用户名: 密码: 验证码:
无线磁弹性化学/生物传感器的研制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于无线磁弹性化学/生物传感器的研制及其在生化分析中的应用研究。在外加交变磁场中,磁性膜片受磁场激励产生磁矩,将磁能转换为机械能,并产生沿长度方向的伸缩振动,即磁致伸缩(magnetostrictive)。当外加交变磁场的频率与磁性膜片的机械振动频率相等时,磁片产生共振,此时振幅最大,对应的振动频率为磁性膜片的共振频率。当磁性膜片传感器的表面性质(质量负载、粘弹性等)发生变化时,其共振频率随之发生改变。由于传感器材料本身是磁性的,其伸缩振动产生磁通,产生的磁通可由检测线圈探测到,信号经放大后由外部仪器测定。磁弹性传感器中信号的激发与传送是通过磁场进行的,传感器与检测仪器之间不需任何的物理连接,属于无线无源(wireless, passive)传感器。磁弹性传感器无线无源的特征使其在活体、在体及无损检测等领域具有广泛的应用前景。基于上述原理,本论文主要进行了以下几方面的研究工作:
     (1)测定体液pH用无线磁弹性传感器研制:基于pH敏感聚合物,制备了无线磁弹性pH传感器;研究了pH聚合物组成对传感器稳定性和响应灵敏度的影响,考察了体液中干扰物对传感器响应的影响。随溶液pH变化,pH敏感聚合物在碱性溶液中膨胀,酸性溶液中收缩,从而引起传感器表面质量负载和共振频率发生变化。基于此构建的磁弹性pH传感器的共振频率随体液pH升高而下降,在pH 5 ~ 8之间呈近似线性响应,响应灵敏度为200 Hz/pH,可准确测定0.1 pH的变化。对体液pH体外测试表明,制备的pH传感器有望开发为可进行活体在体分析的无线磁弹性传感装置。
     (2)测定血糖用无线磁弹性传感器研制:基于上一节磁弹性pH传感器,进一步制备了无线磁弹性葡萄糖生物传感器;研究了传感器对体外血糖测定的稳定性、生物相容性及响应灵敏度。采用pH敏感聚合物膜对酶催化反应进行放大以提高传感器的灵敏度。在葡萄糖氧化酶(GOD)和过氧化氢酶(catalase)的共同存在下,催化氧化葡萄糖生成葡萄糖酸,引起pH聚合物收缩,导致传感器表面质量负载减小、传感器共振频率增加。制备的无线磁弹性葡萄糖传感器的共振频移随血糖浓度的升高而上升,在血糖浓度为2.5 ~ 20 mM之间,传感器的响应是线性、可逆的,对血糖的检测限为1.2 mM。传感器对血糖体外测定结果表明,制备的无线磁弹性葡萄糖生物传感器有望应用于活体在体分析,有潜力作为植入传感器实现对血糖无线监测。
     (3)无线磁弹性双酶葡萄糖传感器研制:基于辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOD)双酶层,制备了无线磁弹性双酶葡萄糖生物传感器。利用酶的催化沉淀反应对传感器的响应进行质量放大以提高其灵敏度。葡萄糖氧化酶催化氧化葡萄糖产生葡萄糖酸和过氧化氢(H2O2),产生的过氧化氢在辣根过氧化物酶存在下,催化氧化3,3′,5,5′-四甲基联苯氨(TMB)生成沉淀。产生的沉淀沉积在传感器表面,导致传感器表面质量负载增加,传感器共振频率下降。基于此构建的无线磁弹性双酶葡萄糖传感器的共振频移随葡萄糖浓度的升高而上升,在葡萄糖浓度为5 ~ 50 mM范围内呈线性响应,对葡萄糖的检测限为2 mM。
     (4)无线磁弹性微生物传感器研制:以预聚合了聚氨酯膜的磁性膜片为敏感元件,制备了无线磁弹性微生物传感器;研究了微生物生长导致培养基性质(如黏度、密度等)改变对传感器共振频率的影响,考察了细菌在传感器表面吸附对传感器响应的贡献。基于药物对微生物生长的抑制,利用无线磁弹性微生物传感器进行菌株药敏试验研究,依据抗菌药物对细菌的抑制作用可进行抗生素的药效评测。微生物生长时消耗培养基,将大分子的蛋白质分解为小分子导致培养液粘弹性发生变化,同时微生物在传感器表面的吸附引起质量变化。通过测定微生物培养时传感器共振频率和振幅的变化对微生物进行快速检测,获得了绿脓杆菌(P. areuginosa)和结核杆菌(M. tuberculosis)的生长曲线,考察了不同细菌特征生长曲线的差异,据此可望对细菌进行初步的分型。利用石英晶体微天平(QCM)、显微成像等手段研究了培养液性质变化和细菌吸附对传感器共振频率的影响。传感器对绿脓杆菌和结核杆菌检测浓度范围分别为103 ~ 108和104 ~ 109 cells/mL,相应检测限分别为103和104 cells/mL。基于此,研究了可用于细菌早期诊断和快速分析的无线磁弹性传感检测新方法。
     (5)无线磁弹性传感器用于细菌生物被膜形成机制的研究。基于绿脓杆菌(P. areuginosa)易于在固体界面粘附且形成细菌生物被膜(biofilms)的特性,利用无线磁弹性传感器初步研究了细菌生物被膜的形成机制。预聚合了聚氨酯膜的磁性膜片作为敏感元件,同时测定了细菌生物被膜形成过程中传感器共振频率和振幅的变化。细菌生物被膜的形成改变了传感器表面的粘弹性和质量负载。由磁弹性传感器共振信号的变化,可探测细菌生物被膜的形成过程及生物被膜的成熟。无线磁弹性传感器是基于磁致伸缩原理设计的,通过改变激励信号的强度,考察了细菌生物被膜在传感器表面的粘附强度,形成的细菌生物被膜在传感器表面粘附牢固。
This dissertation is devoted to the fabrication of wireless magnetoelastic bio/chemical sensors and their applications in bio/chemical analysis. In response to a time-varying AC magnetic field, a magnetoelastic ribbon efficiently couples and converts magnetic energy into mechanical energy. The elastic energy mechanically deforms the sensor, causing it mechanically vibrate along its length. When the frequency of the applied AC magnetic field is equal to the mechanical resonance frequency of the ribbon, the vibration amplitude is maximal and the sensor vibrates at its characteristic resonance frequency that shifts in response to mass loading. Since the magnetoelastic material is magnetostrictive, the vibration of the sensor in turn generates a time varying magnetic flux, which can be remotely measured with a set of pick-up coils. The excitation and transmission of signals of magnetoelastic sensor are carried out remotely by magnetic field. No direct physical connections between the sensor and the detection system are required, nor is any internal power required. The wireless nature of the magnetoelastic sensor makes it a powerful candidate for in situ and in vivo analysis. The details of work are summarized as follows:
     (1) A wireless magnetoelastic sensor for determination of body fluid acidity is developed. The magnetoelastic pH sensor was fabricated by coating a layer of pH-sensitive polymer on a magnetostrictive ribbon, which pre-coated with a layer of polyurethane film. The effects of composition of pH-sensitive polymer on sensor stability and sensitivity, and the interferents existing in physiological fluid on sensors responses were investigated. The sensor transduction signal is derived from the pH-polymer mass differences between its relatively shrunken state in acidic solution and relatively swollen state in alkaline solution. The shift in the resonant frequency of magnetoelastic pH sensor is linear and reversible between pH 5 and 8 with a sensitivity of 200 Hz/pH and a measurement resolution of 0.1 pH. The proposed magnetoelastic pH sensor platform offers a great opportunity for developing a useful in vivo and in situ physiological pH measurement technology.
     (2) A wireless magnetoelastic glucose biosensor in blood is developed. The glucose biosensor was fabricated based on magnetoelastic pH sensor (pH-polymer used as sensing film). The magnetoelastic biosensor was fabricated by coating the ribbon-like, magnetoelastic sensor with a pH-sensitive polymer and a biolayer of glucose oxidase (GOD) and catalase. pH-sensitive polymer is used as a sensing film to amplify the mass change associated with enzyme biocatalytic reaction and to increase the sensor sensitivity. The GOD-catalyzed oxidation of glucose produces gluconic acid, inducing the pH-responsive polymer to shrink, which in turn decreases the sensor mass loading and increases the resonant frequency. At glucose concentration range of 2.5 ~ 20.0 mM, the biosensor responses are reversible and linear, with a detection limit of 1.2 mM. The proposed magnetoelastic glucose biosensor can potentially be used as a planted sensor and applied to in vivo and in situ measurement of glucose concentrations in body blood.
     (3) A wireless magnetoelastic bienzyme glucose biosensor is described. The bienzyme biosensor was fabricated by first coating the magnetoelastic-ribbon with horseradish peroxidase (HRP) and upon it a layer of glucose oxidase (GOD). Sensor sensitivity is increased by amplifying the mass change associated with enzyme reaction by biocatalytic precipitation. The GOD catalyzed oxidation of glucose produces gluconic acid and H2O2, and the generated H2O2 biocatalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to insoluble product in the presence of HRP. The insoluble product accumulated on the sensor surface, which resulted in the increasing in sensor mass loading and decreasing in resonant frequency. And the extent of resulting sensor resonant frequency changing, correlated with the amount of glucose. The biosensor response is linear in the range of glucose concentrations of 5 ~ 50 mM, with a detection limit of 2 mM. The biosensor is applied to determine glucose concentration in urine sample.
     (4) A wireless magnetoleastic microorganism sensor is developed for the early diagnosis and rapid detection of bacteria. The microorganism sensor is fabricated by coating a magnetoelastic-ribbon with a polyurethane protecting film. Bacteria consume nutrients from the culture medium in growing and reproducing process, and produces small molecules, with a corresponding change in viscosity of culture medium. The resonant frequency changes of magnetoelastic sensor resulted from the properties changes of a liquid culture medium and bacteria adhesion to the sensor surface. The bacteria concentration can be quantified based on the changes in resonant frequency and amplitude during culture course. Pseudomonas aeruginosa (P. aeruginosa) and Mycobacterium Tuberculosis (M. Tuberculosis) were selected for the analytical objects. Bacteria can be identified from their characteristic growth curve since different microorganisms show different response profiles to their culture medium. The effects of change in culture medium properties and bacteria adhesion on sensor resonant frequency were investigated with quartz crystal microbalance (QCM), microscopy imaging. The drug-resistance on bacteria growth in culture medium was evaluated based on this proposed method. Using the described technique we are able to directly quantify P. aeruginosa and M. Tuberculosis concentrations in the range of 103 to 108 and 104 to 109 cells/mL, and with a detection limit of 103 and 104 cells/mL, respectively.
     (5) A wireless, passive magnetoelastic sensing device is presented for the in situ, continuous, and real-time evaluation of the formation of Pseudomonas aeruginosa (P. aeruginosa) biofilms. The polyurethane-coated magnetoelastic-ribbon is used as a transducer for monitoring of P. aeruginosa biofilm formation. In a flowing system, both the resonant frequency and amplitude of the sensor are wirelessly monitored through magnetic field telemetry. Changes in the resonant characteristics of the sensor provide information on the biofilm growth characteristics. The adhesion strength of the biofilm was evaluated by increasing the applied excitation voltage, showing that a tightly attached film was formed.
引文
[1] del Moral A, Algarabel P A, Arnaudas J I, et al. Magnetostriction effects. Journal of Magnetism and Magnetic Materials, 2002, 242-245(2): 788–796
    [2]田民波.磁性材料.北京:清华大学出版社,2001,4–5
    [3]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003,1–32
    [4]钟文定.铁磁学.北京:科学出版社,2000,360–361
    [5]宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994,377–378
    [6]陈艾.敏感材料与传感器.北京:化学工业出版社,2004,279–339
    [7] Koon N C, Williams C M, Das B N. Giant magnetostriction materials. Journal of Magnetism and Magnetic Materials, 1991, 100(1-3): 173–185
    [8] Li Q, Zhang Y L, Yuan R Z, et al. Growth of Tb0.27Dy0.73Fe2 magnetostrictive single crystals. Journal of Crystal Growth, 1993, 128(1-4): 1092–1094
    [9] Uchida H H, Wada M, Matsumura Y, et al. Preparation of films of (Tb, Dy) Fe2 giant magnetostrictive alloy by ion beam sputtering process and their characterization. Thin Solid Films, 1996, 281-282(1-2): 503–506
    [10] Oster J, Wiehl L, Adrian H, et al. Magnetic and magnetoelastic properties of epitaxial (211)-oriented RFe2 (R=Dy, Tb) thin films. Journal of Magnetism and Magnetic Materials, 2005, 292: 164–177
    [11] Carabias I, Martinez A, Garcia M A, et al. Magnetostrictive thin films prepared by RF sputtering. Journal of Magnetism and Magnetic Materials, 2005, 290-291(2): 823–825
    [12] Lim S H, Choi Y S, Han S H, et al. Magnetostriction of Sm–Fe and Sm–Fe–B thin films fabricated by RF magnetron sputtering. Journal of Magnetism and Magnetic Materials, 1998, 189(1): 1–7
    [13] Miyazaki T, Saito T, Fujino Y. Magnetostrictive properties of sputtered binary Tb-Fe and pseudo-binary (Tb-Dy)-Fe alloy films. Journal of Magnetism and Magnetic Materials, 1997, 171(3): 320–328
    [14] Choi Y S, Lee S R, Han S H, et al. The magnetic properties of Tb-Fe-(B) thin films fabricated by rf magnetron sputtering. Journal of Alloys and Compounds, 1997, 258(1-2): 155–162
    [15] Hernando A, Vazquez M, Barandiaran J M. Metallic glasses and sensing applications. Journal of Physics E: Scientific Instruments, 1988, 21(12):1129–1139
    [16] Modzelewski C, Savage H T, Kabacoff L T, et al. Magnetomechanical coupling and permeability in transversely annealed Metglas 2605 alloys. IEEE Transactions on Magnetics, 1981, 17(6): 2837–2839
    [17] O'Handley R C. Modern Magnetic Materials: Principles and Applications. New York: John Wiley & Sons, 2000
    [18] Grimes C A, Mungle C S, Zeng K F, et al. Wireless Magnetoelastic Resonance Sensors: A Critical Review. Sensors, 2002, 2(7): 294–313
    [19]吴仕辉.磁弹性无线生物传感器在生化分析中的应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2006
    [20]高先娟.无线磁弹性生物传感器制备与应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2007
    [21] Puckett L G. An integrated approach to the development of sensing systems for clinical and pharmaceutical applications: [dissertation]. Kentucky: University of Kentucky, 2003
    [22] Doherty S A. Swellable polymer substrates for use in magnetochemical and optical chemical sensing: [dissertation]. New Hampshire: University of New Hampshire, 2000
    [23]姚守拙.化学与生物传感器.北京:化学工业出版社,2006,79–124
    [24] Grimes C A, Cai Q Y, Ong K G, et al. Environmental monitoring using magnetoelastic sensors. In: Proceedings of SPIE. San Diego, 2000, 4097: 123–133
    [25] Stoyanov P G, Grimes C A. A remote query magnetostrictive viscosity sensor. Sensors and Actuators A: Physical, 2000, 80(1): 8–14
    [26] Zeng K F, Ong K G, Mungle C, et al. Time domain characterization of oscillating sensors: Application of frequency counting to resonance frequency determination. Review of Scientific Instruments, 2002, 73(12): 4375–4380
    [27] Loiselle K T, Grimes C A. Viscosity measurements of viscous liquids using magnetoelastic thick-film sensors. Review of Scientific Instruments, 2000, 71(3): 1441–1446
    [28] Zeng K F, Paulose M, Ong K G, et al. Frequency-domain characterization of magnetoelastic sensors: a microcontroller-based instrument for spectrum analysis using a threshold-crossing counting technique. Sensors and Actuators A: Physical, 2005, 121(1): 66–71
    [29] Grimes C A, Ong K G, Loiselle K, et al. Magnetoelastic sensors for remotequery environmental monitoring. Smart Materials and Structures, 1999, 8(5): 639–646
    [30] Grimes C A, Kouzoudis D, Mungle C. Simultaneous measurement of liquid density and viscosity using remote query magnetoelastic sensors. Review of Scientific Instruments, 2000, 71(10): 3822–3824
    [31] Jain M K, Schmidt S, Grimes C A. Magneto-acoustic sensors for measurement of liquid temperature, viscosity, and density. Applied Acoustics, 2001, 62(8): 1001–1011
    [32] Jain M K, Schmidt S, Mungle C, et al. Measurement of Temperature and Liquid Viscosity Using Wireless Magneto-Acoustic/Magneto-Optical Sensors. IEEE Transactions on Magnetics, 2001, 37(4): 2767–2769
    [33] Puckett L G, Barrett G, Kouzoudis D, et al. Monitoring blood coagulation with magnetoelastic sensors. Biosensors and Bioelectronics, 2003, 18(5-6): 675–681
    [34] Puckett L G, Lewis J K, Urbas A, et al. Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis. Biosensors and Bioelectronics, 2005, 20(9): 1737–1743
    [35] Zeng K F, Roy S C, Grimes C A. Quantification of Blood Clotting Kinetics I: Determination of Activated Clotting Times as a Function of Heparin Concentration Using Magnetoelastic Sensors. Sensor Letters, 2007, 5(2): 439–445
    [36] Roy S C, Ong K G, Zeng K F, et al. Quantification of Blood Clotting Kinetics II: Thromboelastograph Analysis and Measurement of Erythrocyte Sedimentation Rate Using Magnetoelastic Sensors. Sensor Letters, 2007, 5(2): 446–454
    [37] Grimes C A, Stoyanov P G, Kouzoudis D, et al. Remote query pressure measurement using magnetoelastic sensors. Review of Scientific Instruments, 1999, 70(12): 4711–4714
    [38] Kouzoudis D, Grimes C A. Frequency response of magnetoelastic sensors to stress and atmospheric pressure. Smart Materials and Structures, 2000, 9(6): 885–889
    [39] Grimes C A, Kouzoudis D. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors. Sensors and Actuators A: Physical, 2000, 84(3): 205–212
    [40] Jain M K, Grimes C A. A Wireless Magnetoelastic Micro-Sensor Array for Simultaneous Measurement of Temperature and Pressure. IEEE Transactions on Magnetics, 2001, 37(4): 2022–2024
    [41] Jain M K, Cai Q Y, Grimes C A. A wireless micro-sensor for simultaneous measurement of pH, temperature, and pressure. Smart Materials and Structures, 2001, 10(2): 347–353
    [42] Ludwig A, Tewes M, Glasmachers S, et al. High-frequency magnetoelastic materials for remote-interrogated stress sensors. Journal of Magnetism and Magnetic Materials, 2002, 242-245(2): 1126–1131
    [43] Biekowski A, Szewczyk R. The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors. Sensors and Actuators A: Physical, 2004, 113(3): 270–276
    [44] Ong K G, Grimes C A. Magnetically Soft Higher Order Harmonic Stress and Temperature Sensors. IEEE Transactions on Magnetics, 2003, 39(5): 3414–3416
    [45] Wang G, Wang M L, Zhao Y, et al. Application of magnetoelastic stress sensors in large steel cables. Smart Structures and Systems, 2006, 2(2): 155–169
    [46] Oduncu H, Meydan T. A novel method of monitoring biomechanical movements using the magnetoelastic effect. Journal of Magnetism and Magnetic Materials, 1996, 160: 233–236
    [47] Meydan T, Oduncu H. Enhancement of magnetorestrictive properties of amorphous ribbons for a biomedical application. Sensors and Actuators A: Physical, 1997, 59(1-3): 192–196
    [48] Pina E, Burgos E, Prados C, et al. Magnetoelastic sensor as a probe for muscular activity: An in vivo experiment. Sensors and Actuators A: Physical, 2001, 91(1-2): 99–102
    [49] Germano R, Lanotte L. Application of magnetoelastic waves for sensors of displacement. Sensors and Actuators A: Physical, 1997, 59(1-3): 337–341
    [50] Germano R, Ausanio G, Iannotti V, et al. Direct magnetostriction and magnetoelastic wave amplitude to measure a linear displacement. Sensors and Actuators A: Physical, 2000, 81(1-3): 134–136
    [51] Hison C, Ausanio G, Barone A C, et al. Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm. Sensors and Actuators A: Physical, 2005, 125(1): 10–14
    [52] Ausanio G, Barone A C, Hison C, et al. Magnetoelastic sensor application in civil buildings monitoring. Sensors and Actuators A: Physical, 2005, 123-124(23): 290–295
    [53] Byd?ovsky J, Kraus L, ?vec P, et al. Magnetoelastic strain sensors for theoutdoors application. Journal of Magnetism and Magnetic Materials, 2004, 272-276(1): E1743–E1745
    [54] Kraus L, Fendrych F, ?vec P, et al. Cobalt-rich amorphous ribbons for strain sensing in civil engineering. Journal of Optoelectronics and Advanced Materials, 2002, 4(2): 237–243
    [55] Schmidt S, Grimes C A. Characterization of nano-dimensional thin-film elastic moduli using magnetoelastic sensors. Sensors and Actuators A: Physical, 2001, 94(3): 189–196
    [56] Schmidt S, Grimes C A. Elastic Modulus Measurement of Thin Films Coated onto Magnetoelastic Ribbons. IEEE Transactions on magnetics, 2001, 37(4): 2731–2733
    [57] Livingston J D. Magnetomechanical properties of amorphous metals. Physica Status Solidi (A) Applied Research, 1982, 70(2): 591–596
    [58] Mungle C. Optical detection of magnetoelastic sensors and the variable temperature response of the resonant frequency: [dissertation]. Kentucky: University of Kentucky, 2001
    [59] Mungle C, Grimes C A, Dreschel W R. Magnetic field tuning of the frequency–temperature response of a magnetoelastic sensor. Sensors and Actuators A: Physical, 2002, 101(1-2): 143–149
    [60] Ong K G, Mungle C S, Grimes C A. Control of a Magnetoelastic Sensor Temperature Response by Magnetic Field Tuning. IEEE Transactions on Magnetics, 2003, 39(5): 3319–3321
    [61] Jain M K, Schmidt S, Ong K G, et al. Magnetoacoustic remote query temperature and humidity sensors. Smart Materials and Structures, 2000, 9(4): 502–510
    [62] Grimes C A, Kouzoudis D, Dickey E C, et al. Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity. Journal of Applied Physics, 2000, 87(9): 5341–5343
    [63] Kouzoudis D, Grimes C A. Remote Query Fluid-Flow Velocity measurement Using Magnetoelastic Thick-Film Sensors. Journal of Applied Physics, 2000, 87(9): 6301–6303
    [64] Cai Q Y, Cammers-Goodwin A, Grimes C A. A wireless, remote query magnetoelastic CO2 sensor. Journal of Environmental Monitoring, 2000, 2(6): 556–560
    [65] Cai Q Y, Jain M K, Grimes C A. A wireless, remote query ammonia sensor. Sensors and Actuators B: Chemical, 2001, 77(3): 614–619
    [66] Zorn M E, Rahne K A, Tejedor-Tejedor M I, et al. Characterization of Gas-Phase Adsorption on Metal Oxide Thin Films Using a Magnetoelastic Resonance Microbalance. Analytical Chemistry, 2003, 75(22): 6223–6230
    [67] Zhang R, Tejedor M I, Anderson M A, et al. Ethylene detection using nanoporous PtTiO2 coatings applied to magnetoelastic thick films. Sensors, 2002, 2(8): 331–338
    [68] Giannakopoulos I G, Kouzoudis D, Grimes C A, et al. Synthesis and Characterization of a Composite Zeolite-Metglas Carbon Dioxide Sensor. Advanced Functional Materials, 2005, 15(7): 1165–1170
    [69] Xu X W, Wang J, Long Y C. Zeolite-based Materials for Gas Sensors. Sensors, 2006, 6(12): 1751–1764
    [70] Cai Q Y, Grimes C A. A remote query magnetoelastic pH sensor. Sensors and Actuators B: Chemical, 2000, 71(1-2): 112–117
    [71] Cai Q Y, Grimes C A. A salt-independent pH sensor. Sensors and Actuators B: Chemical, 2001, 79(2-3): 144–149
    [72] Ruan C M, Zeng K F, Grimes C A. A mass-sensitive pH sensor based on a stimuli-responsive polymer. Analytica Chimica Acta, 2003, 497(1–2): 123–131
    [73] Ruan C M, Ong K G, Mungle C, et al. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sensors and Actuators B: Chemical, 2003, 96(1-2): 61–69
    [74] Cai Q Y, Zeng K F, Ruan C M, et al. A Wireless, Remote Query Glucose Biosensor Based on a pH-Sensitive Polymer. Analytical Chemistry, 2004, 76(14): 4038–4043
    [75] Gao X J, Yang W Y, Pang P F, et al. A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B: Chemical, 2007, 128(1): 161–167
    [76] Yang W Y, Pang P F, Gao X J, et al. Detection of Lactose in Milk Samples Using a Wireless Multi-Enzyme Biosensor. Sensor Letters, 2007, 5(2): 419–424
    [77] Zourob M, Ong K G, Zeng K F, et al. A wireless magnetoelastic biosensor for the direct detection of organophosphorus pesticides. Analyst, 2007, 132(4): 338–343
    [78] Grimes C A, Stoyanov P G, Liu Y C, et al. A magnetostatic-coupling based remote query sensor for environmental monitoring. Journal of Physics D:Applied Physics, 1999, 32(12): 1329–1335
    [79] Ong K G, Paulose M, Jain M K, et al. Magnetism-Based Remote Query Glucose Sensors. Sensors, 2001, 1(5): 138–147
    [80] Ruan C M, Zeng K F, Varghese O K, et al. A magnetoelastic bioaffinity-based sensor for avidin. Biosensors and Bioelectronics, 2004, 19(12): 1695–1701
    [81] Ong K G, Leland J M, Zeng K F, et al. A rapid highly-sensitive endotoxin detection system. Biosensors and Bioelectronics, 2006, 21(12): 2270–2274
    [82] Ers?z A, Ball J C, Grimes C A, et al. Characterization of Electrochemically Deposited Polypyrrole Using Magnetoelastic Material Transduction Elements. Analytical Chemistry, 2002, 74(16): 4050–4053
    [83] Bouropoulos N, Kouzoudis D, Grimes C A. The real-time, in situ monitoring of calcium oxalate and brushite precipitation using magnetoelastic sensors. Sensors and Actuators B: Chemical, 2005, 109(2): 227–232
    [84] Gao X J, Ge S T, Cai Q Y, et al. Kinetic study on the interaction between tannin and bovine serum albumin with a wireless magnetoelastic biosensor. Sensors and Actuators B: Chemical, 2008, 129(2): 929–933
    [85] Ball J C, Puckett L G, Bachas L G. Covalent Immobilization ofβ-Galactosidase onto a Gold-Coated Magnetoelastic Transducer via a Self-Assembled Monolayer: Toward a Magnetoelastic Biosensor. Analytical Chemistry, 2003, 75(24): 6932–6937
    [86] Wu S H, Cai Q Y, Grimes C A. Kinetic Assay of Trypsin with a Wireless Magnetoelastic Sensor. Sensor Letters, 2006, 4(2): 160–164
    [87] Wu S H, Zhu Y, Cai Q Y, et al. A wireless magnetoelasticα-amylase sensor. Sensors and Actuators B: Chemical, 2007, 121(2): 476–481
    [88] Wu S H, Gao X J, Cai Q Y, et al. A wireless magnetoelastic biosensor for convenient and sensitive detection of acid phosphatase. Sensors and Actuators B: Chemical, 2007, 123(2): 856–859
    [89] Gao X J, Pang P F, Wu S H, et al. Acid Phosphatase Assay with a Wireless Magnetoelastic Biosensor. Analytical Letters, 2007, 40(1): 139–150
    [90] Ruan C M, Zeng K F, Varghese O K, et al. Magnetoelastic Immunosensors: Amplified Mass Immunosorbent Assay for Detection of Escherichia coli O157:H7. Analytical Chemistry, 2003, 75(23): 6494–6498
    [91] Ruan C M, Zeng K F, Varghese O K, et al. A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosensors and Bioelectronics, 2004, 20(3): 585–591
    [92] Shankar K, Zeng K F, Ruan C M, et al. Quantification of ricin concentrations in aqueous media. Sensors and Actuators B: Chemical, 2005, 107(2): 640–648
    [93] Ruan C M, Varghese O K, Grimes C A, et al. A Magnetoelastic Ricin Immunosensor. Sensor Letters, 2004, 2(2): 138–144
    [94] Guntupalli R, Hu J, Lakshmanan R S, et al. A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Biosensors and Bioelectronics, 2007, 22(7): 1474–1479
    [95] Guntupalli R, Lakshmanan R S, Hu J, et al. A. Rapid and sensitive magnetoelastic biosensors for the detection of Salmonella typhimurium in a mixed microbial population. Journal of Microbiological Methods, 2007, 70(1): 112–118
    [96] Lakshmanan R S, Guntupalli R, Hu J, et al. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. Journal of Microbiological Methods, 2007, 71(1): 55-60
    [97] Lakshmanan R S, Guntupalli R, Hu J, et al. Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sensors and Actuators B: Chemical, 2007, 126(2): 544–550
    [98] Wan J H, Johnson M L, Guntupalli R, et al. Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sensors and Actuators B: Chemical, 2007, 127(2): 559–566
    [99] Wan J H, Shu H H, Huang S C, et al. Phage-Based Magnetoelastic Wireless Biosensors for Detecting Bacillus Anthracis Spores. IEEE Sensors Journal, 2007, 7(3): 470–477
    [100] Ong K G, Zeng K F, Yang X P, et al. Quantification of Multiple Bioagents With Wireless, Remote-Query Magnetoelastic Microsensors. IEEE Sensors Journal, 2006, 6(3): 514–522
    [101] Yang X P, Ong K G, Dreschel W R, et al. Design of a Wireless Sensor Network for Long-term, In-Situ Monitoring of an Aqueous Environment. Sensors, 2002, 2(11): 455–472
    [102] Meeks S M, Hill J C. Magnetic boundary conditions for metallic glass piezomagnetic transducers. Journal of the Acoustical Society of America, 1983, 74(5): 1623–1626
    [103] O’Dell T H. Measurement of magnetomechanical coupling factor in amorphous ribbons. Physica Status Solidi (A) Applied Research, 1982, 74(2): 565–572
    [104] Aharoni A. Demagnetizing factors for rectangular ferromagnetic prisms. Journal of Applied Physics, 1998, 83(6): 3432–3434
    [105] Wun-Fogle M, Savage H T, Kabacoff L T, et al. Magnetoelastic effects in amorphous wires and amorphous ribbons with nonmagnetic thin-film coatings. Journal of Applied Physics, 1988, 64(10): 5405–5407
    [106] Savage H T, Spano M L. Theory and application of highly magnetoelastic Metglas? 2605SC. Journal of Applied Physics, 1982, 53(11): 8092–8097
    [107] Brouha M, van der Borst J. The effect of annealing conditions on the magnetomechanical properties of Fe-B-Si amorphous ribbons. Journal of Applied Physics, 1979, 50(11): 7594–7596
    [108] Soyka V, Kraus L, Zaveta K, et al. Magnetoelastic properties of stress/field annealed Fe80Cr2B14Si14 amorphous alloy. Journal of Magnetism and Magnetic Materials, 1999, 196: 262–263
    [109] Price M H, Overshott K J. The vibration of initial permeability of amorphous ribbons with frequency and annealing conditions. IEEE Transactions on Magnetics, 1983, 19(5): 1931–1933
    [110] Anderson P M. Magnetomechanical couplingΔE effect and permeability in FeSiB and FeNiMoB alloys. Journal of Applied Physics, 1982, 53(11): 8101–8103
    [111]谢勤.谁是健康的大敌:酸性体质是百病之源.广州:广东科技出版社, 2005
    [112] Maas A H J. pH Determination of body fluids with a micro glass electrode and a saturated KCl bridge in the cell. Analytica Chimica Acta, 1970, 28(3): 373–390
    [113] Maas A H J. pH determination in body fluids using a cell with an isotonic sodium chloride bridge. Journal of applied Physiology, 1971, 30(2): 248–250
    [114] Philippova O E, Hourdet D, Audebert R, et al. pH-responsive gels of hydrophobically modified poly(Acrylic acid). Macromolecules, 1997, 30(26): 8278–8285
    [115] Khokhlov A R, Starodubtzev S G, Vasilevskaya V V. Conformational Transitions in Polymer Gels: Theory and Experiment. Advances in Polymer Science, 1993, 109: 122–171
    [116] Philippova O E. Responsive polymer gels. Polymer Science Series C, 2000, 42(2): 208–228
    [117] Kramarenko E Y, Philippova O E, Khokhlov A R. Polyelectrolyte Networks asHighly Sensitive Polymers. Polymer Science Series C, 2006, 48(1): 1–20
    [118]张家庆.血糖及其他体液葡萄糖测定进展.中华内分泌代谢杂志, 2003, 19(4): 333–335
    [119]刘娟,王尚奇,简水生.血糖浓度检测技术的最新进展.激光生物学报,2005,14(5):393–396
    [120] Wang J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis, 2001, 13(12): 983-988
    [121] Koschwanez H E, Reichert W M. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials, 2007, 28(25): 3687–3703
    [122] Updike S J, Shults M C, Rhodes R K, et al. Enzymatic glucose sensors: improved long-term performance in vitro and in vivo. ASAIO Journal, 1994, 40(2): 157–163
    [123] Bindra D S, Zhang Y N, Wilson G S, et al. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Analytical Chemistry, 1991, 63(17): 1692–1696
    [124] Wilson G S, Hu Y. Enzyme-Based Biosensors for in Vivo Measurements. Chemical reviews, 2000, 100(7): 2693–2704
    [125] Kulys J. The carbon paste electrode encrusted with a microreactor as glucose biosensor. Biosensors and Bioelectronics, 1999, 14(5): 473–479
    [126] Pandey P C, Upadhyay S, Shukla N K, et al. Studies on the electrochemical performance of glucose biosensor based on ferrocene encapsulated ORMOSIL and glucose oxidase modified graphite paste electrode. Biosensors and Bioelectronics, 2003, 18(10): 1257–1268
    [127] Xu J J, Chen H Y. Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly(p-phenylenediamine) at a platinum microdisk electrode. Analytical Biochemistry, 2000, 280(2): 221–226
    [128] Zirk K, Poetzschke H. A refractometry-based glucose analysis of body fluids. Medical Engineering & Physics, 2007, 29(4): 449–458
    [129] Pickup J C, Hussain F, Evans N D, et al. Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 2005, 20(12): 2555–2565
    [130] Trettnak W, Leiner M J P, Wolfbeis O S. Optical sensors. Part 34. Fibre optic glucose biosensor with an oxygen optrode as the transducer. Analyst, 1988, 113(10): 1519–1523
    [131] Tolosa L, Malak H, Rao G, et al. Optical assay for glucose based on theluminescence decay time of the long wavelength dye Cy5?. Sensors and Actuators B: Chemical, 1997, 45(2): 93–99
    [132] Sierra J F, Galban J, Castillo J R. Determination of glucose in blood based on the intrinsic fluorescence of glucose oxidase. Analytical Chemistry, 1997, 69(8): 1471–1476
    [133] Chico A, Vidal-Rios P, Subira M, et al. The continuous glucose monitoring system is useful for detecting unrecognized hypoglycemias in patients with type 1 and type 2 diabetes but is not better than frequent capillary glucose measurements for improving metabolic control. Diabetes Care, 2003, 26(4): 1153–1157
    [134] Maia F F R, Araújo L R. Efficacy of continuous glucose monitoring system (CGMS) to detect postprandial hyperglycemia and unrecognized hypoglycemia in type 1 diabetic patients. Diabetes Research and Clinical Practice, 2007, 75(1): 30–34
    [135] Maia F F R, Araújo L R. Accuracy, utility and complications of continuous glucose monitoring system (CGMS) in pediatric patients with type 1 diabetes. Journal of Pediatrics, 2005, 81(4): 293–297
    [136] Stout P J, Peled N, Erickson B J, et al. Comparison of glucose levels in dermal interstitial fluid and finger capillary blood. Diabetes Technology & Therapeutics, 2001, 3(1): 81–90
    [137] Stout P J, Racchini J R, Hilgers M E, et al. Continuous glucose monitoring: key challenges to replacing episodic SMBG. Diabetes Research and Clinical Practice, 2006, 74(2): S97–S100
    [138]孙颖,傅贤波,周勇等.傅立叶变换红外光谱(FT-IR)用于血糖无损检测的研究.中国微创外科杂志,2001,1(3):159–161
    [139]徐可欣,崔厚欣,王文波.血糖无创伤检测技术的基础研究.天津大学学报,2003,36(2):133–138
    [140]丁东,张洪艳,王弼陡等.血浆中葡萄糖浓度的近红外光谱测量和分析.光学技术,2003,29(6):693–695
    [141]张洪艳,丁东,宋立强等.血糖无创监测中近红外漫反射光谱技术的研究.光谱学与光谱分析,2005,25(6):882–885
    [142]王会清,骆清铭.人体血糖微创和无创伤快速检测方法.现代仪器,2006,6:1–6
    [143] Badugu R, Lakowicz J R, Geddes C D. Noninvasive Continuous Monitoring of Physiological Glucose Using a Monosaccharide-Sensing Contact Lens.Analytical Chemistry, 2004, 76(3): 610–618
    [144] Arnold M A, Small G W. Noninvasive Glucose Sensing. Analytical Chemistry, 2005, 77(17): 5429–5439
    [145]方云婕,黄岚,丁海曙.光电微损法检测血糖.光谱学与光谱分析,2004,24(5):631–633
    [146] Kaimori S, Kitamura T, Ichino M, et al. Structural development of a minimally invasive sensor chip for blood glucose monitoring. Analytica Chimica Acta, 2006, 573-574: 104–109
    [147] Yu B, Long N, Moussy Y, et al. A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane. Biosensors and Bioelectronics, 2006, 21(12): 2275–2282
    [148] Caduff A, Hirt E, Feldman Y, et al. First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system. Biosensors and Bioelectronics, 2003, 19(3): 209–217
    [149]庞翔娟,孙静,张丽霞.血液标本放置时间对血糖检测结果的影响.中国医科大学学报,2002,31(2):156–157
    [150]谭国萍.血液标本放置时间和抗凝剂对血糖检测结果的影响.实用医技杂志,2004,11(7B):1292–1293
    [151] Updike S J, Hicks G P. The enzyme electrode. Nature, 1967, 214: 986–988
    [152] Wilkins E, Atanasov P. Glucose monitoring: state of the art and future possibilities. Medical Engineering & Physics, 1996, 18(4): 273–288
    [153] Pickup J C, Hussain F, Evans N D, et al. In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 2005, 20(10): 1897–1902
    [154] Koopal C G J, Feiters M C, Nolte R J M, et al. Glucose sensor utilizing polypyrrole incorporated in tract-etch membranes as the mediator. Biosensors and Bioelectronics, 1992, 7(7): 461–471
    [155] Koopal C G J, Feiters M C, Nolte R J M, et al. Third-generation amperometric biosensor for glucose Polypyrrole deposited within a matrix of uniform latex particles as mediator. Bioelectrochemistry and Bioenergetics, 1992, 29(2): 159–175
    [156] Khan G F, Ohwa M, Wernet W. Design of a Stable Charge Transfer Complex Electrode for a Third-Generation Amperometric Glucose Sensor. Analytical Chemistry, 1996, 68(17): 2939–2945.
    [157] Zhang S X, Wang N, Yu H J, et al. Covalent attachment of glucose oxidase toan Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry, 2005, 67(1): 15–22
    [158] Gregg B A, Heller A. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Analytical Chemistry, 1990, 62(3) 258–263
    [159] Willner I, Riklin A, Shoham B, et al. Development of novel biosensor enzyme electrodes: glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes. Advanced Materials, 1993, 5(12): 912–915
    [160] Mayer M, Ruzicka J. Flow Injection Based Renewable Electrochemical Sensor System. Analytical Chemistry, 1996, 68(21): 3808–3814
    [161] Hrapovic S, Liu Y, Male K B, et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Analytical Chemistry, 2004, 76(4): 1083–1088
    [162] Pereira C M, Oliveira J M, Silva R M, et al. Amperometric Glucose Biosensor Based on Assisted Ion Transfer through Gel-Supported Microinterfaces. Analytical Chemistry, 2004, 76(18): 5547–5551
    [163] Joshi P P, Merchant S A, Wang Y, et al. Amperometric Biosensors Based on Redox Polymer-Carbon Nanotube-Enzyme Composites. Analytical Chemistry, 2005, 77(10): 3183–3188
    [164] Ohnuki H, Saiki T, Kusakari A, et al. Incorporation of Glucose Oxidase into Langmuir-Blodgett Films Based on Prussian Blue Applied to Amperometric Glucose Biosensor. Langmuir, 2007, 23(8): 4675–4681
    [165] Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 2006, 556(1): 46–57
    [166] Tura A, Maran A, Pacini G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice, 2007, 77(1): 16–40
    [167] Patolsky F, Zayats M, Katz E, et al. Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications: Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Analyses. Analytical Chemistry, 1999, 71(15): 3171–3180.
    [168] Alfonta L, Katz E, Willner I. Sensing of Acetylcholine by a Tricomponent- Enzyme Layered Electrode Using Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal MicrobalanceTransduction Methods. Analytical Chemistry, 2000, 72(5): 927–935
    [169] Ruzgas T, Cs?regi E, Emnéus J, et al. Peroxidase-modified electrodes: Fundamentals and application. Analytica Chimica Acta, 1996, 330(2-3): 123–138
    [170] Kulys J, Schmid R D. Mediatorless peroxidase electrode and preparation of bienzyme sensors. Bioelectrochemistry and Bioenergetics, 1990, 24(3): 305–311
    [171] Kulys J, Schmid R D. Bienzyme Sensors based on Chemically Modified Electrodes. Biosensors and Bioelectronics, 1991, 6(1): 43–48
    [172] Wollenberger U, Bogdanovskaya V, Bobrin S, et al. Enzyme electrodes using bioelectrocatalytic reduction of hydrogen Peroxide. Analytical Letters, 1990, 23(10): 1795–1808
    [173] Riklin A, Willner I. Glucose and Acetylcholine Sensing Multilayer Enzyme Electrodes of Controlled Enzyme Layer Thickness. Analytical Chemistry, 1995, 67(22): 4118–4126
    [174] Abad J M, Pariente F, Hernández L, et al. Determination of Organophosphorus and Carbamate Pesticides Using a Piezoelectric Biosensor. Analytical Chemistry, 1998, 70(14): 2848–2855
    [175] Karousos N G, Aouabdi S, Way A S, et al. Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Analytica Chimica Acta, 2002, 469(2): 189–196
    [176]李影林.临床微生物学及检验.北京:人民卫生出版社,1995
    [177] Giamarellos-Bourboulis E J, Kentepozidis N, Antonopoulou A, et al. Postantibiotic effect of antimicrobial combinations on multidrug-resistant Pseudomonas aeruginosa. Diagnostic Microbiology and Infectious Disease, 2005, 51(2): 113–117
    [178] Cao B, Wang H, Sun H, et al. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. Journal of Hospital Infection, 2004, 57(2): 112–118
    [179] Douglas M W, Mulholland K, Denyer V, et al. Multi-drug resistant Pseudomonas aeruginosa outbreak in a burns unit– an infection control study. Burns, 2001, 27(2): 131–135
    [180] RossellóJ, Olona M, Campins M, et al. Investigation of an outbreak of nosocomial infection due to a multiply drug-resistant strain of Pseudomonas aeruginosa. Journal of Hospital Infection, 1992, 20(2): 87–96
    [181] Tam V H, Chang K T, LaRocco M T, et al. Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagnostic Microbiology and Infectious Disease, 2007, 58(3): 309–314
    [182] Wang S S, FitzSimmons S C, O'Leary L A, et al. Early diagnosis of cystic fibrosis in the newborn period and risk of Pseudomonas aeruginosa acquisition in the first 10 years of life: a registry–based longitudinal study. Pediatrics, 2001, 107(2): 274–279
    [183] Kosorok M R, Jalaluddin M, Farrell P M, et al. Comprehensive analysis of risk factors for acquisition of Pseudomonas aeruginosa in young children with cystic fibrosis. Pediatric Pulmonology, 1998, 26(2): 81–88
    [184] Estahbanati H K, Kashani P P, Ghanaatpisheh F. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics. Burns, 2002, 28(4): 340–348
    [185] Nasilowski W, Bukowska D, Serafinska D, et al. Pseudomonas aeruginosa infections in burns. Burns, 1975, 1(2): 108–112
    [186] Bartosova J, Zemkova D, Brazova J, et al. 72 Diagnosis of Pseudomonas aeruginosa infection using microbial, molecular-biology and serology techniques. Journal of Cystic Fibrosis, 2006, 5(1): S16
    [187]张敦熔.现代结核病学.北京:人民军医出版社,2000,1–59
    [188] F?tkenheuer G, Taelman H, Lepage P, et al. The return of tuberculosis. Diagnostic Microbiology and Infectious Disease, 1999, 34(2): 139–146
    [189] Montoro E, Lemus D, Echemendía M, et al. Drug-resistant tuberculosis in Cuba. Results of the three global projects. Tuberculosis, 2006, 86(3-4): 319–323
    [190] Hutchison D C S, Drobniewski F A, Milburn H J. Management of multiple drug-resistant tuberculosis. Respiratory Medicine, 2003, 97(1): 65–70
    [191] Maher D, Raviglione M. Global Epidemiology of Tuberculosis. Clinics in Chest Medicine, 2005, 26(2): 167–182
    [192] Bloom B R, Murray C I L. Tuberculosis: Commentary on a Reemergent Killer. Science, 1992, 257(5073): 1055–1064
    [193] Enarson D A. Children and the global tuberculosis situation. Paediatric Respiratory Reviews, 2004, 5(1): S143–S145
    [194] Lambert M L, Hasker E, Van Deun A, et al. Recurrence in tuberculosis: relapse or reinfection? The Lancet Infectious Diseases, 2003, 3(5): 282–287
    [195] Maartens G, Wilkinson R J. Tuberculosis. The Lancet, 2007, 370(9604): 2030-2043
    [196] Corbett E L, Watt C J, Walker N, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Archives of Internal Medicine, 2003, 163(9): 1009–1021
    [197] Albay A, Kisa O, Baylan O, et al. The evaluation of FASTPlaqueTB? test for the rapid diagnosis of tuberculosis. Diagnostic Microbiology and Infectious Disease, 2003, 46(3): 211–215
    [198] Esteban J, Fernández-Roblas R, Cabria F, et al. Usefulness of the BACTEC MYCO/F lytic system for detection of mycobacteremia in a clinical microbiology laboratory. Journal of Microbiological Methods, 2000, 40(1): 63–66
    [199] Martínez-Sánchez L, Ruiz-Serrano J, Bouza E, et al. Utility of the BACTEC Myco/F lytic medium for the detection of mycobacteria in blood. Diagnostic Microbiology and Infectious Disease, 2000, 38(4): 223–226
    [200] Hollick G E, Edinger R, Martin B. Clinical comparison of the BACTEC 9000 Standard Anaerobic/F and Lytic/F blood culture media. Diagnostic Microbiology and Infectious Disease, 1996, 24(4): 191–196
    [201] Sharp S E, Lemes M, Erlich S S, et al. A comparison of the Bactec 9000MB system and the Septi-Chek AFB system for the detection of mycobacteria. Diagnostic Microbiology and Infectious Disease, 1997, 28(2): 69–74
    [202] Daxboeck F, Dornbusch H J, Krause R, et al. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR). Diagnostic Microbiology and Infectious Disease, 2004, 48(1): 1–3
    [203] Laverdiere M, Poirier L, Weiss K, et al. Comparative evaluation of the MB/BacT and BACTEC 460 TB systems for the detection of mycobacteria from clinical specimens: clinical relevance of higher recovery rates from broth-based detection systems. Diagnostic Microbiology and Infectious Disease, 2000, 36(1): 1–5
    [204] Yan J J, Huang A H, Tsai S H, et al. Comparison of the MB/BacT and BACTEC MGIT 960 system for recovery of mycobacteria from clinical specimens. Diagnostic Microbiology and Infectious Disease, 2000, 37(1): 25–30
    [205] Scarparo C, Piccoli P, Rigon A, et al. Evaluation of the BACTEC MGIT 960 incomparison with BACTEC 460 TB for detection and recovery of mycobacteria from clinical specimens. Diagnostic Microbiology and Infectious Disease, 2002, 44(2): 157–161
    [206] Norden M A, Kurzynski T A, Bownds S E, et al. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. Journal of Clinical Microbiology, 1995, 33(5): 1231–1237
    [207] ViganòE F, Vasconi E, Agrappi C, et al. Use of simulated blood cultures for time to detection comparison between BacT/ALERT? and BACTEC? 9240 blood culture systems. Diagnostic Microbiology and Infectious Disease, 2002, 44(3): 235–240
    [208] Akan ? A, Y?ld?z E. Comparison of the effect of delayed entry into 2 different blood culture systems (BACTEC 9240 and BacT/ALERT 3D) on culture positivity. Diagnostic Microbiology and Infectious Disease, 2006, 54(3): 193–196
    [209] Guney C, Suel A, Karagoz T, et al. P1642 Evaluation of the BACT/ALERT 3D system for testing susceptibility of Mycobacterium tuberculosis tofirst-line antituberculosis agents: comparison with BacTec MGIT 960 and Lowenstein-Jensen proportion method. International Journal of Antimicrobial Agents, 2007, 29(2): S463
    [210] Kharazmi K, Kratzer C, Tucek T, et al. P939 Effectiveness of the lysis centrifugation method isolator 10 system compared to BacT/Alert 3D in detecting bacteraemia. International Journal of Antimicrobial Agents, 2007, 29(2): S246
    [211] Johnson A S, Touchie C, Haldane D J M, et al. Four-day incubation for detection of bacteremia using the BACTEC 9240. Diagnostic Microbiology and Infectious Disease, 2000, 38(4): 195–199
    [212] Hernandez A, Bergmann J S, Woods G L. AMPLICOR? MTB polymerase chain reaction test for identification of Mycobacterium tuberculosis in positive difco ESP II broth cultures. Diagnostic Microbiology and Infectious Disease, 1997, 27(1-2): 17–20
    [213] Elston C, Wallach J, Saulnier J. New continuous and specific fluorometric assays for Pseudomonas aeruginosa elastase and LasA protease. Analytical Biochemistry, 2007, 368(1): 87–94
    [214] Atzél B, Szoboszlay S, Mikuska Z, et al. Comparison of phenotypic and genotypic methods for the detection of environmental isolates of Pseudomonasaeruginosa. International Journal of Hygiene and Environmental Health, 2008, 211(1-2): 143–155
    [215] Motoshima M, Yanagihara K, Fukushima K, et al. Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagnostic Microbiology and Infectious Disease, 2007, 58(1): 53–58
    [216] Park J S, Lee C M, Lee K Y. A surface plasmon resonance biosensor for detecting Pseudomonas aeruginosa cells with self-assembled chitosan-alginate multilayers. Talanta, 2007, 72(2): 859–862
    [217] Allardyce R A, Langford V S, Hill A L, et al. Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). Journal of Microbiological Methods, 2006, 65(2): 361–365
    [218] Keum K C, Yoo S M, Lee S Y, et al. DNA microarray-based detection of nosocomial pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii. Molecular and Cellular Probes, 2006, 20(1): 42–50
    [219] Weisner A M, Chart H, Bush A, et al. 73 Detection of antibodies to Pseudomonas aeruginosa in oral fluid from patients with Cystic Fibrosis. Journal of Cystic Fibrosis, 2006, 5(1): S17
    [220] Lavenir R, Jocktane D, Laurent F, et al. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. Journal of Microbiological Methods, 2007, 70(1): 20–29
    [221] Schelstraete P, Van daele S, Van Simaey L, et al. 107 Comparison of 6 culture media, 5 DNA-extraction methods and PCR and nested PCR for sensitive detection of P. aeruginosa from CF sputa. Journal of Cystic Fibrosis, 2007, 6(1): 26
    [222] Kurupati P, Kumarasinghe G, Poh C L. Direct identification of Pseudomonas aeruginosa from blood culture bottles by PCR-enzyme linked immunosorbent assay using oprI gene specific primers. Molecular and Cellular Probes, 2005, 19(6): 417–421
    [223] Kingsford N M, Raadsma H W. Detection of Pseudomonas aeruginosa from ovine fleece washings by PCR amplification of 16S ribosomal RNA. Veterinary Microbiology, 1995, 47(1-2): 61–70
    [224] McIntosh I, Govan J R W, Brock D J H. Detection of Pseudomonas aeruginosa in sputum from cystic fibrosis patients by the polymerase chain reaction.Molecular and Cellular Probes, 1992, 6(4): 299–304
    [225] Tramper-Stranders G A, van der Ent C K, Wolfs T F W. Detection of Pseudomonas aeruginosa in patients with cystic fibrosis. Journal of Cystic Fibrosis, 2005, 4(2): 37–43
    [226] Kim N, Park I S, Kim D K. Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sensors and Actuators B: Chemical, 2004, 100(3): 432–438
    [227] He F J, Liu S Q. Detection of P. aeruginosa using nano-structured electrode- separated piezoelectric DNA biosensor. Talanta, 2004, 62(2): 271–277
    [228] Bovenizer J S, Jacobs M B, O’Sullivan C K, et al. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Analytical Letters, 1998, 31(8): 1287–1295
    [229] Xu X H N, Brownlow W, Huang S, et al. Single-molecule detection of efflux pump machinery in Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 2003, 305(1): 79–86
    [230] Favre-BontéS, Pache J C, Robert J, et al. Detection of Pseudomonas aeruginosa cell-to-cell signals in lung tissue of cystic fibrosis patients. Microbial Pathogenesis, 2002, 32(3): 143–147
    [231] Stender H, Broomer A, Oliveira K, et al. Rapid detection, identification, and enumeration of Pseudomonas aeruginosa in bottled water using peptide nucleic acid probes. Journal of Microbiological Methods, 2000, 42(3): 245–253
    [232] Louis D, Sorlier P, Wallach J. Quantitation and enzymatic activity of the alkaline protease from Pseudomonas aeruginosa in culture supernatants from clinical strains. Clinical Chemistry and Laboratory Medicine, 1998, 36(5): 295–298
    [233]张伟,李闻,张伟尉等.基于PCR技术的绿脓杆菌快速检测方法研究.中国卫生检验杂志,2005,15(9):1065–1067
    [234]徐启旺,刘俊康,袁泽涛等.绿脓杆菌定值、定位、定性检测技术研究.微生物学通报,1999, 26(4):278–280
    [235] Perkins M D. New diagnostic tools for tuberculosis. International Journal of Tuberculosis and Lung Disease, 2000, 4(2): S182–S88
    [236] Singh V. TB in developing countries: Diagnosis and treatment. Paediatric Respiratory Reviews, 2006, 7(1): S132–S135
    [237] Cho S N, Brennan P J. Tuberculosis: Diagnostics. Tuberculosis, 2007, 87(1):S14–S17
    [238] He F J, Zhao J W, Zhang L D, et al. A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta, 2003, 59(5): 935–941
    [239] Thomson L M, Traore H, Yesilkaya H, et al. An extremely rapid and simple DNA-release method for detection of M. tuberculosis from clinical specimens. Journal of Microbiological Methods, 2005, 63(1): 95–98
    [240] Song E J, Jeong H J, Lee S M, et al. A DNA chip-based spoligotyping method for the strain identification of Mycobacterium tuberculosis isolates. Journal of Microbiological Methods, 2007, 68(2): 430–433
    [241] Tobler N E, Pfunder M, Herzog K, et al. Rapid detection and species identification of Mycobacterium spp. using real-time PCR and DNA- Microarray. Journal of Microbiological Methods, 2006, 66(1): 116–124
    [242] Nassau E, Parsons E R, Johnson G D. The detection of antibodies to mycobacterium tuberculosis by microplate enzyme-linked immunosorbent assay (ELISA). Tubercle, 1976, 57(1): 67–70
    [243] Zambardi G, Druetta A, Roure C, et al. Rapid diagnosis of Mycobacterium tuberculosis infections by an ELISA-like detection of polymerase chain reaction products. Molecular and Cellular Probes, 1995, 9(2): 91–99
    [244] Gill P, Ramezani R, Amiri M V P, et al. Enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification for molecular detection of M. tuberculosis. Biochemical and Biophysical Research Communications, 2006, 347(4): 1151–1157
    [245] Díaz-González M, González-García M B, Costa-García A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosensors and Bioelectronics, 2005, 20(10): 2035–2043
    [246] He F J, Zhang L D, Zhao J W, et al. A TSM immunosensor for detection of M. tuberculosis with a new membrane material. Sensors and Actuators B: Chemical, 2002, 85(3): 284–290
    [247] Mahfouz O, Fraser C E O, MacDonald A B. An immunofluorescence test for detection of antibodies to mycobacterium tuberculosis. Tubercle, 1980, 61(1): 1–9
    [248] Iovannisci D M, Winn-Deen E S. Ligation amplification and fluorescence detection of Mycobacterium tuberculosis DNA. Molecular and Cellular Probes, 1993, 7(1): 35–43
    [249] Steingart K R, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. The Lancet Infectious Diseases, 2006, 6(9): 570–581
    [250] H?nscheid T, Ribeiro C M, Shapiro H M, et al. Fluorescence microscopy for tuberculosis diagnosis. The Lancet Infectious Diseases, 2007, 7(4): 236–237
    [251]中国防痨协会基础专业委员会.结核病诊断实验室检验规程.北京:中国教育文化出版社,2006,1–117
    [252]熊礼宽,宋礼章.结核病的实验室诊断及其进展.北京:中国科学技术出版社,1992,80–158
    [253]农初师.结核病实验室诊断技术研究进展.内科,2006,1(2):177–180
    [254]乔世岩.检测结核分枝杆菌的五种方法的比较.实用医技杂志,2005,12(1):259
    [255]陈晓旭.结核分枝杆菌的分子生物学检测方法研究现状.中国煤炭工业医学杂志,2003,6(2):174–175
    [256]吕斌,徐舜清,周宜开等.用Phage88快速检测结核分支杆菌.疾病控制杂志, 2000, 4(1): 23–26
    [257]王颖莹,府伟灵,张伟等.应用压电基因传感器芯片检测结核分支杆菌DNA.中华医院感染学杂志, 2000, 10(6): 418–420
    [258] Zhao J W, Zhu W J, He F J. Rapidly determining E. coli and P. aeruginosa by an eight channels bulk acoustic wave impedance physical biosensor. Sensors and Actuators B: Chemical, 2005, 107(1): 271–276
    [259]刘素芹.压电体声波微生物传感器的研制及其应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2004
    [260] Jain M K, Grimes C A. Effect of surface roughness on liquid property measurements using mechanically oscillating sensors. Sensors and Actuators A: Physical, 2002, 100(1): 63–69
    [261] Adlfinger K H, Peschel G. Viscosity anomalies in liquid surface zones II. Berichtes Bunsenges Physical Chemistry, 1970, 74: 347–350
    [262] Peschel G, Adlfinger K H. Viscosity anomalies in liquid surface zones III. Berichtes Bunsenges Physical Chemistry, 1970, 74: 351–357
    [263] Ong K G, Wang J, Singh R S, et al. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing. Biosensors and Bioelectronics, 2001, 16(4-5): 305–312
    [264] Tan H W, Deng L, Nie L H, et al. Detection and analysis of the growth characteristics of proteus vulgaris with a bulk acoustic wave ammonia sensor.Analyst, 1997, 2(122): 179–184
    [265]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社,1997
    [266]左伯莉,刘国宏.化学传感器原理及应用.北京:清华大学出版社,2007,212–302
    [267] Cole S T. Mycobacterium tuberculosis: drug-resistance mechanisms. Trends in Microbiology, 1994, 2(10): 411–415
    [268] Telenti A. Genetics of drug resistance in Tuberculosis. Clinics in Chest Medicine, 1997, 18(1): 55–64
    [269] Yue J, Shi W, Xie J P, et al. Detection of rifampin-resistant Mycobacterium tuberculosis strains by using a specialized oligonucleotide microarray. Diagnostic Microbiology and Infectious Disease, 2004, 48(1): 47–54
    [270] Taniguchi H, Aramaki H, Nikaido Y, et al. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiology Letters, 1996, 144(1): 103–108
    [271] Kim B J, Lee K H, Yun Y J, et al. Simultaneous identification of rifampin- resistant Mycobacterium tuberculosis and nontuberculous mycobacteria by polymerase chain reaction-single strand conformation polymorphism and sequence analysis of the RNA polymerase gene (rpoB). Journal of Microbiological Methods, 2004, 58(1): 111–118
    [272] Cheng X D, Zhang J F, Yang L, et al. A new Multi-PCR-SSCP assay for simultaneous detection of isoniazid and rifampin resistance in Mycobacterium tuberculosis. Journal of Microbiological Methods, 2007, 70(2): 301–305
    [273] Rindi L, Bianchi L, Tortoli E, et al. A real-time PCR assay for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates. Journal of Microbiological Methods, 2003, 55(3): 797–800
    [274] Yang Z H, Durmaz R, Yang D, et al. Simultaneous detection of isoniazid, rifampin, and ethambutol resistance of Mycobacterium tuberculosis by a single multiplex allele-specific polymerase chain reaction (PCR) assay. Diagnostic Microbiology and Infectious Disease, 2005, 53(3): 201–208
    [275] Hirano K, Takahashi M, Kazumi Y, et al. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tubercle and Lung Disease, 1998, 78(2): 117–122
    [276] Ahmad S, Mokaddas E, Jaber A A. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis strains by PCR-RFLP targeting embB codons 306 and 497 and iniA codon 501 mutations. Molecular and Cellular Probes, 2004,18(5): 299–306
    [277] Suzuki Y, Katsukawa C, Tamaru A, et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. Journal of Clinical Microbiology, 1998, 36(5): 1220–1225
    [278] Victor T C, Jordaan A M, van Rie A, et al. Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy. Tubercle and Lung Disease, 1999, 79(6): 343–348
    [279] Tang X, Morris S L, Langone J J, et al. Microarray and allele specific PCR detection of point mutations in Mycobacterium tuberculosis genes associated with drug resistance. Journal of Microbiological Methods, 2005, 63(3): 318–330
    [280] Troesch A, Nguyen H, Miyadac G, et al. Mycobacterium species identification and rifampin resistance with high density DNA probe arrays. Journal of Clinical Microbiology, 1999, 37(1): 49–55
    [281] Watnick P, Kolter R. Biofilm, city of microbes. Journal of Bacteriology, 2000, 182(10): 2675–2679
    [282] Donlan R M. Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 2002, 8(9): 881–890
    [283] Beveridge T J, Makin S A, Kadurugamuwa J L, et al. Interactions between biofilms and the environment. FEMS Microbiology Reviews, 1997, 20(3-4): 291–303
    [284] Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms. Annual Review of Microbiology, 1995, 49: 711–745
    [285] Stickler D. Biofilms. Current Opinion in Microbiology, 1999, 2(3): 270–275
    [286] Costerton J W. Introduction to biofilm. International Journal of Antimicrobial Agents, 1999, 11(3-4): 217–221
    [287] Blenkinsopp S A, Costerton J W. Understanding bacterial biofilms. Trends in Biotechnology, 1991, 9(1): 138–143
    [288] Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002, 56: 187–209
    [289] Jefferson K K. What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 2004, 236(2): 163–173
    [290] Branda S S, Vik A, Friedman L, et al. Biofilms: the matrix revisited. Trends in Microbiology, 2005, 13(1): 20–26
    [291] Shirtliff M E, Mader J T, Camper A K. Molecular interactions in biofilms.Chemistry & Biology, 2002, 9(8): 859–871
    [292] Davey M E, O’Toole G A. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 2000, 64(4): 847–867
    [293] Stephens C. Microbiology: breaking down biofilms. Current Biology, 2002, 12(4): R132–R134
    [294] O’Toole G A. To build a biofilm. Journal of Bacteriology, 2003, 185(9): 2687–2689
    [295] Kierek-Pearson K, Karatan E. Biofilm Development in Bacteria. Advances in Applied Microbiology, 2005, 57(A): 79–111
    [296] Skovgaard N. Biofilm in the food environment. International Journal of Food Microbiology, 2007, 118(2): 229
    [297] Stewart P S. Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 2002, 292(2): 107–113
    [298] Gilbert P, Maira-Litran T, McBain A J, et al. The physiology and collective recalcitrance of microbial biofilm communities. Advances in Microbial Physiology, 2002, 46: 203–256
    [299] Fux C A, Costerton J W, Stewart P S, et al. Survival strategies of infectious biofilms. Trends in Microbiology, 2005, 13(1): 34–40
    [300] Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes and Infection, 2003, 5(13): 1213–1219
    [301] Abdi-Ali A, Mohammadi-Mehr M, Alaei Y A. Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2006, 27(3): 196–200
    [302]贾宁,徐志凯.细菌生物被膜对抗生素耐药机制的研究进展.微生物学通报,2006,33(1):184-186
    [303] Miller M B, Bassler B L. Quorum Sensing in Bacteria. Annual Review of Microbiology, 2001, 55: 165–199
    [304] Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Current Opinion in Microbiology, 2002, 5(3): 254–258
    [305] Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews, 2004, 28(3): 261–289
    [306] Suntharalingam P, Cvitkovitch D G. Quorum sensing in streptococcal biofilm formation. Trends in Microbiology, 2005, 13(1): 3–6
    [307] Spoering A L, Gilmore M S. Quorum sensing and DNA release in bacterial biofilms. Current Opinion in Microbiology, 2006, 9(2): 133–137
    [308] Kuchma S L, O'Toole G A. Surface-induced and biofilm-induced changes in gene expression. Current Opinion in Biotechnology, 2000, 11(5): 429–433
    [309] Beloin C, Ghigo J M. Finding gene-expression patterns in bacterial biofilms. Trends in Microbiology, 2005, 13(1): 16–19
    [310] Lazazzera B A. Lessons from DNA microarray analysis: the gene expression profile of biofilms. Current Opinion in Microbiology, 2005, 8(2): 222–227
    [311] Corona-Izquierdo F P, Membrillo-Hernández J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters, 2002, 211(1): 105–110
    [312] Tenorio E, Saeki T, Fujita K, et al. Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiology Letters, 2003, 225(1): 107–114
    [313] de Souza A A, Takita M A, Coletta-Filho H D, et al. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiology Letters, 2004, 237(2): 341–353
    [314] Mack D, Becker P, Chatterjee I, et al. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. International Journal of Medical Microbiology, 2004, 294(2-3): 203–212
    [315]倪明,田德英,余冰等.绿脓假单胞菌生物被膜形成中相关基因的表达.中华检验医学杂志,2005,28(10):1078–1080
    [316]石磊,寇娅丽.铜绿假单胞菌基因型与生物被膜形成能力的分析.食品与机械, 2006,22(6):5–7
    [317] Kumar C G, Anand S K. Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 1998, 42(1-2): 9–27
    [318] Zottola E A, Sasahara K C. Microbial biofilms in the food processing industry ? Should they be a concern? International Journal of Food Microbiology, 1994, 23(2): 125–148
    [319] Jessen B, Lammert L. Biofilm and disinfection in meat processing plants. International Biodeterioration & Biodegradation, 2003, 51(4): 265–269
    [320] Klahre J, Flemming H C. Monitoring of biofouling in papermill process waters. Water Research, 2000, 34(14): 3657–3665
    [321] Sharma M, Anand S K. Biofilms evaluation as an essential component of HACCP for food/dairy processing industry– a case. Food Control, 2002, 13(6-7): 469–477
    [322] Gilbert P, McBain A J, Rickard A H. Formation of microbial biofilm in hygienic situations: a problem of control. International Biodeterioration & Biodegradation, 2003, 51(4): 245–248
    [323] Sirianuntapiboon S, Jeeyachok N, Larplai R. Sequencing batch reactor biofilm system for treatment of milk industry wastewater. Journal of Environmental Management, 2005, 76(2): 177–183
    [324] Angles M L, Chandy J P, Cox P T, et al. Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry. Trends in Parasitology, 2007, 23(8): 352–356
    [325] Tenke P, Riedl C R, Jones G L, et al. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. International Journal of Antimicrobial Agents, 2004, 23(1): 67–74
    [326] Bryers J, Characklis W. Early fouling biofilm formation in a turbulent flow system: Overall kinetics. Water Research, 1981, 15(4): 483–491
    [327] Costerton J W, Cheung W, Geesey G G. Bacterial biofilms in nature and disease. Annual Review of Microbiology, 1987, 41: 435–464
    [328]刘晓琰,施安国.细菌生物被膜的研究现状.中国临床药理学杂志,2002, 18(4):302–305
    [329]李彤,庄辉.细胞生物膜的研究进展.中华微生物学和免疫学杂志,2002,22(5):343–346
    [330]陈维贤,张莉萍.细菌生物被膜(bacterial biofilm)的研究进展.微生物学杂志,2004,24(1):46–48
    [331] Allison D G, Brown M R W, Evans D E, et al. Surface hydrophobicity and dispersal of Pseudomonas aeruginosa from biofilms. FEMS Microbiology Letters, 1990, 71(1-2): 101–104
    [332] Khoury A E, Nicholov R, Soltes S, et al. A preliminary assessment of Pseudomonas aeruginosa biofilm development using fluorescence spectroscopy. International Biodeterioration & Biodegradation, 1992, 30(2-3): 187–199
    [333] Preston C A K, Khoury A E, Reid G, et al. Pseudomonas aeruginosa biofilms are more susceptible to ciprofloxacin than to tobramycin. International Journal of Antimicrobial Agents, 1996, 7(4): 251–256
    [334] De Kievit T R, Iglewski B H. [8] Quorum sensing, gene expression, and Pseudomonas biofilms. Methods in Enzymology, 1999, 310: 117–128
    [335] Vogt M, Flemming H C, Veeman W S. Diffusion in Pseudomonas aeruginosabiofilms: a pulsed field gradient NMR study. Journal of Biotechnology, 2000, 77(1): 137–146
    [336] H?iby N, Johansen H K, Moser C, et al. Pseudomonas aeruginosa and the in vitroand in vivo biofilm mode of growth. Microbes and Infection, 2001, 3(1): 23–35
    [337] Wirtanen G, Salo S, Helander I M, et al. Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids and Surfaces B: Biointerfaces, 2001, 20(1): 37–50
    [338] Parveen A, Smith G, Salisbury V, et al. Biofilm culture of Pseudomonas aeruginosa expressing lux genes as a model to study susceptibility to antimicrobials. FEMS Microbiology Letters, 2001, 199(1): 115–118
    [339] Anguige K, King J R, Ward J P. A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Mathematical Biosciences, 2006, 203(2): 240–276
    [340] Toutain C M, Caizza N C, Zegans M E, et al. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Research in Microbiology, 2007, 158(5): 471–477
    [341] Cross J L, Ramadan H H, Thomas J G. The impact of a cation channel blocker (furosemide) on Pseudomonas aeruginosa PAO1 biofilm architecture. Otolaryngology - Head and Neck Surgery, 2007, 137(1): 21–26
    [342] Fonseca A P, Sousa J C. Effect of shear stress on growth, adhesion and biofilm formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes. International Journal of Antimicrobial Agents, 2007, 30(3): 236–241
    [343] Cheng G, Zhang Z, Chen S F, et al. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007, 28(29): 4192–4199
    [344] Bartoszewicz M, Rygiel A, Przondo-Mordarska A. P602 Analysis of the effect of selected antiseptics and antibiotics on the survival of planktonic celles and biofilm cells. International Journal of Antimicrobial Agents, 2007, 29(2): S140
    [345] Donlan R M, Costerton J W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 2002, 15(2): 167–193
    [346] Parsek M R, Singh P K. Bacterial Biofilms: An Emerging Link to Disease Pathogenesis. Annual Review of Microbiology, 2003, 57: 677–701
    [347] Potera C. Forging a link between biofilms and disease. Science, 1999, 283(5409): 1837–1839
    [348] Lewandowski Z, Beyenal H. Biofilm monitoring: A perfect solution in search for a problem. Water Science and Technology, 2003, 47(5): 9–18
    [349] Nivens D E, Palmer R J, White D C. Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques. Journal of Industrial Microbiology, 1995, 15(4): 263–276
    [350] Janknecht P, Melo L F. Online biofilm monitoring. Reviews in Environmental Science and Biotechnology, 2003, 2(2-4): 269–283
    [351] Zinn M S, Kirkegaard R D, Palmer R J, et al. Laminar flow chamber for continuous monitoring of biofilm formation and succession. Methods in Enzymology, 1999, 310: 224–232
    [352] Ruzicka F, Horka M, Hola V, et al. Capillary Isoelectric Focusing ? Useful tool for detection of the biofilm formation in Staphylococcus epidermidis. Journal of Microbiological Methods, 2007, 68(3): 530–535
    [353] Tanji Y, Nishihara T, Miyanaga K. Monitoring of biofilm in cooling water system by measuring lactic acid consumption rate. Biochemical Engineering Journal, 2007, 35(1): 81–86
    [354] Chavant P, Gaillard-Martinie B, Talon R, et al. A new device for rapid evaluation of biofilm formation potential by bacteria. Journal of Microbiological Methods, 2007, 68(3): 605–612
    [355] Franklin M J, White D C. Biocorrosion. Current Opinion in Biotechnology, 1991, 2(3): 450–456
    [356] Denkhaus E, Meisen S, Telgheder U, et al. Chemical and physical methods for characterisation of biofilms. Microchimica Acta, 2007, 158(1-2): 1–27
    [357] Bakke R, Kommedal R, Kalvenes S. Quantification of biofilm accumulation by an optical approach. Journal of Microbiological Methods, 2001, 44(1): 13–26
    [358] Haruff H M, Munakata-Marr J, Marr D W M. Directed bacterial surface attachment via optical trapping. Colloids and Surfaces B: Biointerfaces, 2003, 27(2-3): 189–195
    [359] Wolf G, Crespo J G, Reis M A M. Optical and spectroscopic methods for biofilm examination and monitoring. Reviews in Environmental Science and Biotechnology, 2002, 1(3): 227–251
    [360] Lawrence J R, Korber D R, Hoyle B D, et al. Optical sectioning of microbial biofilms. Journal of Bacteriology, 1991, 173(20): 6558–6567
    [361] Angell P, Arrage A A, Mittelman M W, et al. On line, non-destructive biomassdetermination of bacterial biofilms by fluorometry. Journal of Microbiological Methods, 1993, 18(4): 317–327
    [362] Wolf G, Almeida J S, Crespo J G, et al. Monitoring of biofilm reactors using natural fluorescence fingerprints. Water Science and Technology, 2003, 47(5): 161–167
    [363] Nivens D E, Chambers J Q, Anderson T R, et al. Monitoring microbiol adhesion and biofilm formation by attenuated total reflection/Fourier transform infrared spectroscopy. Journal of Microbiological Methods, 1993, 17(3): 199–213
    [364] Nichols P D, Henson J M, Guckert J B, et al. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteri- polymer mixtures and biofilms. Journal of Microbiological Methods, 1985, 4(2): 79–94
    [365] Tinham P, Bott T R. Biofouling assessment using an infrared monitor. Water Science and Technology, 2003, 47(5): 39–43
    [366] Leitz M, Tamachkiarow A, Frankel H, et al. Monitoring of biofilm growth using ATR-leaky mode spectroscopy. Journal of Physics D: Applied Physics, 2002, 35(1): 55–60
    [367] As H V, Lens P. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology and Biotechnology, 2001, 26(1-2): 43–52
    [368] Schmid T, Panne U, Haisch C, et al. A Photoacoustic Technique for Depth-Resolved In Situ Monitoring of Biofilms. Environmental Science & Technology, 2002, 36(19): 4135–4141
    [369] Schmid T, Panne U, Haisch C, et al. Photoacoustic absorption spectra of biofilms. Review of Scientific Instruments, 2003, 74(1): 755–757
    [370] Gilbert E S, Khlebnikov A, Meyer-Ilse W, et al. Use of soft X-ray microscopy for analysis of early-stage biofilm formation. Water Science and Technology, 1999, 39(7): 269–272
    [371] Majors P D, McLean J S, Pinchuk G E, et al. NMR methods for in situ biofilm metabolism studies. Journal of Microbiological Methods, 2005, 62(3): 337–344
    [372] Vogt M, Flemming H C, Veeman W S. Diffusion in Pseudomonas aeruginosa biofilms: a pulsed field gradient NMR study. Journal of Biotechnology, 2000, 77(1): 137–146
    [373] Mansfield F, Little B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion. Corrosion Science, 1991, 32(3): 247–272
    [374] Mansfeld F, Tsai R, Shih H, et al. An electrochemical and surface analytical study of stainless steels and titanium exposed to natural seawater. Corrosion Science, 1992, 33(3): 445–456
    [375] Little B, Wagner P, Mansfeld F. An overview of microbiologically influenced corrosion. Electrochimica Acta, 1992, 37(12): 2185–2194
    [376] Herbert-Guillou D, Tribollet B, Festy D, et al. In situ detection and characterization of biofilm in waters by electrochemical methods. Electrochimica Acta, 1999, 45(7): 1067–1075
    [377] Mollica A, Cristiani P. On-line biofilm monitoring by“BIOX”electrochemical probe. Water Science and Technology, 2003, 47(5): 45–49
    [378] Mu?oz-Berbel X, Mu?oz F J, Vigués N, et al. On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network. Sensors and Actuators B: Chemical, 2006, 118(1-2): 129–134
    [379] Jass J, ONeill J G, Walker J T. Direct biofilm monitoring by a capacitance measurement probe in continuous culture chemostats. Methods in Enzymology, 2001, 337: 63–69
    [380] Harris C M, Todd R W, Bungard S J, et al. The dielectric permittivity of microbial suspensions at radio frequencies: A novel method for the real-time estimation of microbial biomass. Enzyme and Microbial Technology, 1987, 9(3): 181–186
    [381] Giao M S, Montenegro M I, Vieira M J. Monitoring biofilm formation by using cyclic voltammetry - effect of the experimental conditions on biofilm removal and activity. Water Science & Technology, 2003, 47(5): 51–56
    [382] Maurício R, Dias C J, Santana F. Monitoring Biofilm Thickness Using A Non-Destructive, On-Line, Electrical Capacitance. Technique Environmental Monitoring and Assessment, 2006, 119(1-3): 599–607
    [383] Nivens D E, Chambers J Q, Anderson T R, et al. Long-term, on-line monitoring of microbial biofilms using a quartz crystal microbalance. Analytical Chemistry, 1993, 65(1): 65–69
    [384] Helle H, Vuoriranta P, V?lim?ki H, et al. Monitoring of biofilm growth with thickness-shear mode quartz resonators in different flow and nutrition conditions. Sensors and Actuators B: Chemical, 2000, 71(1-2): 47–54
    [385] Reipa V, Almeida J, Cole K D. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. Journal of Microbiological Methods, 2006, 66(3): 449–459
    [386] Bressel A, Schultze J W, Khan W, et al. High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems. Electrochimica Acta, 2003, 48(20-22): 3363–3372
    [387] Rudh M, Green H, Lie E, et al. Measuring biofilm formation in real-time by quartz crystal microbalance with dissipation monitoring (QCM-D). In: Proceedings of the International Specialized Conference on Biofilm Monitoring. Porto, 2002, 17–20
    [388] Richards S R, Turner R J. A comparative study of techniques for the examination of biofilms by scanning electron microscopy. Water Research, 1984, 18(6): 767–773
    [389] Surman S B, Walker J T, Goddard D T, et al. Comparison of microscope techniques for the examination of biofilms. Journal of Microbiological Methods, 1996, 25(1): 57–70
    [390] Eighmy T T, Maratea D, Bishop P L. Electron microscopic examination of wastewater biofilm formation and structural components. Applied and Environmental Microbiology, 1983, 45(6): 1921–1931
    [391] Alleman J E, Veil J A, Canaday J T. Scanning electron microscope evaluation of rotating biological contactor biofilm. Water Research, 1982, 16(5): 543–550
    [392] Mattila M, Carpen L, Hakkarainen T, et al. Biofilm development during ennoblement of stainless steel in Baltic Sea water: A microscopic study. International Biodeterioration & Biodegradation, 1997, 40(1): 1–10
    [393] Beech I B, Smith J R, Steele A A, et al. The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids and Surfaces B: Biointerfaces, 2002, 23(2-3): 231–247
    [394] Priester J H, Horst A M, Van De Werfhorst L C, et al. Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. Journal of Microbiological Methods, 2007, 68(3): 577–587
    [395] Haisch C, Niessner R. Visualisation of transient processes in biofilms by optical coherence tomography. Water Research, 2007, 41(11): 2467–2472
    [396] Xavier J B, White D C, Almeida J S. Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. Water Science and Technology, 2003, 47(5): 31–37
    [397] Oh Y J, Jo W, Yang Y, et al. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Ultramicroscopy, 2007, 107(10–11): 869–874
    [398] Hunter R C, Beveridge T J. High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy. Journal of Bacteriology, 2005, 187(22): 7619–7630
    [399] Lawrence J R, Swerhone G D W, Leppard G G, et al. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Applied and Environmental Microbiology, 2003, 69(9): 5543–5554
    [400] Suci P A, Geesey G G, Tyler B J. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Candida albicans biofilms. Journal of Microbiological Methods, 2001, 46(3): 193–208
    [401] Patel C, Dunn S, Takhistov P. Combined spectrophotometric–electrochemical impedance imaging system for biofilm research. Journal of the Association for Laboratory Automation, 2005, 10(1): 16–23
    [402] Cortizo M C, Fernández Lorenzo de Mele M. Microstructural characteristics of thin biofilms through optical and scanning electron microscopy. World Journal of Microbiology and Biotechnology, 2003, 19(8): 805–810
    [403]董成亚,马小彤.生物被膜分散方式的研究进展.微生物学通报,2005,32(6):120–123
    [404] Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 2002, 36(11): 2711–2720
    [405]蒋巍,钟方丽,史晋宜等.生物膜胞外聚合物的研究进展.吉林化工学院学报,2001,18(3):85–88
    [406] Zeng K F, Tep K C, Grimes C A. Nonlinear effects in magnetoelastic sensors. Sensor Letters, 2005, 3(3): 222–224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700