation. Clinical Orthopaedics 1997,343, 144–150.
    13. Iwaki, H., Pinskerova, V., Freeman, M.A.R.,. Tibio-femoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee: studied by dissection and MRI. Journal of Bone and Joint Surgery—British Volume 82B, 2000,1189–1195.
    14. Johal, P., Williams, A., Wragg, P., Gedroyc, W., Hunt, M., Tibio-femoral movement in the living knee. An in-vivo study of weight bearing and non-weight bearing knee kinematics using‘interventional’MRI, Journal of Biomechanics. 2004.02.008.
    15. Jonsson, H., Karrholm, J. Three-dimensional knee joint movements during a step-up: Evaluation after anterior cruciate ligament rupture. Journal of Orthopaedics Research , 1994.12,769–779.
    16. Kanisawa, I., Banks, A., Banks, S., Moriya, H., Tsuchiya, A.Weight bearing knee kinematics in subjects with two types of anterior cruciate ligament reconstructions. Knee Surg Sports Traumatol Arthrosc , 2003.11 (1), 16–22.
    17. Karrholm, J., Brandsson, S., Freeman, M.A.R. Tibio-femoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. Journal of Bone and Joint Surgery—British Volume 82-B, , 2000. 1201–1202.
    18. Komistek, R.D., Dennis, D.A., Mahfouz, M. In vivo fluoroscopic analysis of the human knee. Clinical Orthopaedics and Related Research 2002.410, 69–81.
    19. Lafortune, M.A., Cavanagh, P.R., Sommer, H.J., Kalenak, A. Three-dimensional kinematics of the human knee during walking.Journal of Biomechanics , 1992.4, 347–357.
    20. Martelli, S., Pinskerova, V. The shapes of the tibial femoral articular surfaces in relation to tibiofemoral movement. Journal of Bone and Joint Surgery 84B, 2002. 607–613.
    21. Morgan, C.D., McGillicuddy, J.O., Grawl, D.M.. The screwhome
    22. mechanism revisited. Transactions of the Orthopaedic Research Society (44th Annual Meeting), 1998,817.
    23. McPherson, A., Karrholm, J., Pinskerova, V., Sosna, A., Martelli, S. Imaging knee motion using MRI, RSA/CT and 3D digitization. Journal of Biomechanics 37,2004.02.007.
    24. Nakagawa, S.M.D., Kadoya, Y., Todo, S., Kobayashi, A., Sakamoto,H., Freeman, M.A.R., Yamano, Y. Tibio-femoral movement 3: full flexion in the living knee studied by MRI. Journal of Bone and Joint Surgery (British) Volume 82B,2000 1199–1200.
    25. Nakagawa, S., Johal, P., Pinskerova, V., Komatsu, T., Sosna, A., Williams, A., Freeman M.A.R. The posterior cruciate ligament during flexion of the normal knee. Journal of Bone and Joint Surgery British Volume. , 2004. 86B, in press.
    26. O’Connor, J., Shercliff, T., FitzPatrick, D., Bradley, J., Daniel, D.M., Biden, E., Goodfellow, J., 1990. Geometry of the Knee. Chapter10.In:
    27. Piazza, S.J., Cavanagh, P.R. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. Journal of Biomechanics , 2000.33, 1029–1034.
    28. Pinskerova, V., Iwaki, H., Freeman, M.A.R. The shapes and relative movements of the Femur and Tibia in the unloaded cadaveric knee: a study using MRI as an anatomical tool. 2001. Chapter10.
    29. In: Insall, J., Scott, W.N. (Eds.),‘‘Surgery of the Knee’’, 3rd
    30. Edition. Saunders, Philadelphia, USA, pp. 255–284.
    31. Pinskerova, V., Maquet, P., Freeman, M.A.R. Annotation: writings on the knee between 1836 and 1917. Journal of Bone and Joint Surgery—British Volume 82B,2000.1100–1102.
    32. Pinskerova, V., Maquet, P., Freeman, M.A.R. The anatomical literature relating to the knee from 1836 to 1917: an historic note. Clinical Orthopaedics ,2003.410, 13–18.
    33. Ramsey, D.K., Wretenberg, P.F. Biomechanics of the knee: methodological considerations in the in-vivo kinematic analysis of the tibiofemoral and patellofemoral joints. Clinical Biomechanics. 1999.14, 595–611.
    34. Reinschmidt, C., van den Bogert, A.J., Lundberg, A., Nigg, B.M., Murphy, N., Stacoff, A., Stano, A. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeltal markers. Gait and Posture. 1997a 69, 98–109.
    35. Reinschmidt, C., van den Bogert, A.J., Nigg, B.M., Lundberg, A.,Murphy, N. Effect of skin movement on the analysis of skeletal knee joint motion during running. Journal of Biomechanics.1997b.30, 729–732.
    36. Reinschmidt, C., van den Bogert, A.J., Lundberg, A., Finite helical axes of the tibiofemoral joint during locomotion. Proceedings of the XVth International Congress on Biomechanics.Calgary, Canada, 1999.p.70.
    37. Scarvell, J.M., Smith, P.N., Galloway, H., Refshauge, K.M. Galloway, H., Woods, K., Comparison of kinematics in the healthy and ACL injured knee using MRI. Journal of Biomechanics 37,2004.02.012.
    38. Shapeero, L.G., Dye, S.F., Lipton, M.J., Gould, R.G., Galvin, E.G., Genant, H.K. Functional dynamics of the knee joint by ultrafast cine-CT. Investigative Radiology,1988.23, 118–123.
    39. Sheehan, F.T., Zajac, F.E., Drace, J.E. Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. Journal of Biomechanics,1998,31, 21–26.
    40. Todo, S., Kadoya, Y., Kobayashi, A., Yamano, Y., Moilanen, T.,Freeman, M.A.R. Motion analysis of the femoral condyles during knee flexion: an in vivo MRI study. 44th Annual Meeting,1998.Orthopaedic Research Society.
    41. Todo, S., Kadoya, Y., Moilanen, T., Kobayashi, A., Yamano, Y.,Iwaki, H. Antero-posterior and rotational movement of femur during knee flexion. Clinical Orthopaedics,1999.362, 162–170.
    42. Walker, P.S., Rovick, J.S., Robertson, D.D., Schrager, R.J. The effects of knee brace hinge design and placement on joint mechanics. Journal of Biomechanics,1988. 21, 965–974.
    43. Wretenberg, P., Ramsey, D.K., Nemeth, G. Tibiofemoral contact points relative to flexion angle measured with MRI. Clinical Biomechanics , 2002. 17, 477–485.
    44. You, B.M., Siy, P., Anderst, W., Tashman, S. In vivo measurement of
    3D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Transactions on Medical Imaging.2001.20, 574–575.
    1. Ahmed AM, Shi S, Hyder A, et al. The effect of quadriceps tension characteristics on the patellar tracking pattern. Trans of 34th annual Meeting of Orthopedic Research Society, 1988, 280.
    2. McGinty G, Irrgang JJ, and Pezullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech, 2000, 15: 160-166.
    3. Biden E, O’Conno J, and Goodfellow J. Tibial rotation in the cadaver knee. Transactions of the 30th Meeting of the Orthopedic Research Society, 1984, 30.
    4. Wilson DR, Feikes AB, Zavatsky AB, et al. The Components of Passive Knee Movement are Coupled to Flexion Angle. J Biomech, 2000, 33: 465-473.
    5. Van Eijden TMEJ, Eouwenhoven E, Verburg J, et al. A mathematical model of the patellofemoral joint. J Biomech, 1986, 19: 219-229.
    6. Buff HU, Jones LC, Hungerford DS. Experimental determination of forces transmetted through the patellofemoral joint. J Biomech, 1988. 21: 17-23.
    7. Ahmed AM, Duncan NA, Tanzer M. In vitro measurement of the tracking pattern of the human patella. Journal of Biomechanics Engineering, 1999, 21: 222–228.
    8. Senavongse W, Farahmand F, Jones J, et al. Quantitative measurement of patellofemoral joint stability: force–displacement behavior of the human patella in vitro. Journal of Orthopaedic Research, 2003, 21: 780–786.
    9. Pena E, Calvo B, Martinez MA, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech, 2006, 39:1686-1701.
    10.刘斯润,冷晓明,黄力. 3D-FS-SPGR序列结合三维重建在膝关节软骨病损诊断中的应用.实用放射学杂志,2002,18: 974-977.
    11.杨玉海,崔谊,崔允峰,等.螺旋CT三维重建评价膝关节创伤的临床应用价值.医学影像学杂志,2004,14: 45-47.
    12. Totoribe K , Chosa E , Tajima N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method. J Spinal Disord Tech, 2004, 17: 147-153.
    13.黄加张.基于MRI膝关节半月板的临床及其生物力学的三维有限元研究.博士学位论文.复旦大学,2005年.
    14. Donahue TL, Hull ML, Rashid MM, et al. A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng, 2002, 124: 273-280.
    15. Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res, 2003, 21: 1098-1106.
    16.许玉林,孙允高,张春林.膝关节动力学模型的研究进展.国外医学生物医学工程分册,2004,27: 57-60.
    17.何毓珏,冯明光,徐长明,等.膝关节矢状面机构模型.生物医学工程杂志, 2006,23:334-337.
    1.Aiello, L., Dean, C., 1990. An Introduction to Human Evolutionary Anatomy. Academic Press, London, San Diego.
    2.Albert, E., 1878. Zur mechanik des Kniegelenkes Berichte des Naturwiss. Wien, Vereins, 41–53.
    3.Albrecht, H., 1876. Zur Anatomie des Kniegelenkes. Diss. Deutsche Zeits. u Chirurgie III. 433p.
    4.Ando, Y., Fukatsu, H., Ishikagi, T., Aoiki, I., Yamada, T.,1994.Analysis of knee movement with low-field MRI equipment: a normal volunteer study. Diagnostic Radiology 12, 153–160.
    5.Asano, T., Akagi, M., Tanaka, K., Tananca, J., Nakamura, T., 2001.In vivo three-dimensional knee kinematics using a bi-planar imagematching technique. Clinical Orthopaedics and Related Research 388, 157–166.
    6.Barnett, C.H., 1953. Locking at the knee joint. Journal of Anatomy 87–91.
    7.Beggs, J., 1966. Advanced Mechanisms. MacMillan, New York.
    8.Blaha, J.D., Mancinelli, C.A., Simons, W.H., Kish, V.L., Thyagarajan, G., 2003. Kinematics of the human knee using an open chain cadaver model. Clinical Orthopaedics and Related Research 410, 25–34.
    9.Blankevoort, L., 1991. Passive motion characteristics of the human knee joint. Ph.D. Thesis, University of Nijmegen, Nijmegen.
    10.Blankevoort, L., Huiskes, R., 1996. Validation of a three-dimensional model of the knee. Journal of Biomechanics 29, 955–961.
    11.Blankevoort, L., Huiskes, R., de Lange, A., 1988. The envelope of passive knee joint motion. Journal of Biomechanics 21, 705–720.
    12.Blankevoort, L., Huiskes, R., de Lange, A.D., 1990. Helical axes of passive knee joint motions. Journal of Biomechanics 23, 1219.
    13.Braune, W., Fischer, O., 1891. Die Bewegungen des Kniegelenkes nach einer neuen Methode am lebenden Menschen gemessen. S Hirtzel,Leipzig.
    14. Bull, A.M., Amis, A.A., 1998. Knee joint motion: description and measurement. Proceedings of the Institute of Mechanical Engineers.Part H. Journal of Engineering in Medicine 212, 357–372.
    15.Chao, E.Y., Laughman, R.K., Schneider, E., Stauffer, R.N., 1983. Normative data of knee joint motion and ground reaction forces in adult level walking. Journal of Biomechanics 16, 219–233.
    16.Churchill, D.L., Incavo, S.J., Johnson, C.C., Beynon, B.D., 1998. The transepicondylar axis approximates the optimal flexion axis of the knee.Clinical Orthopadics 356, 111–118.
    17.Dye, F.S., 1987. An evolutionary perspective of the knee. Journal of Bone and Joint Surgery 69A, 976–983.
    18.Dye, F.S., 2003. Functional morphologic features of the human knee. Clinical Orthopaedics and Related Research 410, 19–24.
    19.Elias, S.G., Freeman, M.A.R., Gokcay, E.I., 1990. A correlative study of the geometry and anatomy of the distal femur. Clinical Orthopaedics 260, 98–103.
    20.Erkman, M.J., Walker, P.S., 1974. A study of the knee geometry applied to the design of condylar prostheses. Journal of Biomechanical Engineering 9, 14–17.
    21.Fick, R., 1911. Mechanik des Kniegelenkes. In: K. von Bardeleben ed Handbuch der Anatomie des Menschen, Band 2, Abteilung 1.Volume 3: Jena, Gustav Fischer, 521p.
    22.Freeman, M.A.R., Pinskerova, V., 2003. The movement of the knee studied by magnetic resonance imaging. Clinical Orthopaedics and Related Research 41, 35–43.
    23.Fuss, F.K., 1992. Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. Acta Anatomica 180, 297–304.
    24.Goodfellow, J., O’Connor, J., 1978. The mechanics of the knee and prosthesis design. Journal of Bone and Joint Surgery—British volume 60-B, 358–369.
    25.Ghosh, S.K., 1983. A close-range photogrammetric system for threedimensional measurements and perspective diagramming in biomechanics. Journal of Biomechanics 16, 667–674.
    26.Grood, E.S., Suntay, W.J., 1983. A joint co-ordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of Biomechanical Engineering 105, 136–144.
    27.Haines, R.W., 1941. Anatomical note: a note on the actions of the cruciate ligaments of the knee joint. Journal of Anatomy 75, 373.
    28.Hallen, L.G., Lindahl, O., 1966. The‘‘screw-home’’movement in the knee joint. Acta Orthopaedica Scandinavica 37, 97–106.
    29.Hart, R.A., Mote Jr., C.D., Skinner, H.B., 1991. A finite helical axis as a landmark for kinematic reference of the knee. Journal of Biomechanical Engineering 113, 215–222.
    30.Hefzy, M.S., Kelly, B.P., Cooke, T.D., 1998. Kinematics of the knee joint in deep flexion: a radiographic assessment. Medical Engineering and Physics 20, 302–307.
    31.Hill, P.F., Vedi, V., Iwaki, H., Pinskerova, V., Freeman, M.A.R., Williams, A., 2000. Tibio-femoral movement 2: the loaded and unloaded living knee studied by MRI. Journal of Bone and Joint Surgery—British Volume 82B, 1196–1198.
    32.Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W., Lupichak,H., 1993. The axes of rotation of the knee. Clinical Orthopaedics 290, 259–268.
    33.Hsieh, H.H., Walker, P.S., 1976. Stabilizing mechanisms of the loaded and unloaded knee joint. Journal of Bone and Joint Surgery 58-A,87.
    34.Huiskes, R., Kremers, J., de Lange, A., Woltring, H.J., Selvik, G., van Rens Th, J.G., 1985. Analytical sterophotogrammetric determination of three dimensional knee joint geometry. Journal of Biomechanics 18, 559–570.
    35.Huson, A., 1974. The functional anatomy of the knee joint: the closed kinematic chain as a model of the knee joint. In: The Knee Joint. International Congress Series No. 324. Exceprta Medica, Amsterdam, pp. 163–168.
    36.Ishii, Y., Terajima, K., Terashima, S., Koga, Y., 1997. Three dimensional kinematics of the human knee with intracortical pin fixation.Clinical Orthopaedics 343, 144–150.
    37.Iwaki, H., Pinskerova, V., Freeman, M.A.R., 2000. Tibio-femoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee: studied by dissection and MRI. Journal of Bone and Joint Surgery—British Volume 82B, 1189–1195.
    38. Johal, P., Williams, A., Wragg, P., Gedroyc, W., Hunt, M., 2004. Tibio-femoral movement in the living knee. An in-vivo study of weight bearing and non-weight bearing knee kinematics using‘interventional’MRI, Journal of Biomechanics 37, this issue, doi:10.1016/j. jbiomech. 2004.02.008.
    39.Jonsson, H., Karrholm, J., 1994. Three-dimensional knee joint movements during a step-up: Evaluation after anterior cruciate ligament rupture. Journal of Orthopaedics Research 12,769–779.
    40.Kanisawa, I., Banks, A., Banks, S., Moriya, H., Tsuchiya, A., 2003. Weight bearing knee kinematics in subjects with two types of anterior cruciate ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 11 (1), 16–22.
    41.Kapandji, L.A., 1970. The mechanical role of the cruciate ligaments.In: The physiology of the joints. 2nd edition. Churchill Livingstone, Edinburgh, 120pp.
    42.Karrholm, J., Selvik, G., Elmqvist, L.G., et al., 1988. Active knee motion after cruciate ligament rupture. Stereoradiography. Acta Orthopaedical Scaninabica 59 (2), 158–164.
    43.Karrholm, J., Brandsson, S., Freeman, M.A.R., 2000. Tibio-femoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. Journal of Bone and Joint Surgery—British Volume 82-B, 1201–1202.
    44.Kettlekamp, D.B., Jacobs, A.W., 1972. Tibiofemoral contact area—determination and implications. Journal of Bone and Joint Surgery 54A,349–356.
    45.Komistek, R.D., Dennis, D.A., Mahfouz, M., 2002. In vivo fluoroscopic analysis of the human knee. Clinical Orthopaedics and Related Research 410, 69–81.
    46.Kurosawa, H., Fukubayashi, T., Nakajima, H., 1980. Load-bearing mode of the knee joint. Clinical Orthopaedics 149, 283.
    47.Kurosawa, H., Walker, P.S., Abe, S., et al., 1985. Geometry and motion of the knee for implant and prosthetic design. Journal of Biomechanics 18, 487–499.
    48.Lafortune, M.A., Cavanagh, P.R., Sommer, H.J., Kalenak, A., 1992. Three-dimensional kinematics of the human knee during walking. Journal of Biomechanics 4, 347–357.
    49.Levens, A.S., Inman, V.T., Blosser, J.A., 1948. Transverse rotation of the segments of the lower extremity in locomotion. Journal of Bone and Joint Surgery—American Volume 30-A, 859–872.
    50.Maquet, P.G., Van de Berg, A.J., Simenet, J.S., 1975. Femorotibial weight-bearing areas—experimental determination. Journal of Bone and Joint Surgery—American Volume 57, 766–771.
    51.Martelli, S., Pinskerova, V., 2002. The shapes of the tibial femoral articular surfaces in relation to tibiofemoral movement. Journal of Bone and Joint Surgery 84B, 607–613.
    52.Meyer, H., 1853. Die Mechanik des Kniegelenks. Archiv f .ur Anatomie und Physiologie. 497pp.
    53.Morgan, C.D., McGillicuddy, J.O., Grawl, D.M., 1998. The screwhome mechanism revisited. Transactions of the Orthopaedic Research Society (44th Annual Meeting), 817.
    54.M. uller, W., 1982. Das Knie. Springer-Verlage, Berlin, 115–117. McPherson, A., Karrholm, J., Pinskerova, V., Sosna, A., Martelli, S.,2004. Imaging knee motion using MRI, RSA/CT and 3D digitization. Journal ofBiomechanics 37, this issue, doi:10.1016/ j.j biomech.2004.02.007.
    55.Nakagawa, S.M.D., Kadoya, Y., Todo, S., Kobayashi, A., Sakamoto,H., Freeman, M.A.R., Yamano, Y., 2000. Tibio-femoral movement 3: full flexion in the living knee studied by MRI. Journal of Bone and Joint Surgery (British) Volume 82B, 1199–1200.
    56.Nakagawa, S., Johal, P., Pinskerova, V., Komatsu, T., Sosna, A., Williams, A., Freeman M.A.R., 2004. The posterior cruciate ligament during flexion of the normal knee. Journal of Bone and Joint Surgery British Volume. 86B, in press.
    57.Niitsu, M., Akisada, M., Anno, I., Miyakawa, S., 1990. Moving knee joint: technique for kinematicMRimaging. Radiology 174, 569–570. O’Connor, J., Shercliff, T., FitzPatrick, D., Bradley, J., Daniel, D.M., Biden, E., Goodfellow, J., 1990. Geometry of the Knee. Chapter10. In:
    58.Daniel, D., et al. (Ed.), Knee Ligaments: Structure,Function, Injury and Repair. Raven Press Ltd., pp. 163–166.
    59.Piazza, S.J., Cavanagh, P.R., 2000. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. Journal of Biomechanics 33, 1029–1034.
    60.Pinskerova, V., Iwaki, H., Freeman, M.A.R., 2001. The shapes and relative movements of the Femur and Tibia in the unloaded cadaveric knee: a study using MRI as an anatomical tool. Chapter10.
    61.In: Insall, J., Scott, W.N. (Eds.),‘‘Surgery of the Knee’’, 3rd Edition. Saunders, Philadelphia, USA, pp. 255–284.
    62.Pinskerova, V., Maquet, P., Freeman, M.A.R., 2000. Annotation: writings on the knee between 1836 and 1917. Journal of Bone and Joint Surgery—British Volume 82B, 1100–1102.
    63.Pinskerova, V., Maquet, P., Freeman, M.A.R., 2003. The anatomical literature relating to the knee from 1836 to 1917: an historic note. Clinical Orthopaedics 410, 13–18.
    64.Pinskerova, V., Johal, P., Nakagawa, S., Sosna, A., Williams, A., Gedroyc, W., Freeman, M.A.R. Does the femur roll-back with flexion? Journal of Bone and Joint Surgery—British Volume. 86B,in press.
    65.Ramsey, D.K., Wretenberg, P.F., 1999. Biomechanics of the knee: methodological considerations in the in-vivo kinematic analysis of the tibiofemoral and patellofemoral joints. Clinical Biomechanics.14, 595–611.
    66.Rehder, J., 1983. Morphometrical studies on the symmetry of the human knee joint: femoral condyle. Journal of Biomechanics 16, 351–361.
    67.Reinschmidt, C., van den Bogert, A.J., Lundberg, A., Nigg, B.M., Murphy, N., Stacoff, A., Stano, A., 1997a. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeltal markers. Gait and Posture. 69, 98–109.
    67.Reinschmidt, C., van den Bogert, A.J., Nigg, B.M., Lundberg, A.,Murphy, N., 1997b. Effect of skin movement on the analysis of skeletal knee joint motion during running. Journal of Biomechanics.30, 729–732.
    68.Reinschmidt, C., van den Bogert, A.J., Lundberg, A., 1999. Finite helical axes of the tibiofemoral joint during locomotion. Proceedings of the XVth International Congress on Biomechanics.Calgary, Canada, p. 70.
    69.Roaas, A., Andersson, G.B.J., 1982. Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthopaedica Scandinavica 53, 205–208.
    70.Rostlund, T., Carlsson, L., Albrektsson, B., et al., 1989. Morphometrical studies of human femoral condyles. Journal of BiomechanicalEngineering 11, 442–448.
    71.Rovick, J.S., Reubin, J.D., Schrager, R.J., Walker, P.S., 1991. Relation between knee motion and ligament length patterns.Clinical Biomechanics 6, 213–220.
    72.Scarvell, J.M., Smith, P.N., Galloway, H., Refshauge, K.M., 2004.Galloway, H., Woods, K., Comparison of kinematics in the healthy and ACL injured knee using MRI. Journal of Biomechanics 37, this issue, doi: 10.1016/j.jbiomech.2004.02.012.
    73.Scherrer, P.K., Hillberry, B.M., 1979. Piecewise mathematical representation of articular surfaces. Journal of Biomechanics 12, 301–311.
    74.Shapeero, L.G., Dye, S.F., Lipton, M.J., Gould, R.G., Galvin, E.G., Genant, H.K., 1988. Functional dynamics of the knee joint by ultrafast cine-CT. Investigative Radiology 23, 118–123.
    75.Sheehan, F.T., Zajac, F.E., Drace, J.E., 1998. Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. Journal of Biomechanics 31, 21–26.
    76.Shiavi, R., Limbird, T., Frazer, M., et al., 1987. Helical motion analysis of the knee-I. Methodology for studying kinematics during locomotion. Journal of Biomechanics 20, 459–469.
    77.Smith, J.W., 1956. Observations on the postural mechanism of the human knee joint. Journal of Anatomy 90, 236–260.
    78.Soudan, K., Van Audekercke, R., Martens, M., 1979. Methods, difficulties and inaccuracies in the study of human joint kinematics and pathokinematics by the instant axis concept—example: the knee joint. Journal of Biomechanics 12, 27–33.
    79.Steindler, A., 1955. Kinesiology of the Human Body. Charles C.Thomas, Springfield, IL.Strasser, H., 1917. Lehrbuch der Muskel—und Gelenkmechanik. III Band. Die untere Extemit.art. Springer, Berlin.
    80.Tardieu, C., 1981. Morpho-functional analysis of the articular surfaces of the knee joint in the primate. In: Chiarelli, A.D., Corruccini, R.J.(Eds.), Primate Evolutionary Biology. Springer, Berlin, pp. 68–80. Thompson, W.O., Thaete, F.L., Fu, F.H., et al., 1991. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonanceimages. American Journal of Sports Medicine 19, 210–216.
    81.Todo, S., Kadoya, Y., Kobayashi, A., Yamano, Y., Moilanen, T.,Freeman, M.A.R., 1998. Motion analysis of the femoral condyles during knee flexion: an in vivo MRI study. 44th Annual Meeting, Orthopaedic Research Society.
    82.Todo, S., Kadoya, Y., Moilanen, T., Kobayashi, A., Yamano, Y.,Iwaki, H., 1999. Antero-posterior and rotational movement of femur during knee flexion. Clinical Orthopaedics 362, 162–170.
    83.Tupling, S.J., Pierrynowski, M.R., 1987. Use of cardan angles to locate rigid bodies in three-dimensional space. Medical and Biological Engineering and Computing 25, 527–532.
    84.Walker, P.S., Rovick, J.S., Robertson, D.D., Schrager, R.J., 1988. The effects of knee brace hinge design and placement on joint mechanics. Journal of Biomechanics 21, 965–974.
    85.Wang, C.J., Walker, P.S., 1974. Rotatory laxity of the human knee joint. Journal of Bone and Joint Surgery 56-A, 161.Weber, W.E., Weber, E.F.M., 1836. Mechanik der menschlichen Gehwerkzeuge. In: Maquet, P., Furlong, R. (Eds.), Mechanics of the Human Walking Apparatus (English Translation, 1992).Springer Verlag, Berlin.
    86.Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P., 1980. A three-dimensional mathematical model of the knee-joint. Journal of Biomechanics 13, 677–685.
    87.Woltring, H.J., 1994. 3-D attitude representation of human joints: a standardization proposal. Journal of Biomechanics 18, 379–389.
    88.Wretenberg, P., Ramsey, D.K., Nemeth, G., 2002. Tibiofemoral contact points relative to flexion angle measured with MRI. Clinical Biomechanics 17, 477–485.
    89.Yoshioka, Y., Siu, D.W., Scudamore, R.A., et al., 1989. Tibial anatomy and functional axes. Journal of Orthopaedics Research 7,132–137.
    90.You, B.M., Siy, P., Anderst, W., Tashman, S., 2001. In vivo measurementof 3D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Transactions on Medical Imaging. 20, 574–575.
    91.Zoghi, M., Hefzy, M., Fu, K.C., et al., 1992. A three-dimensional morphometrical study of the distal human femur. Proceedings of the Institution of Mechanical Engineers Part H 206, 147–157.
    92.Zuppinger, H., 1904. Die aktive Flexion im unbelasteten Kniegelenk. Z. uricher Habil. Wiesbaden, Bergmann, pp. 703–763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700