用户名: 密码: 验证码:
谷胱甘肽—二茂铁的合成及其与金属硫蛋白的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学方法具有快速灵敏、操作简单等优点,应用于研究多肽与蛋白质相互作用,能获取某些相互作用机理的相关信息。但是由于大多数多肽或蛋白质不具有电化学活性,从而阻碍了这一方法的应用。本论文的主要工作有:
     以二茂铁甲酸为起始原料,采用液相合成法得到具有电活性的还原型谷胱甘肽-二茂铁(化合物7,Fc-GSH, Fc:ferrocene,二茂铁),总收率为12.5%和氧化型谷胱甘肽-二茂铁(化合物10,Fc-GSSG-Fc),总收率为46.0%。并用红外光谱(IR)、紫外-可见吸收光谱(UV-Vis)、核磁共振氢谱(1H-NMR)和质谱(MS)对产物进行了表征。
     采用电化学方法研究了Fc-GSH与金属硫蛋白(Zn7-MT)的相互作用。实验结果表明Fc-GSH在Zn7-MT修饰金电极上有一对很好的氧化还原峰,Epa=0.218 V,Epc=0.154 V,△Ep=64 mV,ipa/ipc= 1.03。而Fc-GSH在裸金电极上的氧化还原电位分别为Epa’=0.205 V和Epc’=0.147 V,△Ep’=58 mV,ipa'/ipc'=1.02。说明Zn7-MT与Fc-GSH之间具有特殊相互作用,且电极过程均为可逆反应过程,并测得Zn7-MT与Fc-GSH的结合比和结合常数分别为1.78±0.15和5.54±0.43×108。同时研究表明单独的Fc-GSH不能从Zn7-MT中释放出Zn2+。
     采用电化学方法研究了Fc-GSSG-Fc的电化学性质及其与Zn7-MT的相互作用。实验结果表明Fc-GSSG-Fc在Zn7-MT修饰金电极上有一对很好的氧化还原峰,Epa2=0.428 V,Epc2=0.351 V,△Ep2=77mV,ipa2/ipc2=1.13电极过程为准可逆反应过程。而Fc-GSSG-Fc在裸金电极上的氧化还原电位分别为Epa1=0.425 V和ipc1=0.353V,△EpI=72 mV,ipa1/ipc1=0.96;同时研究表明Fc-GSSG-Fc能促使Zn2+从Zn7-MT中释放出来,证明了Fc-GSSG-Fc与Zn7-MT之间存在相互作用。通过研究Fc-GSSG-Fc与Zn7-MT和脱金属硫蛋白(apo-MT)的溶液电化学行为,讨论了Fc-GSSG-Fc与Zn7-MT发生Zn-S/-S-S-键交换可能生成两分子的Fc-GSH。此外还研究了Fc-GSSG-Fc与Zn2+的配位作用,结果表明Zn2+与Fc-GSSG-Fc能形成1:1的配合物,与文献报道的未标记GSSG与Zn2+的配位数一致。
The interaction between peptide and protein was investigated by electrochemical method. However, most of peptides or proteins are electro-inactive, so it is different to apply electrochemical method to study the interactions between peptides and proteins. In this study, an electrochemical method was employed for the determination of the interation between redox-inactive glutathione and metallothionein. The main works of the thesis are as follows:
     Reduced glutathionyl ferrocene (Fc-GSH, Fc:ferrocenoyl) and oxidized glutathionyl ferrocene (Fc-GSSG-Fc) were synthesized from ferrocene monocarboxylic acid, reduced glutathione (GSH), and oxidized glutathione (GSSG) by liquid-phase synthesis method with the yields of 12.5% and 46.0%, respectively. These compounds were characterized by IR spectrum, UV-vis spectrum,1H-NMR and mass spectrum.
     The interation between Fc-GSH and Zn7-MT was studied by electrochemical method. A pair of well-defined voltammetric peaks, with the anodic peak potential (Epa=0.218 V) and cathodic peak potential (Epc=0.154 V) were observed for Fc-GSH at Zn7-MT modified electrode (ΔEp=77 mV, ipa/ipc=1.13). However, the anodic and cathodic peak potentials were 0.205 V and 0.147 V, respectively, were observed for Fc-GSH at bare gold electrode (ΔEp'=58 mV, ipa'/ipc'=1.02). It indicates that Fc-GSH undergoes a reversible electron transfer reaction and a specific interaction between Fc-GSH and Zn7-MT, the binding constant and the binding ratio were 5.54±0.43×106 and 1.78±0.15, respectively.
     The interation between Fc-GSSG-Fc and Zn7-MT was studied by electrochemical methos as well. A pair of well-defined voltammetric peaks, with the anodic peak potential (Epa1=0.428 V) and cathodic peak potential (Epc1=0.351 V) were appeared for Fc-GSH at Zn7-MT modified electrode (ΔEp1=64 mV, ipa1/ipc1=1.03). Tthe anodic and cathodic peak potentials were 0.425 V and 0.353 V, respectively, were observed for Fc-GSH at bare gold electrode (ΔEp2=72 mV, ipa2/ipc2=0.96). It indicates that Fc-GSSG-Fc undergoes a quasi-reversible electron transfer reaction and a special interaction between Fc-GSSG-Fc and Zn7-MT, and Fc-GSSG-Fc can release zinc from Zn7-MT. It also demonstrates that there is an interaction between Fc-GSSG-Fc and Zn7-MT. The interactions of Fc-GSSG-Fc with Zn7-MT and apo-MT were investigated too. Inaddition, Zn2+forms a 1:1 complex with Fc-GSSG-Fc, this result is in good agreement with literature.
引文
[1]Kealy T J, Pauson P L. A new type of organic-iron compound[J]. Nature,1951, 168(4285):1039-1040.
    [2]Wilkinson G, Rosenblum M, Whiting M C, et al. The structure of iron bis-cyclopentadienyl[J]. J. Am. Chem. Soc.,1952,74(8):2125-2126.
    [3]山本明夫,有机金属化学[M].北京:科学出版社,1997:406-407.
    [4]Rinehart Jr K L, Motz K L, Sung M. Organic chemistry of ferrocene. I:the acetylation of dialkylferrocenes[J]. J. Am. Chem. Soc.,1957,79(11):2749-2754.
    [5]Neus E W, Trifan D S. Alkylation of ferrocene with α-aryl alcohols[J]. J. Am. Chem. Soc.,1962,84(10):1850-1856.
    [6]Rulkens R, Gates D P, Balaishis D, et al. Highly strained, ring-tilted [1]ferrocenophanes containing group 16 elements in the bridge:synthesis, structures, and ring-openingoligomerization and polymerization of [1]thia-and [1]selenaferrocenophanes[J]. J. Am. Chem. Soc.,1997,119(45):10976-10986.
    [7]Go'mez-Elipe P, Resendes R, Macdonald P M, et al. Transition metal catalyzed ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes:facile molecular weight control and the remarkably convenient synthesis of poly (ferrocenes) with regioregular, comb, star, and block architectures[J]. J. Am. Chem. Soc.,1998,120(33):8348-8356.
    [8]Peckham T J, Massey J A, Honeyman C H, et al. Living anionic polymerization of phosphorus-bridged [1]ferrocenophanes:Synthesis and characterization of well-defined poly(ferrocenylphosphine) homopolymers and block copolymers[J]. Macromolecules,1999,32(9):2830-2837.
    [9]Neuse E W. Macromolecular ferrocene compounds as cancer drug models[J]. J. Inorg. Organomet. Polym.,2005,15(1):3-32.
    [10]Pinto A, Hoffmanns U, Ott M, et al. Modification with organometallic compounds improves crossing of the blood-brain barrier of [Leu(5)]-enkephalin derivatives in an in vitro model system[J]. Chembiochem,2009, 10(11):1852-1860.
    [11]袁耀峰,叶素明,张蕴文,王积涛.具有生物(理)活性的二茂铁衍生物[J].化学通报,1995,(5):24-31.
    [12]Neuse E W, Meirim M G, N"Da D D, et al. Polymer-ferrocene conjugates containing an ester function in the connecting links[J]. J. Inorg. Organomet. Polym.,1999,9(4):221-230.
    [13]Caldwell G, Meirim M G, Neuse E W, et al. Antineoplastic activity of polyaspartamide-ferrocene conjugates[J]. Appl. Organomet. Chem.,1998, 12(12):793-799.
    [14]Johnson M T, Kreft E, N'Da D D, et al. The cytotoxic activity of macromolecular ferrocene conjugates against the Colo 320 DM human colon cancer line[J]. J. Inorg. Organomet. Polym.,2003,13(4):255-267.
    [15]Sharp M. Determination of the charge-transfer kinetics of ferrocene at platinum and vitreous carbon electrodes by potential step chronocoulometry[J]. Electrochim. Acta,1983,28(3):301-308.
    [16]Bond A M, Henderson T L E, Mann D R, et al. A fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes[J]. Anal. Chem.,1988,60(18):1878-1882.
    [17]Bond A M, Oldham K B, Snook G A. Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high resistance organic solvents[J]. Anal. Chem.,2000, 72(15):3492-3496.
    [18]Tsierkezos N G. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K[J]. J. Solution. Chem.,2007,36(3):289-302.
    [19]Lewandowski A, Waligora L, Galinski M. Ferrocene as a reference redox couple for aprotic ionic liquids[J]. Electroanalysis,2009,21(20):2221-2227.
    [20]Zanello P, Opromolla G, Fabrizi de Biani F, et al. The redox behaviour of ferrocene derivatives:ⅩⅢ. Fluorenyl ferrocenes[J]. Inorg. Chim. Acta,1997, 255(1):47-52.
    [21]Bosque R, Lopez C, Sales J. Substituent effects on the electrochemical behaviour of iron(Ⅱ) in Schiff bases derived from ferrocene and their cyclopalladated compounds[J]. Inorg. Chim. Acta,1996,244(1):141-145.
    [22]Kraatz H B. Ferrocene-conjugates of amino acids, peptides and nucleic acids[J]. J. Inorg. Organomet. Polym. Mater.,2005,15(1):83-106.
    [23]Luo X T, Lee T M H, Hsing I M. Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid[J]. Anal. Chem.,2008,80(19):7341-7346.
    [24]Kerman K, Kraatz H B. Electrochemical probing of HIV enzymes using ferrocene-conjugated peptides on surfaces[J]. Analyst,2009,134(12): 2400-2404.
    [25]Okawa Y, Nagano M, Hirota S, et al. Tethered mediator biosensor:mediated electron transfer between redox enzyme and electrode via ferrocene anchored to electrode surface with long poly(oxyethylene) chain[J]. Biosens. Bioelectron., 1999,14(2):229-235.
    [26]Yan Y-M, Tel-Vered R, Yehezkeli O, et al. Biocatalytic growth of Au nanoparticles immobilized on glucose oxidase enhances the ferrocene-mediated bioelectrocatalytic oxidation of glucose[J]. Adv. Mater.,2008, 20(12):2365-2370.
    [27]Qiu J D, Zhou W M, Guo J, et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose[J]. Anal. Biochem.,2009, 385(2):264-269.
    [28]Shim N Y, Bernards D A, Macaya D J, et al. All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator[J]. Sensors,2009, 9(12):9896-9902.
    [29]Abasiyanik M F, Senel M. Immobilization of glucose oxidase on reagentless ferrocene-containing polythiophene derivative and its glucose sensing application[J]. J. Electroanal. Chem.,2010,639(1-2):21-26.
    [30]Sies H. Glutathione and its role in cellular functions[J]. Free. Radical. Biol. Med.,1999,27(9-10):916-921.
    [31]Zhang J Y, Hu Z D, Chen X G. Quantification of glutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection[J]. Talanta,2005,65(4):986-990.
    [32]Meister A, Anderson M E. Glutathione[J]. Ann. Rev. Biochem.,1983, 52(1):711-760.
    [33]Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts[J]. FEMS Yeast Res.,2002,2(3):295-305.
    [34]Meister A. Glutathione, ascorbate, and cellular protection[J]. Cancer Res.,1994, 54(7):1969-1975.
    [35]Orlowski M, Meister A. The y-Glutamyl Cycle:A Possible transport system for amino acids[J]. Proc. Natl. Acad. Sci. USA.,1970,67(3):1248-1255.
    [36]Vina J R, Palacin M, Puertes I R, et al. Role of the gamma-glutamyl cycle in the regulation of amino acid translocation[J]. Am. J. Physiol.,1989, 257(6):E916-E922.
    [37]Foyer C H, Lopez-Delgado H, Dat J F, et al. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling[J]. Physiol. Plant.,1997,100(2):241-254.
    [38]Spolarics. Z, Wu J-X. Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells[J]. Am. J. Physiol.,1997, 273(6):G1304-G1311.
    [39]Sewald H, Jakubke H D.肽:化学与生物学[M].北京:科学出版社,2002:234-235.
    [40]Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure[J]. Free Radical Biol. Med.,1996,21(6):845-853.
    [41]Filomeni G, Rotilio G, Ciriolo M R. Cell signalling and the glutathione redox system[J]. Biochem. Pharmacol.,2002,64(5-6):1057-1064.
    [42]Moriarty-Craige S E, Jones D P. Extracellular thiols and thiol/disulfide redox in metabolism[J]. Annu. Rev. Nutr.,2004,24(1):481-509.
    [43]Kidd P M. Glutathione:Systemic protectant against oxidative and free radical damage[J]. Altern. Med. Rev.,1997,2(3):155-176.
    [44]Herzenberg L A, De Rosa, Gregson Dubs J, et al. Glutathione deficiency is associated with impaired survival in HIV disease[J]. Proc. Natl. Acad. Sci. USA., 1997,94(5):1967-1972.
    [45]Kharb S. Low whole blood glutathione levels in pregnancies complicated by preeclampsia and diabetes[J]. Clin. Chim. Acta,2000,294(1-2):179-183.
    [46]Darmaun D, Smith S D, Sweeten S, et al. Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes[J]. Diabetes,2005,54(1):190-196.
    [47]Zentella de Pina M, Corona S, Rocha-Hernandez A E, et al. Restoration by piroxicam of liver glutathione levels decreased by acute ethanol intoxication[J]. Life. Sci.,1994,54(19):1433-1439.
    [48]Fernandez-Checa J, Hirano T, Tsukamoto H, et al. Mitochondrial glutathione depletion in alcoholic liver disease[J]. Alcohol,1993,10(6):469-475.
    [49]Chamberlain C G, Mansfield K J, Cerra A. Glutathione and catalase suppress TGF beta-induced cataract-related changes in cultured rat lenses and lens epithelial explants[J]. Mol. Vision,2009,15:895-905.
    [50]Zhang S, Chai F Y, Yan H, et al. Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats[J]. Mol. Vision,2008,14:862-870.
    [51]Elzbieta L K. Glutathione in Parkinson's Disease:Application of thiols as a new therapeutic strategy[J]. Pharmacol. Rep.,2009,61(6):1232-1232.
    [52]Martin H L, Teismann P. Glutathione-a review on its role and significance in Parkinson's disease[J]. FASEB J.,2009,23(10):3263-3272.
    [53]Yeager M P, Coleman R A. In silico evidence for glutathione-and iron-related pathogeneses in Parkinson's disease[J]. J. Neurosci. Meth.,2010, 188(1):151-164.
    [54]Galant N J, Wang H, Lee D R, et al. Thermodynamic role of glutathione oxidation by peroxide and peroxybicarbonate in the prevention of Alzheimer's disease and cancer[J]. J. Phys. Chem. A,2009,113(32):9138-9149.
    [55]Townsend D M, He L, Hutchens S, et al. NOV-002, a Glutathione disulfide mimetic, as a modulator of cellular redox balance[J]. Cancer Res.,2008, 68(10):2870-2877.
    [56]Townsend D M, Tew K D. Pharmacology of a mimetic of glutathione disulfide, NOV-002[J]. Biomed. Pharmacother,2009,63(2):75-78.
    [57]Uys J D, Manevich Y, DeVane L C, et al. Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic[J]. Biomed. Pharmacother.,2010, 65(1):1-6.
    [58]Mieyal J J, Gallogly M M, Qanungo S, et al. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation[J]. Antioxid. Redox Sign., 2008,10(11):1941-1988.
    [59]Brennan J P, Miller J I, Fuller W. The Utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation[J]. Mol. Cell. Proteomics., 2006,5(2):215-225.
    [60]Paik S R, Lee D, Cho H-J, et al. Oxidized glutathione stimulated the amyloid formation of a-synuclein[J]. FEBS Lett.,2003,537(1-3):63-67.
    [61]Margoshes M, Vallee B L. A cadmium protein from equine kidney cortex[J]. J. Am. Chem. Soc.,1957,79(17):4813-4814.
    [62]Binz P-A, Kagi J H R. Metallothionein:molecular evolution and classification, In:Klaassen C, ed. Metallothionein IV[M]. Basel:Birkhauser Verlag,1999: 7-13.
    [63]Stillman M J. Metallothioneins[J]. Coordin. Chem. Rev.,1995,144(1):461-511.
    [64]Chan J N, Huang Z Y, Merrifield M E, et al. Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques [J]. Coordin. Chem. Rev.,2002,233-234:319-339.
    [65]Robbins A H, McRee D E, Williamson M, et al. Refined crystal structure of Cd, Zn metallothionein at 2.0A resolution[J]. J. Mol. Biol.,1991,221(4):1269-1293.
    [66]Bremner I. Nutritional and physiological significance of metallothionein [J]. Experientia. Suppl.,1987,52:81-107.
    [67]Hempe J M, Cousins R J. Cysteine-rich intestinal protein and intestinal metallothionein:an inverse relationship as a conceptual model for zinc absorption in rats[J]. J. Nutr.,1992,122(1):89-95.
    [68]Vallee B L. The function of metallothionein[J]. Neurochem. Int.,1995, 27(1):23-33.
    [69]Winge D R, Jensen L T, Srinivasan C. Metal-ion regulation of gene expression in yeast[J]. Curr. Opin. Chem. Biol.,1998,2(2):216-221.
    [70]Jiang L J, Maret W, Vallee B L. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase[J]. Proc.Natl. Acad. Sci. USA.,1998,95(7):3483-3488.
    [71]Zeng J, Vallee B L, Kagi J H. Zinc transfer from transcription factor IIIA fingers to thionein clusters[J]. Proc. Natl. Acad. Sci. USA.,1991,88(22):9984-9988.
    [72]Thornalley P J, Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals[J]. BBA-Protein Struct. M.,1985, 827(1):36-44.
    [73]Tamai K T, Gralla E B, Ellerby L M, et al. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase[J]. Proc. Natl. Acad. Sci. USA.,1993,90(17):8013-8017.
    [74]Stillman M J, Shaw F C, Suzuki K T. Metallothioneins:Synthesis, structure and properties of metallothioneins, phytochelatins and metal-thiolate complexes[M]. New York:John Wiley & Sons,1992:201-210.
    [75]Crawford B D, Enger M D, Griffith B B, et al. Coordinate amplification of metallothionein Ⅰ and Ⅱ genes in cadmium-resistant Chinese hamster cells: implications for mechanisms regulating metallothionein gene expression[J]. Mol. Cell. Biol.,1985,5(2):320-329.
    [76]Cherian M G, Huang P C, Klaassen C D, et al. National cancer institute workshop on the possible roles of metallothionein in carcinogenesis[J]. Cancer Res.,1993,53(4):922-925.
    [77]Oh S, Deagen J, Whanger P, et al. Biological function of metallothionein. V. Its induction in rats by various stresses[J]. Am. J. Physiol. Endocrinol. Metab., 1978,234(3):E282-E285.
    [78]Cherian M G, Apostolova M D. Nuclear localization of metallothionein during cell proliferation and differentiation[J]. Cell. Mol. Biol.,2000,46(2):347-356.
    [79]Brouwer M, Brouwer-Hoexum T, Cashon R. Crustaceans as models for metal metabolism:Ⅲ. Interaction of lobster and mammalian metallothionein with glutathione[J]. Mar. Environ. Res.,1993,35(1-2):13-17.
    [80]Brouwer M, Brouwer-Hoexum T. Glutathione-mediated transfer of copper(Ⅰ) into American lobster apohemocyanin[J]. Biochemistry,1992, 31(16):4096-4102.
    [81]Maret W. Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange[J]. Proc. Natl. Acad. Sci. USA.,1994,91(1):237-241.
    [82]Maret W. Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc[J]. Neurochem. Int.,1995,27(1):111-117.
    [83]Jacob C, Maret W, Vallee B L. Control of zinc transfer between thionein, metallothionein, and zinc proteins[J]. Proc. Natl. Acad. Sci. USA.,1998, 95(7):3489-3494.
    [84]Maret W, Vallee B L. Thiolate ligands in metallothionein confer redox activity on zinc clusters[J]. Proc. Natl. Acad. Sci. USA.,1998,95(7):3478-3482.
    [85]Carter M T, Rodriguez M, Bard A J. Voltammetric studies of the interaction of metal chelates with DNA.2. Tris-chelated complexes of cobalt(Ⅲ) and iron(Ⅱ) with 1,10-phenanthroline and 2,2'-bipyridine[J]. J. Am. Chem. Soc.,1989, 111(24):8901-8911.
    [86]Qu F, Li N-Q, Jiang Y-Y. Electrochemical studies of porphyrin interacting with DNA and determination of DNA[J]. Anal. Chim. Acta,1997,344(1-2):97-104.
    [87]Qu F, Li N-Q, Jiang Y-Y. Electrochemical studies of NiTMpyP and interaction with DNA[J]. Talanta,1998,45(5):787-793.
    [88]Bao X, Zhu Z, Li N-Q, et al. Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin[J]. Talanta,2001,54(4):591-596.
    [89]Sun W, Han J-Y, Ren Y, et al. Voltammetric studies on the interaction of orange G with proteins:analytical applications[J]. J. Brazil. Chem. Soc.,2006, 17(3):510-517.
    [90]Fotouhi L, Kohestanian E, Heravi M M. The effect of metal ions on the electrochemistry of the furazolidone[J]. Electrochem. Commun.,2006, 8(4):565-570.
    [91]Fotouhi L, Banafsheh S, Heravi M M. Electrochemistry of the interaction of furazolidone and bovine serum albumin[J]. Bioelectrochemistry,2009, 77(1):26-30.
    [92]Tian X, Song Y, Dong H, et al. Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode[J]. Bioelectrochemistry, 2008,73(1):18-22.
    [93]Luo H, Du Y, Guo Z-X. Electrochemistry of N-n-undecyl-N'-(sodium-p-aminobenzenesulfonate) thiourea and its interaction with bovine serum albumin[J]. Bioelectrochemistry,2009,74(2):232-235.
    [94]Wang F, Xu Y, Zhao J, et al. Electrochemical oxidation of morin and interaction with DNA[J]. Bioelectrochemistry,2007,70(2):356-362.
    [95]Plumb K, Kraatz H-B. Interaction of a Ferrocenoyl-modified peptide with papain:toward protein-sensitive electrochemical probes[J]. Bioconjugate. Chem., 2003,14(3):601-606.
    [96]Anne A, Bouchardon A, Moiroux J.3'-ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces:novel model systems for exploring flexibility of short DNA using cyclic voltammetry[J]. J. Am. Chem. Soc.,2003, 125(5):1112-1113.
    [97]Peng Y, Liu Y-N, Zhou F. Voltammetric studies of the interactions between ferrocene-labeled glutathione and proteins in solution or immobilized onto surface[J]. Electroanalysis,2009,21(16):1848-1854.
    [98]王芳斌,彭勇,范美意,刘又年,黄可龙.谷胱甘肽-二茂铁的合成及其与牛血清白蛋白的相互作用[J].物理化学学报,2009,25(6):1125-1130.
    [99]Rosenblum M, Woodward R B. The structure and chemistry of ferrocene Ⅲ: evidence pertaining to the ring rotational barrier[J]. J. Am. Chem. Soc.,1958, 80(20):5441-5443.
    [100]Bard A J, Faulkner L R. Electrochemical methods:fundamentals and applications[M]. New York:John Wiley & Sons,2001:231-232.
    [101]Yang M, Zhang Z, Hu Z, et al. Differential pulse anodic stripping voltammetry detection of metallothionein at bismuth film electrodes[J]. Talanta,2006, 69(5):1162-1165.
    [102]Chahma M, Lee J S, Kraatz H-B. Synthesis and electrochemistry of 5-ferrocene-glucosamide,5-ferrocene-glucosamide phosphate and 5-ferrocene-amido-5-adenosine in aqueous solution[J]. J. Organomet. Chem., 2002,648(1-2):81-86.
    [103]Krezel A, Maret W. Dual nanomolar and picomolar Zn(Ⅱ) binding properties of metallothionein[J]. J. Am. Chem. Soc.,2007,129(35):10911-10921.
    [104]Meyer A S, Ayres G H. The mole ratio method for spectrophotometric determination of complexes in solution[J]. J. Am. Chem. Soc.,1957, 79(1):49-53.
    [105]Momoki K, Sekino J, Sato H, et al. Theory of curved molar ratio plots and a new linear plotting method[J]. Anal. Chem.,1969,41(10):1286-1299.
    [106]Postal W S., Vogel E J, Young C M, et al. The binding of copper(Ⅱ) and zinc(Ⅱ) to oxidized glutathione[J]. J. Inorg. Biochem.,1985,25(1):25-33.
    [107]Li N C, Gawron O, Bascuas G. Stability of zinc complexes with glutathione and oxidized glutathione[J]. J. Am. Chem. Soc.,1954,76(1):225-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700