用户名: 密码: 验证码:
微波热致超声波扫描成像系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量医学统计数据表明各种癌症发生率和死亡率均在逐年增加,然而癌症从确诊到治疗的各种技术发展却并不乐观。一种得到共识的观点是肿瘤或癌的早期发现对治疗效果将存在显著的影响,本文所关注的乳腺肿瘤(癌)的检测也具有这一特点。
     微波热致超声波扫描成像(Microwave-Induced Thermo-Acoustic Tomography,MITAT)技术是一种新兴的检测技术,它使用微波脉冲激励组织,组织将吸收的微波能转化为热能,然后生物组织受热不均匀而产生可检测的超声波信号。特别是恶性肿瘤,其介电常数和电导率均远高于周围正常组织,因此,它们可以产生高幅度的微波热致超声波(Microwave-Induced Thermo-Acoustic,MITA)信号。由于微波热致超声扫描成像技术应用微波激励、超声成像,可产生高分辨率和高对比度的成像结果,使它成为一种非常有潜力的生物医学成像技术。
     然而,微波热致超声波扫描成像系统也存在许多难点。首先,微波热致超声波涉及多物理场过程,它包括电磁波在非均匀介质中的传播过程、电磁能转换为热能过程、热致膨胀产生机械波(超声波)过程。基于动力学和热扩散、传导方程的微波热致超声波机制解析解的分析,将上述三类物理场有机地结合在了一起,与基于热平衡的状态解析分析相比,这一方法更少地对三物理场所涉及的参数进行近似,能更准确地反映微波热致超声波机制。其次,激励所用的高功率微波脉冲会产生很宽频带的强电磁干扰,这对于微弱的微波热致超声波的检测形成巨大的挑战。如何在减小激励微波功率的前提下,尽量提高热致超声波的信噪比是这一系统的成败关键。为了达到激励微波功率与信噪比的更优化,在对系统的电磁噪声来源进行了研究的基础上,新的具有高电磁兼容能力的超声波检测探头被设计和应用到微波热致超声波扫描系统中。从信号处理的角度,基于小波分析的噪声抑制技术也被应用到对测量的微波热致超声波信号进行处理。另外,为获得辐射微波能在生物组织中尽量均匀的分布和辐射效能,对现有的矩形波导辐射器的优化通过设计低驻波比的圆喇叭天线进行了仿真讨论。最后,非均匀介质(生物组织)中的目标成像也是微波热致超声波扫描成像系统的重点和难点。由于生物组织的非均匀性和成像目标处于微波和超声波的近场,波的衍射和散射不可忽略,一些成像算法,如后向投影算法等无法克服这些因素所产生的多径效应,成像分辨率和对比度均会受到影响;而基于伪谱时域方法(Pseudo-Spectral Time Domain,PSTD)的时间反转镜像(Time Reversal Mirror,TRM)技术在微波热致超声波扫描成像系统中的应用,能充分地利用目标信号通过生物组织的非均匀性带来的多径信息,对目标形成准确的聚集成像。另外,伪谱时域方法作为时间反转镜像技术的计算核的应用可以方便地实现时间反转镜像技术所需的系统格林函数和大尺度生物器官如乳房的快速计算。
     本文的研究内容主要包括微波热致超声成像软、硬件系统中的一些关键技术,主要内容概括如下:
     1.在讨论了生物组织的微波吸收特点的基础上,基于动力学和热扩散、传导定理推导了生物组织的微波热致超声理论,得到微波能在生物组织中的吸收分布与微波热致超声波源分布等效的结论。
     2.从系统的角度讨论了微波热致超声波扫描成像系统的各部分构成,深入讨论了激励微波脉冲源的设计准则、检测子系统的技术细节及电磁兼容考虑。搭建的实验原型机,微波脉冲源中心频率2.45 GHz,脉冲宽度0.5-2.0μs,峰值功率0.8-40kW。
     3.对实验数据所反映的超声信号时频域特征进行了研究。对时域微波热致超声波信号的时延误差随样品探头距离增加而减小的现象,通过考虑实际样品的截面积尺寸和样品上不同位置的热声源的叠加过程进行了研究,并对相应的修正方法进行了讨论;由激励源、样品几何尺寸、超声波传感器响应的级联在频域上的关系,讨论了生物组织的几何尺度信息如何在测量信号中通过微波热致超声信号频谱分布反映出来的,同时也揭示了微波热致超声波信号的频率范围特征。
     4.研究了基于小波分析的噪声抑制方法在微波热致超声波信号中降噪和多分辨率应用。
     5.基于所搭建的微波热致超声成像系统所测得的实验数据,研究了相应的重建算法:反投影成像(Back-Projection,BP)算法和基于PSTD的TRM技术,成像分辨率<3mm,成像对比度>25dB。
     6.在均匀媒质(变压器油或炼猪油)中的简单目标(单纯高含水量生物组织,如猪肌肉)进行了一维线阵和环阵的微波热致超声波成像实验;对复杂目标(具有皮肤、脂肪和肌肉结构)进行了一维线阵微波热致超声波成像实验。
The accident and the mortality ratio of various cancer is increasing continually reported by a lot of medical literatures in every year, while the technical progress of cancriform detection and therapy is unsatisfactory; A commonsense opinion of cancriform field is that the more early diagnose more surviving, this is also the truth in the breast cancer detection and therapy field. Development a detection instrument about the early breast cancer is the aim of this paper.
     The microwave-induced thermo-acoustic tomography (MITAT) is an innovative technique for tumor's detection, it employees the modulated microwave pulses to irradiate the biologic tissue, there has thermo-deposition due to the electromagnetic energy absorbed by the tissue. Because the different tissue heating originated the electric difference, the detectable ultrasonic signals are generated by this procedure. Especially the malignant tumor with distinct permittivity and electrical conductivity versus the surrounding normal tissue, microwave-induced thermo-acoustic (MITA) signals can be obtained with very high signal-noise-ratio. For the microwave pulses used as the irradiating signals, while the received signals are ultrasound in microwave-induced thermo-acoustic tomography system, high resolve and contrast images can be got. So it has becoming a promising technology in medical imaging field.
     However, microwave-induced thermo-acoustic tomography system has very many difficulties. Firstly, the microwave-induced thermo-acoustic is an interdisciplinary field procedure. It includes the electromagnetic wave propagating in heterogeneous medium, the transform from the electromagnetic energy to the thermo-energy and the mechanical wave (ultrasound) generation due the tissue expanding. The analytic studies of the MITA procedure based on dynamics and the function of thermo-diffuse and thermo-conduction combine these three physic field systematically. Compared with situation function with thermo-balance method, the analytic studies based on dynamics have less parameters approximation, and more precision. Meanwhile, the discipline of the microwave energy absorbed by tissue is should studied also. Secondly, there has severe noise with width spectrum due to the powerful irradiating microwave pulses. This is a big challenge to design and realize the receiver subsystem to detect the weak MITA signals. How to improve the signal-noise-ratio of the received thermo-acoustic signals in terms that the irradiating microwave power should be decrease possibly is the keystone of a successful system. In order to balance the power of the irradiating and the receiver signals with optimal signal-noise-ratio, after the study of the noise sources in the MITAT system, an innovative ultrasonic receiver with perfect electromagnetic compatibly and pre-amplifier subsystem are designed and applied to the MITAT system. On the signal processing opinion, the received thermo-acoustic signals is deal with wavelet technique, the noise depressing and wavelet analyses method are very useful for the MITA signals. Meanwhile, in order to obtain uniform microwave energy distribution in biologic tissue and improve the effectiveness of the radiator, a circle horn antenna with low voltage-stand-wave-ratio is simulative studied to replace current rectangle waveguide radiator. Thirdly, it is also difficulty and focus in MITAT system that the imaging algorithm in terms that the biologic tissue is heterogeneous. Due to the heterogeneous and the targets located in the near field of the irradiating, the diffuseness and the multi-path effects can't be neglected. Otherwise, the resolve and contrast of the images generated by some imaging algorithm, such as back-projection, should be of low quality. The superior images can be got by the imaging algorithm of time reversal mirror technique based on pseudo-spectrum time domain method applied to MITAT system. Because that the all the multi-path information can be utilized by this imaging algorithm, and the targets can be refocused at original position correctly. By the way, the characteristics of the TRM noise depressing and statistic stability in terms that the model's parameters have random distribution are studied also. In additional, for the numerical pseudo-spectrum time domain method is employed as the forward core of the time reversal mirror technique, the Green's function required by the TRM can be realized by the numerical model easily and the larger scale biologic organ can be simulated quickly.
     The aim of this paper is focus on the critical hardware and software research of themicrowave-induced thermo-acoustic tomography system, the contents are:
     1. After discussing the character of the microwave energy absorbed by biologic tissue,the mechanism of the microwave-induced thermo-acoustic procedure are analyticstudied based on the dynamics and the function of the thermo-diffuses and thermo-conduction. The important conclusion can be draw that there has an equivalent relationship between the microwave energy absorption distribution and the induced thermo-acoustic sources distribution.
     2. The subsystems of the microwave-induced thermo-acoustic tomography system are studied systematically. The design criterions of the irradiating microwave pulses, detection subsystem and electromagnetic compatibility are studied. The technical standards of the MITAT prototype system are: center frequency 2.45 GHz, the width of the pulse 0.5 - 2.0 us and the peak value of the pulse 0.8-40 kW.
     3. The measured microwave-induced thermo-acoustic signals are studied in temporal-spectral domain. To explain the phenomenon that the thermo-acoustic signals delay error become larger when the distance of the sample and ultrasonic transducer is small in temporal domain, the model includes that the cross-section scale of the sample and the aperture scale of the ultrasonic transducer, and the synthetic ultrasonic pressure wave generated by the thermo-acoustic sources are considered. The amended thickness information error of the sample based on the model and the synthetic pressure theory can remarkably improve. From the signal processing point of view, the MITAT system is cascaded by each subsystems, the irradiating microwave pulses, sample with geometric information, and the response function of the ultrasonic transducer. According to this viewpoint, the spectral characteristic of the MITA signals are studied to explain how the geometric information of the sample to affect the spectral distribution of the measured signals, meanwhile the bandwidth of a very MITAT system can be evaluated by this analyses.
     4. The noise depressing and multi-resolution application of the wavelet technique in an MITAT system are studied.
     5. The imaging algorithms are studied base on the measured thermo-acoustic signals from the prototype MITAT system: back-projection algorithm and time reversal mirror technique based on the pseudo-spectral time domain method, the resolution of the image less than 3 mm, and the contrast large than 25 dB.
     6. Two-dimension images generated by some simple targets (simplex biologic tissue with high water content, such as pork muscle) immerged in a homogenous medium (mineral oil or porcine oil), the linear and circle scan Patten are used.
     Two-dimension images generated by complex targets (a biologic tissue with skin, fat and muscle) are studied also.
引文
[1]Surveillance,Epidemiology and End Results(SEER) Program,SEER 9 Registries,Division of Cancer Control and Population Science,National Cancer Institute,US,2007:1973-2004
    [2]Ahmedin Jemal,Andrea Thomas.Taylor Murray,and Michael Thun,Cancer Statistics 2002.CA Cancer J Clin,Jan 2002,52:23-47
    [3]Ahmedin Jemal,Rebecca Siegel,Elizabeth Ward,Taylor Murray,Jiaquan Xu,and Michael J.Thun.Cancer Statistics 2007.CA Cancer J Clin,Jan 2007,57:43-66
    [4]徐兵河,乳腺癌,癌症进展杂志,2004,2(1):4
    [5]郑莹,向泳梅,上海市区乳腺癌流行现状及趋势分析,外科理论与实践,2001,64(4):101-104
    [6]金宗浩.乳腺增生和乳腺癌,上海:上海科学技术文献出版社,2002
    [7]K.D.Paulsen,P.M.Meaney,Alternative Breast Imaging,2006,Springer Press
    [8]SK Moore,better breast cancer detection,Spectrum,IEEE,2001,38(5):50-54
    [9]Patricia A.Carney,Diana L.Miglioretti,Bonnie C.Yankaskas,Karla kerlikowske,Robert Rosenberg,etc.,Individual and combined effects of age,breast density and hormone replacement therapy use on the accuracy of screening mammography,Annals of internal medicine,2003,138(3):168-175
    [10]L(?)GAGER V.B.,VESTERGAARD A.,HERRSTEDT J.,THOMSEN H.S.,ZEDELER K.,DOMBERNOWSKY P.,The limited value of routine chest X-ray in the follow-up of stage Ⅱ breast cancer,European journal of cancer & clinical oncology,1990,26(5):553-555
    [11]Margaret Cheney,David Isaacson,Jonathan C.Newell,Electrical Impedance Tomography,SIAM Review,1999,41(1):85-101
    [12]Kim Hwa Lim,Guining Shi,Kyle McCarter,Rhett George Jr.,Gary Ybarra,William T.Joines,Scott Wartenberg,Qing Huo Liu.2-D EIT for Biomedical Imaging:Design,Measurement,Simulation,and Image Reconstruction.Microwave and Optical Technology Letters,Dec 2007,49(12):2989-2998
    [13]P.N.T Wells,Ultrasound imaging,Physics in medicine and biology,2006,51(5):R83-R99
    [14]W.Teh,The role of ultrasound in breast cancer screening.A consensus statement by the European Group for breast cancer screening,European Journal of Cancer,1998,34(4):449-450
    [15] Constance D. Lehman, Constantine Gatsonis, Christiane K. Kuhl, R. Edward Hendrick, Etta D. Pisano, etc., MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer, The New England Journal of Medicine, 2007, 356(13): 1295-1304
    [16] Kavitha Arunachalam, Lalita Udpa and Satish S. Udpa, A computational investigation of microwave breast imaging using deformable reflector, IEEE on Transactions on Biomedical Engineering, 2008, 55(3): 554-563
    [17] G. Bindu, Santhosh John Abraham, Anil Lonappan, Vinu Thomas, C. K. Aanandan and K. T. Mathew, A pulsed confocal microwave technique for the detection of dielectric contrast of breast tissue, 2005,47(3): 209-213
    [18] Chun Yu, Mengqing Yuan, John Stang, Elan Bresslour, Rhett T. George, Gary A. Ybarra, William T. Joines and Qing Huo Liu, Active microwave imaging Ⅱ: 3-D system prototype and image reconstruction from experimental data, IEEE Transaction on Microwave Theory and Techniques, 2008,56(4): 991-1001
    [19] S. H. Zainud-Deen, W. M. Hassen, E. M. Ali, K. H. Awadalla and H. A. Sharshar, Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques, Progress in Electromagnetics Research B, 2008, 3(1): 35-46
    [20] Earl Zastrow, Shakti K. Davis and Susan C. Hagness, Safety assessment of breast cancer detection via ultrawideband microwave radar operating in pulsed-radiation mode, Microwave and optical technology letters, 2007,49(1): 221- 226
    [21] RA Kruger, WL Kiser, Jr., KD. Miller, HE Reynolds, Thermoacoutic CT: imaging principles. Proc. SPIE, 2000, 317-274-2768:1-10
    [22] Xu M, Wang L V. RF-induced thermoacoustic tomography. Engineering in Medicine and Biology, IEEE EMBS/BMES, 2002. 1211-1212
    [23] M. A. Anastasio, K. Wang, J. Zhang, G A.Kruger, D. Reinecke, R. A. Kruger, Improving limited-view reconstruction in photoacoustic tomography by incorporating a priori boundary information, Proc. of SPIE, 2008, 6856: 68561B.1-b856B.6
    [24] L. Zeng, D.Xing A fast microwave-induced thermoacoustic tomography system for imaging of biological tissues, Fourth International Conference on Photonics and Imaging in Biology and Medicine, Proc. of SPIE, 2006, 6047: 60470K-0-7
    [25] L. H. Wang, Ultrasound-mediated biophotonic imaging: a review of acoustic-optical tomography and photo-acoustic tomography, Journal of Disease Markers, 2004, 19(3): 123-138
    [26]Meng-Lin Li,Lihong V.Wang,A study of reconstruction in photoacoustic tomography with a focused transducer,Photons Plus Ultrasound:Imaging and Sensing 2007:The Eighth Conference on Biomedical Thermoacoustics,Optoacoustics,and Acousto-optics
    [27]Lihong V.Wang,Xinmai Yang,Boundary conditions in photoacousitic tomography and image reconstruction,Journal of Biomedical Optics,2007,12(1):014027-1-10
    [28]Geng Ku,Xueding Wang,Xueyi Xie,etc,Deep penetrating photoacoustic tomography in biological tissues,Photons Plus Ultrasound:Imaging and Sensing 2005
    [29]Minghua Xu,Lihong V.Wang,Universal back-projection algorithm for photoacoustic computed tomography,Physical Review E,2005,71:016706-1-7
    [30]Christopli G A IIoclen,Andrc Deltltci,arid nits F M de Mul,Detection of Photoacoustic Transients Originating from Microstructures in Optically Diffuse Media such as Biological Tissue,IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency control,2001,48(1):37-47
    [31]Geng Ku.Photoacoustic and Thermoacoustic Tomography:System development for Biomedical applications,Doctor Dissertation,A&M University,USA,2004
    [32]G.J.Diebold,T.Sun.Properties of Photo-acoustic Waves in One,Two,and Three Dimensions.Acoustica,1994,80:339-351
    [33]Minghua Xu,Lihong V.Wang.Photoacoustic imaging in biomedicine.Review of scientific instruments 77,2006,041101
    [34]G.J.Diebold,T.Sun,and M.I.Khan.Photoacoustic monopole radiation in one,two,and three dimensions.Physical review letters,1991,64(24):3384-3387
    [35]Robert A.Kruger and Pingyu Liu.Photo-acoustic ultrasound:Pulse production and detection in 0.5% Liposyn.Med.Phys.July 1994,21(7):1179-1184
    [36]Yongheng He,Zhilie Tang,Zhanxu Chen,Wei Wan and Jianghua Li,2.A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,PHYSICS IN MEDICINE AND BIOLOGY,2006,51:2671- 2680
    [37]M.Xu,L.V.Wang,RF-induced thermoacoutic tomography,Proceedings of the Second Joint EMBS/BMES Conference,2002:1211- 1212
    [38]Y.Xu,M.Xu,and L.V.Wang,Exact frequency-domain reconstruction for thermoacoustic tomography—Ⅰ:Planar geometry,IEEE Transactions Med.Imaging,2002,53(3):823- 829
    [39]R.A.Kruger,W.L.Kiser,D.R.Reinecke,G.A.Kruger,R.L.Eisenhart,Thermoacoustic Computed Tomography of the Breast at 434 MHz,1999,IEEE MIT-S Digest(2):591- 595
    [40] Feldman K T. Review of the literature on sondhauss thermoacoustic phenomena. J Sound Vib,1968,7(1): 71-82
    [41] J. C. Lin, On microwave-induced hearing sensation, Microwave Theory and Tech. IEEE Trans. on, 1977, 25(7): 605- 612
    [42] T. C. Guo, W. W. Guo and L. E. Larsen. Microwave-Induced thermoacoustic effect in dielectrics and its coupling to external medium - A thermodynamical formulation. IEEE Trans. Microwave Theory and Tech., Aug 1984,32(8): 835- 843
    [43] Karen H.Chan and james C.Lin, Microwave-induced thermoelastic tissue imaging, Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, 1988, 1:445-446
    [44] J. C. Lin and K. H. Chan. Microwave thermoelastic tissue imaging system design. IEEE Trans. Microwave Theory Tech., 1984, 32: 854- 860
    [45] James C. Lin. The Microwave Auditory Phenomenon. Proceedings of the IEEE, January 1980, 68(1): 67-74
    [46] Karen H. Chan, James C. Lin. Microwave-induced thermo-elastic tissue imaging. IEEE Engineering in Medicine & Biology Society 10th Annual International Conference. 1988
    [47] Anna T. Fernandez, J. J. Dahl, K. Gammelmark, D. M. Dumont and G E. Trahey, High resolution ultrasound beamforming using synthetic and adaptive imaging techniques, 2002 IEEE Int. Symposium on Biomedical Imaging, 2002,: 433- 436
    [48] K. H. Lim, J. H. Lee, Q. H. Liu, Thermoacoustic tomography forward modeling with the spectral element method, Medical Physics, 2008,35(1): 4-12
    [49] Minghua Xu, Lihong V Wang. Pulsed-microwave-induced thermo-acoustic tomography: filtered back-projection in a circular measurement configuration. American assoc.Phys.Med.2002, 29(8):1661-1670
    [50] Geng K, Lihong V. Wang, Combining Microwave and Ultrasound: Scanning Thermoacoustic Tomography, Proceedings of the 22nd Annual EMBS International Conference, July 23-28, 2000: 2321- 2323
    [51] Y. Xu and L. H. Wang, Effects of Acoustic Heterogeneity in breast thermoacoustic tomography, IEEE Trans, on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(9): 1134-1146
    [52] M.Xu, Y.Xu and L.H.Wang, Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries, IEEE Trans. on Biomedical Engineering,2003, 50(9): 1086-1099
    [53]W.Cong,L.H.Wang and G.Wang,Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium,BioMedical Engineering on Line,2004,3(12):3- 12
    [54]Wenxiang Cong,Kumar Durairaj,Lihong V.Wang,A Born-type approximation method for bioluminescence tomography,Med.Phys.2006,33(3):679- 687
    [55]Mark A.Anastasio,Jin Zhang,Xiaochuan Pan,Yu Zou,Geng Ku,and Lihong V.Wang,Half-Time Image Reconstruction in Thermoacoustic Tomography,IEEE TRANSACTIONS ON MEDICAL IMAGING,2005,24(2):199- 210
    [56]Lihong V.Wang and Geng Ku,Hybrid Medical Imaging:Scanning Thermoacoustic Tomography,Computer-Based Medical Systems,2000.CBMS 2000.Proceedings.13th IEEE Symposium on,2000,:129- 134
    [57]Jin Zhang,Mark A.Anastasio,Xiaochuan Pan,and Lihong V.Wang,Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography,IEEE TRANSACTIONS ON MEDICAL IMAGING,2005,24(6):817- 820
    [58]G.Ku and L.H.Wang.Scanning thermoacoustic tomography in biological tissue.Medical Physics,2000,27:1195- 1202
    [59]Y.Xu,M.Xu and L.H.Wang.Exact frequency-domain reconstruction for thermoacoustic tomography—Ⅱ:Cylindrical geometry.IEEE Trans.on Medical Imaging,Jul 2002,21(7):829- 833
    [60]M.Xu,Y.Xu and L.H.Wang.Time-domain reconstruction algorithms and numerical simulations for thermo-acoustic tomography in various geometries.IEEE Trans.on Biomedical Engineering,Sep 2003,50(9):1086- 1099
    [61]Geng Ku and Lihong V.Wang.Scanning microwave-induced thermoacoustic tomography:signal,resolution and contrast.Med.Phys.2001,28(1):4- 10
    [62]G.Ku and L.H.V.Wang.Scanning thermo-acoustic tomography in biological tissues.Med.Phys.2000,27:1195- 1202
    [63]Xing Jin,Lihong V.Wang,Correction of the effects of acoustic heterogeneity on thermoacoustic tomography using transmission ultrasound tomography,Photons Plus Ultrasound:Imaging and Sensing 2006:The 7th Conference on Biomedical Thermoacoustics,Optoacoustics,and Acousto-optics
    [64]Kruger R A,Kiser J W,Miller K D,et al.Thermoacoustic CT:imaging principles.In:Alexander A,Oraevsky,eds.Biomedical optoacoustics.San Jose CA:Proc SPIE,2000,:150-159
    [65]R.A.Kruger,H.E.Reynolds,W.Kiser,et al..Thermoacoustic computed tomography for breast imaging.Radiology,Feb.1999,210(2):K06H
    [66]R.A.Kruger,W.L.Kiser Jr.,K.D.Miller and H.E.Reynolds.Thermoacoustic CT.2000 IEEE MTT-S Digest,2000:934- 936
    [67]William L.Kiser,Jr.,Robert A.Kruger.Thermoacoustic Computed Tomography - Limits to Spatial Resolution.SPIE,Feb 1999,3659:895- 905
    [68]Gang Wang and Xuezhi Zeng,Impact of dispersion in breast tissue on high-resolution microwave imaging for early breast tumor detection,IEEE Antennas and propagation society international symposium,2004,3:2452- 2455
    [69]Xuezhi Zeng and Gang Wang.Numerical study of microwave-induced thermo-acoustic effect for early breast cancer detection.IEEE Antennas and propagation society international symposium,2005,3A:839- 842
    [70]曾雪枝.早期乳腺癌的微波热致成像技术研究[硕士学位论文].镇江:江苏大学,2006,20-26
    [71]韦育森,杨国胜,朱新亚.微波热声成像弱信号预放大电路.医疗卫生装备.2006,27(12):11-12
    [72]李洪义,生物组织微波热声断层成像技术研究[博士学位论文].西安:第四军医大学,2004,115-130
    [73]G.Bindu,and K.T.Mathew,Microwave Characterization of Breast-phantom Materials,Microwave and Optical Technology Letters,2004,43(6):506- 508
    [74]W.T.Joines,Y.Zhang,C.Li,R.L.Jirtle,The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz,Am.Assoc.Phys.Med.,1994,21:547- 551
    [75]Mariya Lazebnik,Leah McCartney,Dijana Popovic,Cynthia B Watkins,Mary J Lindstrom,etc.,A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries,Phys.Med.,Biol.,2007,52(10):2637- 2656
    [76]Klemm,M.Craddock,I.Leendertz,J.Preece,A.and Benjamin,R.,Experimental and clinical results of breast cancer detection using UWB microwave radar,Antennas and Propagation Society International Symposium,2008.AP-S 2008.IEEE,2008:1- 4
    [77]王保义.电磁场在生物医学中的应用.北京:国防工业出版社,1990
    [78]E.Melan,H.Parkus,Warmespannungen infolge stationarer Temperaturfelder,Springer,Vienna,1953
    [79]刘超,超声层析成像的理论与实现[博士论文].杭州:浙江大学,2003,245-250
    [80]Chew W.C.,Waves and Field in Inhomogeneous Media,Van Nostrand Reinhold,New York,U.S.A,1992
    [81]金长善.超声工程.哈尔滨:哈尔滨工业大学出版社,1989
    [82]Kak A.C.,Malcolm Slaney.,Principles of Computerized Topographic Imaging,The Institute of Electronics Engineers,Inc.,New York,IEEE Press,1999
    [83]白净,医学超声成像机理,清华大学出版社,1998
    [84]Wells P.N.T.,Ultrasonic Imaging of the Human Body,reports on progress in physics,1999,62:671- 722
    [85]G.Bindu and K.T.Mathew,Characterization of benign and malignant breast tissue using 2-D microwave tomographic imaging,Microwave and optical technology letters,2007,49(10):2341- 2349
    [86]王海彬,牛中奇,人体对电磁脉冲吸收剂量的仿真研究,电波科学学报,2006,21(2):259- 265
    [87]R.L.Nasoni,S.C.Liew,P.G.Halverson,T.Bowen,Thermoacoustic images generated by a 2450MHz portable source and applicatior,IEEE 1985 Ultrasonics Symposium,1985,:899-904
    [88]U.S.patent,Ultrasound transducer for three-dimensional imaging,No.6102860,SSMSD:2003.1190432
    [89]袁希光,传感器技术手册,国防工业出版社,1986
    [90]M.Mitchell,G.Becker,P.Dey,J.Generotzky,S.K.Patch,Shielding for thermoacoustic tomography with RF excitation,Photons Plus Ultrasound:Imaging and Sensing 2008:the Ninth Conference on Biomedical Thermoacoustics,Opto-acoustics,and Acousto-optics,Proc.Of SPIE,2008,vol.6858
    [91]S.Celozzi M.Feliziani,EMP-coupling to twisted-wire cables,Electromagnetic Compatibility,1990.Symposium Record.,1990 IEEE International Symposium on,1990:85- 89
    [92]OPAl28,1986,Burr-Brown Corporation,PDS-653E
    [93]Op Amp circuit collection,National Semiconductor,Application Note 31,1978
    [94]BEREGRMAN L.,Ultrasound,National Defense Industrial Press,Beijing,1964:429
    [95]A.Rosenfeld and A.C.Kak,Digital Picture Processing(2nd Ed),Volume 1,Academic Press.New York,1982
    [96]王长清.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994
    [97]G.P.Chen,W.B.Yu,Z.Q.Zhao,Z.P.Nie,Q.H.Liu,The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror,Journal of Electromagnetic Waves and Applications,2008,22(18):1565- 1574
    [98]Qing Huo Liu,The Pseudospectral Time-Domain(PSTD) Algorithm for Acoustic Waves in Absorptive Media,Ultrasonics,Ferroelectrics and Frequency Control,IEEE Transactions on,1998,45(4):1044- 1056
    [99]Lang M,Noise reduction using an undecimated discrete wavelet transform.IEEE Signal Processing Letters,1996,3(1):10-12
    [100]潘泉,张磊,孟晋丽,张洪才.小波滤波方法及应用,北京:清华大学出版社,2005
    [101]Donoho D L.De-noising by soft-thresholding.IEEE Trans.Inform.Theory,1995,41(3):613-627
    [102]Stephane Mallat.信号处理的小波导引,北京:机械工业出版社,2002
    [103]孙延奎.小波分析及其应用,北京:机械工业出版社,2005
    [104]Donoho D L.De-noising by soft-thresholding.IEEE Trans.Inform.Theory,1995,41(3):613-627
    [105]GuoPing Chen,WanBao Yu,ZhiQin Zhao,ZaiPing Nie,Qing.H.Liu,The Design of Electromagnetically Induced Thermo-Acoustie System and the Signal Processing Using Wavelet Analysis with a Soft Thresholding Method,Acta Electronica Sinica,2008,36(6):1130- 1134
    [106]曲天书,戴逸松,王树勋.基于SURE无偏估计的自适应小波阈值去噪.电子学报,2002,30(2):266-268
    [107]Kak,A.C.,Computerized Tomography with X-Ray,Emission and Ultrasound Sources,Proceedings of IEEE,1979,67(9):1245- 1272
    [108]Kak,A.C.,Signal Processing of Broadband Pulsed Ultrasound:Measurement of Attenuation of Soft Biological Tissues,IEEE Transactions on Biomedical Engineering,1978,BME-25(4):No.4:321- 344.A.
    [109]Mueller R.K.,Mostafa Kaveh,and Glen Wade.Reconstructive Tomography and Applications to Ultrasonics,Proceedings of the IEEE,1979,67(4):1101- 1113
    [110]Lytle R.Jeffrey and Kris A.Dines,Iterative Ray Tracing Between Boreholes for Underground Image Reconstruction,IEEE Transactions on Geosciences and Remote Sensing,1980,GE-18(3):234- 239
    [111]Andersen A.H.and Kak A.C.,Digital Ray Tracing in Two-Dimensional Refractive Fields,Journal of Acoustics Society of America,1982,72(5):1593-1606
    [112]Raymond Luebbers,Li.Chen.FDTD Calculation of Radiation Patterns,Impedence and Gain for a Monopole Antenna on a Conducting Box.IEEE Trans.on Antennas and Propagation,1992,AP-40(12):1577- 1583
    [113]Jurgens T G.A Broadband Absorbing Boundary Condition for the FDTD Modeling of Circular Waveguides.IEEE Trans.On MTT-S,May.1995:35- 38
    [114]Goverdhanam K,Tentzeris E,Krumpholz M,Katehi L P B.An FDTD multigrid based on multiresolution analysis.IEEE Antennas and Propagat.Soc.Int.Syrmp.,vol.1,Baltimore,MD,July 1996:352- 355
    [115]D.H.Huang,C.K.Liao,C.W.Wei,P.C.Li,Simulations of optoacoustic wave propagation in light absorbing media using a finite-difference time-domain method,J.Acoust.Soc.Am.,2005,117(5):2795- 2801
    [116]Bengt Fomberg,A fast spectral algorithm for nonlinear wave equations with linear dispersion,Journal of Computational Physics,1999,155:456- 467
    [117]张洪欣,吕英华,贺鹏飞,PML-FDTD及总场-散射场区连接边界条件在三维柱坐标第下的实现及应用,微波学报,2004,20(3):19-26
    [118]Fan G-X,Liu Q H.A 3D PML-FDTD algorithm for simulating ground-penetrating radar on dispersive earth media.Presented at the 7th International Conference on Ground Penetrating Radar,Lawrence,KS,May 1998
    [119]孔繁敏,李康,刘新,郭毅峰,波动方程FDTD算法的PML吸收边界条件的实现与验证,微波学报,2004,20(1):1-5
    [120]黄斌科,蒋延生,汪文秉,关于完全匹配层吸收边界条件中差分格式的讨论,微波学报,2003,19(4):1-4
    [121]薛晓春,刘波,在FDTD计算中对连接边界条件及其编程思想的改进,数值计算与计算机应用,2004,3:210-219
    [122]王守东,声波方程完全匹配层吸收边界,石油地球物理勘探,2003,38(1):31-37
    [123]Anastasio Mark A.,Development and Analysis of Image Reconstruction Algorithms in Diffraction Tomography Ph.D.Dissertation,the University of Chicago,U.S.A.,2001
    [124]Katsevich,Theoretically exact filtered backprojection-type inversion algorithm for spiral CT,Siam J.Appl.Math.,2002,62(6):2012- 2026
    [125]S.Suzuki and S.Yamaguchi,Comparison between an image reconstruction method of filtering backprojection and the filtered backprojection method,Applied Optics,1988,27(14):2867- 2870
    [126]Stephen J,Norton and Melvin Linzer,Ultrasonic Reflectivity imaging in Three Dimensions:Exact inverse Scattering Solutions for Plane,Cylindrical,and Spherical Apertures,IEEE transactions on biomedical engineering,VOL.BME-28,February 1981(2):202- 220
    [127]Bin Guo,Luzhou Xu and Jian Li,Time reversal based microwave hyperthermia treatment of breast cancer,Microwave and optical technology letters,2006,47(4):335- 339
    [128]Mohammed Jainul Abedin and Ananda Sanagavarapu Mohan,UWB imaging for early breast cancer detection using time reversal MUSIC algorithm,Proceedings of Asia-Pacific Microwave Conference,2007
    [129]J.S.Kiln,H.C.Song,and W.A.Kuperman:Adaptive time-reversal mirror.J.Acoust.Soc.Amer.,2001,109:1817- 1825
    [130]Liliana Borcea,etc,imaging and time reversal in random media,Inverse Problems,2002,18:1247- 1279
    [131]Chen Y F,Gunawan E,Kay S L,et al.Time-reversal ultrawideband breast imaging:pulse design criteria considering multiple tumors with unknown tissue properties.IEEE Trans Antennas Propag,2008,56(9):3073- 3077
    [132]Fink M.Time reversal of ultrasonic fields:part Ⅰ.Basic principles.IEEE Trans UFFC,1992,39(5):555- 567
    [133]JP Fouque,J Gamier,G Papanicolaou,et al.Wave propagation and time reversal in randomly layered media.Berlin Heidelberg NewYork:Springer press,2007,120
    [134]M.Fink,Time-reversed acoustics,Physics Today,1997:34-40
    [135]G.Bal and L.Ryzhik,Time reversal and refocusing in random environment,SIAM Appl.Math.,2003,63:1375-1498
    [136]Kim Hwa Lim,Joon-Ho Lee,and Qing Huo Liu,Thermo-acoustic Tomography Modeling with Spectral Element Method,Medical Physics,2008,35(1):4-13
    [137]Cooley J W,Tukey J W.Algorithm for the machine computation of complex Fourier series.Math.Comput,1965,19:297-301
    [138]Nguyen N,Liu Q h.The regular fourier matrices and nonuniform fast fourier transforms.SIAM J.SCI.Comput,1999,21(1):283-293
    [139]张彦仲,沈乃汉.快速傅立叶变换及沃尔什变换.北京:航空工业出版社,1989
    [140]威佛H J著,王中德,张辉译.离散和连续傅立叶分析理论.北京:北京邮电学院出版社,2005
    [141]孙仲康.快速傅立叶变换及其应用.北京:人民邮电出版社,1982
    [142]Liu Q.H.,The PSTD algorithm:a time-domain method requiring only two cells per wavelenth.Microwave Opt.Tech.Lett.,1997,10:158 -165
    [143]Liu Q.H.,Fan G X.A frequency-dependent PSTD algorithm for general dispersive media.IEEE Microwave Guided Wave Lett.,1999,9(2):51-53
    [144]Liu Q.H.,Fan G.-X.Simulations of GPR in dispersive media using the PSTD algorithm.IEEE Trans.Geosci.Remote Sensing,1999,37(5):2317 -2324
    [145]Xu X M,Liu Q H.Fast spectral-domain method for acoustic scattering problems.IEEE Trans.Ultrason.,Ferroelect.,Freq.Contr.,March 2001,48(2):1-6
    [146]Liu Q H.A new numerical method for large-scale complex media:The PSTD algorithm.Proc.17th Intl.Geoscience & Remote Sensing Symposium(IGARSS'97),Singapore,August,1997
    [147]Liu Q H.Using GPR and seismic reflection measurements to characterize buried objects:Large-scale simulations.Proc.17th Intl.Geoscience & Remote Sensing Symposium(IGARSS'97),Singapore,August 1997
    [148]Liu Q.H.,Li Y.-L,Liao J C.The PSTD algorithm:a fast and accurate method for electronic package characterization.Electrical Performance of Electronic Packaging Conference,San Jose,CA,October 1997
    [149]Liu Q.H.,Fan G.-X.A PSTD algorithm for general dispersive media and its applications to GPR simulations.Intl.Geoscience Remote Sensing Symposium(IGARSS'98),Seattle,WA,July 1998
    [150]Krumpholz M and Linda,Katehi P B.MRTD:New Time-Domain Schemes Based on Multiresolution Analysis.IEEE Trans.Microwave Theory Tech.,1996,44(4):555-571
    [151]G.Wojcik,Fomberg,B.Waag,R.Carcione,L.Mould,J.Nikodym,L.Driscoll,T.,Pseudo-spectral methods for large-scale bioacoustic models,IEEE Ultrasonics symposium,1997,2:1501-1507
    [152]TD Mast,Empirical relationships between acoustic parameters in human soft tissues,Acoustics Research Letters Online,2000,1(37):37-43
    [153]S.S.Chaudhary,R.K.Mishra,A.Swarup,and J.M.Thomas.Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies.Indian J.Biochem.Biophys.,1984,21:76-79
    [154] ALAN R. SELFRIDGE, Approximate Material Properties in Isotropic Materials, Sonics and Ultrasonics, IEEE Transactions on, 1985, 32(3): 381-394
    [155] C. Gabriel, S. Gabriel, and E. Corthout. The dielectric properties of biological tissues:Ⅰ. Literature survey. Phys. Med. Biol, 1996,41: 2231-2249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700