用户名: 密码: 验证码:
不同土壤水分含量对刺槐光合特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一年生刺槐(Robinia pseudoacacia)幼苗为实验材料,采取盆栽方式,研究其光合特性对不同土壤水分条件的响应及其变化规律,探讨水分胁迫下的生理适应机制。实验设置3种土壤水分处理(土壤最大持水量的70%、55%、40%),分别表示对照、轻度水分胁迫和严重水分胁迫。结果表明:
     (1)水分胁迫显著抑制了刺槐的株高生长和地径生长,且随着胁迫程度加剧株高、地径受到抑制程度增加。
     (2)随着水分胁迫的加大刺槐的光饱和点(LSP)、最大净光合速率(Amax)、表观量子效率(AQY)逐渐降低,光补偿点(LCP)、暗呼吸速率(Rd)呈升高趋势,表明水分胁迫使刺槐的光合能力降低,对光强的应用范围变窄,对光环境的适应能力降低。不同水分处理下刺槐的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)及水分利用率(WUE)对光合有效辐射(PAR)的响应均表现为:对照处理>轻度水分胁迫>严重水分胁迫,Pn、Gs及WUE对光照强度的变化具有明显的阈值响应。
     (3)随着水分胁迫加剧,净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间二氧化碳浓度(Ci)均呈下降趋势。各处理间刺槐水分利用率(WUE)在9:00-17:00之间区别不是很明显,其日变化趋势与净光合速率(Pn)日变化相似。
     (4)随着土壤水分胁迫的加剧,叶片的叶绿素a(Chl a)、叶绿素b(Chl b)含量下降,但类胡萝素(Car)含量表现为:轻度水分胁迫>严重水分胁迫>对照处理,起到一种光保护作用。
     (5)水分处理显著降低了PSⅡ系统最大量子产量(Fv/Fm)、非循环光合电子传递速率(ETR)表明PSⅡ活性中心受水分胁迫的影响,光合原初反应中电子传递过程受阻。PSⅡ实际量子产量(Yield)也随水分减少而减少,同时其日动态变化反映了PSⅡ反应中心的光化学活性可逆失活变化过程。ETR对PAR的响应均表现为先增后减趋势且对照处理>轻度水分胁迫>严重水分胁迫,同时对照处理的ETR最高点出现在PAR为1300μmol·m-2·s-1,而轻度水分胁迫和严重水分胁迫的ETR达到最高时PAR大约为800mol·m-2·s-1。叶绿素荧光的光化学淬灭随水分胁迫的加重逐渐降低,而非光化学淬灭逐渐上升。
     (6)不同土壤水分条件下韧皮部蔗糖的运输速率不同,并随着水分胁迫的加剧而降低。
     (7)不同水分处理下刺槐叶、茎、粗根中还原性糖含量随着水分胁迫的加剧逐渐升高。叶片中蔗糖的含量随着水分胁迫的加剧而增加,茎和粗根中蔗糖含量随水分的含量的降低而下降。刺槐各个部位总的可溶性糖含量均随水分含量的减少而上升,各处理之间差异显著。不同水分条件下叶、茎、粗根中淀粉含量的变化具有明显的规律性,均随着水分胁迫加剧而减少。
Robinia pseudoacacia seedlings were used in the study to investigate the influence of different soil contents on photosynthetic characteristics and the underlying mechanism as well as the adaptability of their physiological mechanism to water stress. The three kinds of soil moisture treatment condition were adopted with the maximum field capacity for holding water being 70%, 55% and 40%, which simulated the environment conditions with no water stress, mild water stress, and severe water stress respectively. The results indicated that,
     (1) Water stress significantly inhibited the growth of the plant height and diameter of stem base of Robinia pseudoacacia. The plant height and diameter of stem base was inhibited with the increasing degree of water stress.
     (2) Along with the increase of water stress, there was a trend to decrease in light saturation point (LSP), maximum photosynthetic rate (Amax) and apparent quantum yield (AQY), but a trend to increase in light compensation point (LCP) and dark respiration rate (Rd). The results reaveled that water stress led to series responds of robina pseudoacacia, which included narrowing the range of photosynthetic active radiation, decreasing the photosynthetic capability and the adaptability. Under different soil conditions, the impact of Pn, Gs, Tr and WUE on PAR are determined to be check, mild water stress and severe water stress respectively. Changes in light intensity are also found to play a significant role in threshold responses of Pn, Gs, and WUE.
     (3)With the increase of water stress, daily variation in net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci) of Robinia pseudoacacia were indicated a trend to decrease. The difference of variation in water use efficiency (WUE) beween different water stress are not significant during the period of the day from 9 a.m. to 5 p.m., which shared the same trend of daliy variation net photosynthetic rate (Pn).
     (4)As water stressing increased, concentration of Chlorophyll a (Chl a) and Chlorophyll b(Chl b) of leaves have decreased. However, Carotenoid (Car) concentration was highest in mild water stress, then in severe water stress and the least in check, indicating a protective role against light.
     (5)Water treatment led to a significant decrease in the efficiency (Fv/Fm) of the primary conversion of light energy in the reaction center of photo system II(PSⅡ), and of the non-cycle photosynthetic electron transport rate (ETR). This showed that the active sites in photo systemⅡwere inhibated by water stress, and the process of electron transfer in primary photosynthetic reactions was discouraged by this stress. Simultaneously, quantum yield of PSⅡelectron transport (Yield) in photo system II was reduced with the water stress increasing, and the process of reversible deactivation in the reaction center of photo systemⅡwas reflected by its daily dynamic variations. The impact of ETR showed an increase followed by a decrease of PAR with the following results of check, mild water stress and severe water stress respectively. And when ETR reached the highest point, the PAR in check was 1300μmol·m-2·s-1 with 800μ·m-2·s-1 in mild and severe water stress. With the increase of water stress the photochemical chlorophyll fluorescence quenching decreased, but the non-photochemical quenching gradually increased.
     (6) The transportation velocity of saccharose in phloem are different among different soil moisture condition, and with the increased water stress, the velocity decreased.
     (7)The concentration of reduced sugar in leaves, stems and thick roots of Robinia pseudoacacia increased gradually with the increase of the water stress. Saccharose conentration in leaves increased largely with increased water stress, but decreased in stem and thick root. With the increase of the water stress the concentration of soluble sugar in all tested organs of Robinia pseudoacacia increased, with the significant difference between each water stress treatment. The tests on leaves, stems and thick root indicated that along with the increase of water stress, the starch content reduced.
引文
[1]徐彬.水资源的危机警示.决策与信息, 2004,8: 6-7.
    [2]高甲荣.黄土高原水资源面临的问题与对策[J].地理学与国土研究, 1998, 14(4):34-37.
    [3]吴钦孝,杨文治.黄土高原植被建设与可持续发展[M].北京:科学出版社, 1998.54.
    [4]刘康,陈一鹗.黄土高原沟壑区刺槐林水分动态与生产力的研究[J].水土保持通报,1990,10(9):67-68.
    [5]李凯荣,王佑民.黄土塬区刺槐林地水分条件与生产力研究[J].水土保持通报, 1990,10 (6):58-65.
    [6]Darvill A, Augur C, Bernmann C, Carlson R.W, Cheong J.J, et al. Oligosaccharins-oligosaccharides that regulate growth, development and defence responses in plants[J]. Glycobiology, 1992, 2(3):181-189.
    [7]宋建民,田纪春,赵世杰.植物光合碳代谢和氮代谢之间的关系及其调节[J].植物生理学通讯, 1998, 6(3):230-238.
    [8]潘庆民,韩兴国,白永飞,杨景成.植物非结构性贮藏碳水化合物的生理生态学研究进展[J].植物学通报, 2002,19(1):30-38.
    [9]Tzyy Jen Chiou, Daniel R. Bush. Sucrose is a signal molecule in assimilate partitioning[J]. Plant Biol,1998, 95:4784–4788.
    [10]Jennifer R. Gottwald,Patrick J. Krysan, Jeffery C. Young, et al. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters[J]. PNAS, 2000,25: 13979–13984.
    [11]Farrar J.F, Jones D.L. The control of carbon acquisition by roots[J]. New Phytologist ,2000,147: 43–53.
    [12]Daie J. Metabolic adjustments, assimilate partitioning, and alterations in source-sink relations in drought-stressed plants. In: Zamski E, Schaffer AA (eds) Photoassimilate Distribution in Plants and Crops[J]. Source-Sink Relationships. Marcel Dekker Inc, New York, NY, 1996: 407–420.
    [13]Vanden Ende W, Roover J.D, Laere A.V.Effect of nitrogen concentration on fructan metabolizing enzymes in young chicory plants (Cichorium intybus)[J]. Physiol Plant, 1999, 105:2-8.
    [14]Koch KE. Carbohydrate-moldulated gene expression in plants[J]. Ann Rev Plant Physiol Plant MolBiol ,1996, 47: 509–540.
    [15]Gilles Lemaire, Peter Millerd. An ecophysiological approach to modeling resource fluxes in competing plants[J]. J Exp Bot, 1999, 330:15-28.
    [16]Myers B.J et al. Water stress and seedlings growth of two eucalypt species from contrasting habitats[J].Tree Physiol.1989,5:207-218.
    [17]李绍华.果树生长发育、产量和果实品质对水分胁迫反应的繁感期及节水灌溉[J].植物生理学讯, 1993,29(1):10-16.
    [18]关军锋,马春红,李广敏.干旱胁迫下小麦根冠生物量变化及其抗旱性的关系[J].河北农业大学报, 2004,27(1):1-5.
    [19]Friend A.L, Coleman M.D, Bebrands J.G. Carbon allocation to root and shoot systems of woody plants. In Davis TD, HaissigBE eds.Biology of Adventitijons Root Formation[J]. Plenum Press.1997.New York , 1-6.
    [20]许大全.光合作用效率[M].上海:上海科学技术出版社, 2002:33.
    [21]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学, 2005,25(4):80-83.
    [22]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究, 2003,16(5):6-11.
    [23]Demmig.A , Dams.B. Photoprotect ion and responses of plants to high light stress [J]. A nnual Reviewof Plant Physio logy and Plant Molecular Biology, 1992, 43:599-626.
    [24]HamlynG.J. Stomatal control of pho to synthesis and transpiration[J]. Journal of Experimental Botany, 1998,49: 387-398.
    [25]Farquhar G.D, Sharkey T.D. Stomatal conductance and photosynthesis[J].Ann.Res.Plant Physiol, 1982,33:317-342.
    [26]Harrison R.D, Daniell J.W,Cheshire JR. Net photosynthesis and conductance of peach seedling and cutting res ponses to changes in soil water potential[J]. Amer Soc Hort Soc, 1989, 114:986-990.
    [27]阿布力米提·买买提明,张俊佩,裴东.不同类型核桃的光合和蒸腾性能对土壤水分胁迫响应的研究[J].河北农业大学学报, 2004,27(4):26-30.
    [28]赵昌琼,芦站根,庞永珍等.土壤水分胁迫对曼地亚红豆杉光合特性的影响[J].西南师范大学学报:自然科学版, 2003,28(1):127-129.
    [29]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯, 1995,31(4):293-297.
    [30]姚雅琴,汪沛洪,胡东维,等.水分胁迫下小麦叶肉细胞超微结构的变化与抗旱性的关系[J].西北植物学报, 1993,(1)1-4.
    [31]史兰波,李云荫.水分胁迫对冬小麦幼苗几种生理指标和叶绿体超微结构的影响[J].植物生理学通讯, 1990,(2):28-31.
    [32]罗俊,张木清,吕建林等.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J].福建农业大学学报,2000,29(1):18-22.
    [33]Turner, N.C, Jones, M.M. Turgor maintenance by osmotic adjustment: a review and evaluation[J]. In: Turner, N.C.; Kramer, P.J. Adaptations of Plants to Water and High Temperature Stress. New York: John Wiley and Sons. 1980: 87-103.
    [34]Ackerson R.C. Osmo-regulation in cotton on response to water stress.Alteration in photoynthesis,leaf conductance,translocation,and ultrastructure.[J]. Plant physiol,1981,67:484-488.
    [35]罗华建等.水分胁迫对枇杷光合特性的影响[J].果树科学, 1999,16(2):126-130.
    [36]井春喜,张怀刚,师生波,张梅妞,李毅.土壤水分胁迫对不同耐旱性春小麦品种叶片色素含量的影响[J].西北植物学报, 2003,23(5):811-814.
    [37]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社, 1999, 48-50.
    [38]Pushpam R , Rangasamy S.R.S. Variations in chrophyll contents of rice in relation to salinity [J]. Crop Research,2000,20 (2):197-200.
    [39]樊卫国.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学, 2003,36(10):1243-1248.
    [40]曹慧,韩振海,许学峰等.水分胁迫下苹果属植物叶片叶绿素降解的膜脂过氧化损伤作用[J].中国农业科学,2004,36(10):1191-1195.
    [41]卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展阴.植物学通报,1994,11(增刊):9-14.
    [42]Keck K.E , Boyer J.S. Chloroplast response to low leaf water potentialsⅢ. Differing inhibition of electron transport and photophosphorylation[J]. Plant Physiol , 1974,53 : 474~479.
    [43]He J.X, Wang J, Lang H.G. Effects of water stress on photochemical function and protein metabolism of photosyslem II in wheat leaves [J]. Physiologia Plantanma, 1995,93:771-777.
    [44]Giardi M.T, Corm A, Geiken B, et al .Long-term dranghtst induces structural and functional reorganisation of photosystem II[J].Planta, 1996,199:118-125.
    [45]韦振泉,林宏辉,何军贤等.水分胁迫对小麦捕光色素蛋白复合物的影响[J].西北植物学报,2000,2(4):555-560.
    [46]Huffaker R.C.et al. Effects of mild water stress on enzeymes of nitrate assimilatin and of the carboxylative phase of photosynthesis in barley[J]. Corp Sic, 1970,10:471-474.
    [47]Lu C.M, Zhang J.H. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants[J]. J Exp of Bot, 1999.50(336): 1199-1206.
    [48]Downton. Adaptation to water deficits in grape by osmoregulation [J]. Plant Sci ,1983, (30): 137-143
    [49]Govindjee. Sixty-three years since Kautsky: Chlorophyll a fluorescence[J]. Aust J Plant Physiol, 1995,22: 131–160
    [50]张永强,毛学森,孙宏勇.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002, I0(4):13-15.
    [51]杨晓青,张岁歧等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
    [52]蒲光兰,周兰英,胡学华等.干旱胁迫对太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究, 2005,3(3):44-48.
    [53]林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用[J].植物学通报,1992,9(1):1-16.
    [54]陈立松,刘星辉.果树水分胁迫的反应和适应性[J].干旱地区农业研究,1999,17(1):88-94.
    [55]Winter K. Ividorce for the significance of orassulacean acidmetabolism as an adoptive mechanism to water stress[J]. Plant Sci, 1974, 3: 131–160
    [56]柴成林等.水分胁迫期间及胁迫解除后桃树叶片中的碳水化合物代谢[J].植物生理学通讯,2001,37(6):495-498.
    [57]王有年,杜方,于同泉等.水分胁迫对桃叶片及其相关酶活性的影响[J].北京农学院学报,2001,16(4):11-16.
    [58]李天红,李绍华.水分胁迫对苹果苗非结构性碳水化合物组分及含量的影响[J].中国农学通报,2002,18(4):35-40.
    [59]Zrenner. R and Stitt.M, Compamsom of the effect of rapidliy carbohydrate metabolism in spinach leaves Plant[J], Cell &Envir, 1991,14(9):939-946.
    [60]Quick P,Siegl Get et al. Short-term water stress leads to a srimuiation of sucrose synthesis by activating sucrose-phosphate synthase[J]. Planta, 1989,177: 535-546.
    [61]Cheikh N. Study of some control mechanisms of biosynthesis of non-structural carbohydrates in Glycine max(L) and Spinacia (L): role of plant hormones Dissertation-Abstract-International–B[J],1991, Science-and-Engmeermg ,52(3):1272B.
    [62]Battistelli A, cuiducci M,Schinppa T and Murata N.shects of photosynthetic carbon metabolism on soybean under water stress Research in Photosynthesis.Volume .ⅣProc of theⅨth International Congress on Photosynthesis[J], Nagaya,Japan. 1992,August 30-September :275-278.
    [63]Koch KE. Carbohydrate-moldulated gene expression in plants[J]. Ann. Rev. Plant Physiol Plant Mol Biol ,1996, 47:509–540.
    [64]Gibson S.I. Plant sugar- response pathway. Part of a complex regulatory web[J]. Plant Physiol , 2000,124:1532-1539.
    [65]Hsiao T.C. Plant response to water stress [J]. Plant Physiol, 1973, 24: 519-570.
    [66]Jones M.M, Turner N C. Osmotic adjustment in leaves of sorghum in response to water deficits [J]. Plant Physiol, 1983,61: 122-126.
    [67]Munns R, Weir R. Contribution of sugars to osmotic adjustment in elongation and expanded zones of wheat leaves during moderate water deficits at two light levels [J]. Plant Physiol, 1981, 8: 93-105.
    [68]Morgan J M. Osmoregulation and water stress in higher plant [J]. Plant Physiol, 1984, 35: 299-319.
    [69]Hsiao T.C, Yambao F.B, Tumer N.C. Influence of osmotic adjustment on leaf rolling and tissue death in rice [J]. Plant physiol, 1983,75(2): 338-341.
    [70]张正斌.作物抗早节水的生理遗传育种基础[M].北京:科学出版社, 2003:6-180.
    [71]Myers B, Landsberg J. Water stress and seedling growth of two eucalypt species from contrasting haitats[J]. Tree Physiol,1989,5:207-218.
    [72]Kramar P.J. Water relation of plants [M]. New York: Academic press, 1983: 108-220.
    [73]Ludlow M.M, Chu A.C.P, Clement R.J, et al. Adaptation of species of centrosema to water stress [J]. Plant Physiol,1983,10:119-130.
    [74]Ranney T G, Bassuk N L, Whitlow T H. Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry (Prunus) trees[J]. Journal of the American Society for Horticultural Science. July 1991.116(4):684-688.
    [75]许兴,郑国琦,邓西平等.水分和盐分胁迫下春小麦幼苗渗透调节物质积累的比较研究[J].干旱地区农业研究, 2002,1:52-56.
    [76]陈晓远,凌木生,高志红.水分胁迫对水稻叶片可溶性糖和游离脯氨酸含量的影响[J].河南农业科学, 2006,12:26-30.
    [77]Koster K.L. Glass formation and desiccation tolerance in seeds[J].Plant Physiol,1996,96: 302-304.
    [78]Liu X.P, Matyssek R, Rennenberg H. Effects of elevated pO3 on carbon cycle between above and belowground organs of trees[J]. Journal of Environmental Sciences. 2006,18(5):932-936.
    [79]许振柱,周广胜,肖春旺,王玉辉. CO2浓度倍增条件下土壤干旱对两种沙生灌木碳氮含量及其适应性的影响[J].生态学报,2004,24(10):2187-2191.
    [80]韦莉莉,张小全,侯振宏,徐德应,余雪标.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报, 2005,29(3):394~402.
    [81]Deng X, Joly R.J, Hanhn D.T. The influence of plantwater deficit on dist ribution of 14C-labelled assimilates incacao seedlings[J]. Ann Bot, 1990,66:211-217.
    [82]Stemberg G.W ,Wolsteahomc, B.N. Dry matter partitioning and vegetative growth of young peach tree under water stress[J]. Aust J Plant Physiol, 1990,17: 23-36.
    [83]Wayre, H.L, McCamant T , Keller, J.D. Carbonhydrate reser·ves, translocation and storage in woody plant roots[J]. Hort Sci, 1990,25 (3):27-81.
    [84]Rao, N.K.S, Bhatt R.M. Water deficit effect on 14C sucrose transiocation in tomato[J]. Adapt Food Crops Temp Water Stress Proc Int Symp, 1992,199-204.
    [85]Sung,F.I , Krieg D.R. Relative sensitivity of photosynthstic assimilation and translocation of carbon to water stress[J]. Plant Physiol , 1979,64(5) :852-856.
    [86]Wardlaw I.F,Willenbrink, J. Carbohydrate storage and mobilisation by the culm on wheat between heading and grain matunty:the relation to sucrose synthase and sucrose-phosphate synthase [J]. Plant Physioi , 1994,21:255-271.
    [87]左文革.水分干旱胁迫对枣幼树14C-光合产物分配及生长发育的影响[D].北京农业大学硕士学位论文, 1992.
    [88]Ruehl E, Alleweldt G. Effect of water stress on carbohydrate accumulation in root and stem of four different grapevine varieties[J]. Wein-Wiss, 1990,45(6):156-159.
    [89]Yakushijn H , Mormaga K. Sugar accumulation and partitioning m Satsuma mandarin tree tissues and fruit in response to drought stress [J]. Amer Soc Hort Sci , 1998,123(4):719-726.
    [90]Wstgate M.E, Boyer J.S. Carbohydrate reserves and reproductive development at low leaf water potentlais in maize [J].Crop Sci., 1985,25(5):762-769.
    [91]Rennenberg H, Schneider S, Weber P.Analysis of uptake and allocation of nitrogen and sulphur compoundsby trees in field[J]. J Exp Bot, 1996,47:1491-1498.
    [92]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [93]高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000:101-103.
    [94]Herrick J.D, Thomas R.B. Effects of CO2 enrichment on the photosynthetic light response sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a foreststem[J]. Tree Physiology, 1999,19(12):779-786.
    [95]Nepomuceno A.L, Osterhuis D.M, Stewart J.M. Physiologicalresponses of cotton leaves and roots to water deficit induced by polyethylene glycol. Environ Exp Bot, 1998, 40:29?41.
    [96]郭盛磊,阎秀峰,白冰等.落叶松幼苗的光合特性对氮和磷缺乏症的响应[J].应用生态学报, 2005,16(4):589-594.
    [97]李合生.现代植物生理学[M].北京:高等教育出版社,2002.130-135.
    [98]习米海莉,许兴,李树华,等.水分胁迫对牛心朴子、甘草叶片色素、可溶性糖含量及碳氮比的影响[J].西北植物学报,2004,24(10):1816-1821.
    [99]熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学志,2005,24(4):417- 421. [103]夏江宝,张光灿,刘京涛,刘庆,陈建.美国凌霄光合生理参数对水分与光照的响应[J].北京林业大学学报,2008,30(5):41-45.
    [100]夏江宝,张光灿,刘京涛,刘庆,陈建.美国凌霄光合生理参数对水分与光照的响应[J].北京林业大学学报,2008,30(5):41-45.
    [101]蒋高明,常杰,高玉葆,李永庚.植物生理生态学[M].北京:高等教育出版社,2004:65- 68,161-169
    [102]曹军胜,刘广全.刺槐光合特性研究[J].西北农业学报,2005,14(3):118-122
    [103]Steduto P,Katerji N, Puertos-Molina H, NL M. Mastrorilli M,Rana G.Water-use efficiency of sweet sorghum under water stress conditions:Gas-exchange investigations at leaf and canopy scales[J]. Field CropsResearch, 1997,54:221-234.
    [104]高玉葆,任安芝,刘峰等.黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应[J].植物生态学报,1999,23(3):193-204.
    [105]Ruan C.J , Li D.Q. Study on the transpiration of artificial Hippophae rhamnoides[J]. forest in the loess hilly region[J]. Acta Ecologica Sinica. 2001.21 (12):2142-2146.
    [106]Maxwell K, Johnson G.N. Chlorophyll fluorescence-a practical guide. J Exp Bot, 2000, 51: 659-668.
    [107]Baker N.R. A possible role for photosystem I in environmental perturbations of photosynthesis [J]. Physical Plant, 1991,8 :563.
    [108]Kause G H. Photoinhibition of photosynthesis ,evolution of damaging and protective mechanism[J ]. Physicol P1ant, 1988,74:566.
    [109]Dodd IC, Critchley C, Woodall GS, et al. Photo inhibition in differently colorded juvenile leaves ofSyzygium species [J]. JExper Bot, 1998, 49: 1437-1445.
    [110]Strasser BJ, Strasser RJ. Measuring fast fluorescence transients to address environmental questions: The JIPtest. In: Mathis P (ed). Photosynthesis: from Light toBiosphere[J]. Dordrecht: KAP Press, 1995,5: 977–980.
    [111]Michal, Koblizek. On the realition between the non-photochemical quenching of chlorophyⅡfluorescence and photosystemⅡligh tharvesting efficiency[J] . A repetitive flash fluorescence induction study[J]. Photosynthesis Research, 2001,68:571- 576.
    [112]罗青红,李志军,伍维模,等.胡杨光合及绿素荧光特性的比较研究[J].西北植物学报, 2006, 26(5): 983-988.
    [113]李静,叶万辉,徐志防.刺栲的气体交换和绿素a荧光特征[J].热带亚热报, 2006,l4(5):382-388.
    [114]李霞,刘友良,焦德茂.不同高产水稻品种叶片的荧光参数的日变化和光适应特性的关系[J].作物学报, 2002,28(2):145-153.
    [115]Gilmore A.M, Yamamoto H.Y. Zeaxanthin formation and energy dependent fluorescence.quenching in pea chloroplasts[J]. Plant Physiol, 1996,96:636-643.
    [116]Blake T.J, Tschaplinski T.J, Eastham A. Stomatal control of water use efficiency in poplar clones hybrids [J]. Canadian journal of botany, 1984, 62: 1344-1351.
    [117]顾振瑜,胡景江,文建雷,王妹清.元宝枫对干早适应性的研究[J].西北林学院学报,1999,14(2):1-6.
    [118]严晓宇,叶萌,彭煜程,夏先福,赵敏,蒋燕,张岚. 14C同化物在黄柏韧皮部的运输速率测定[J].林业科技开发,2007,21(2):60-61.
    [119]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [120]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.
    [121]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-60.
    [122]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.
    [123]Koppenaal R.S, Tschaplinski T.J , Colombo S.J. Carbohydrate accumulation and turgormaintenance in seedling shoots and roots of two boreal conifers subjected to water stress[J] . Can.J. Bot ,1991, 69:2522-2528.
    [124]Tan W ,Blake T.J ,Boyle T.J.B. Drought to lerance in faster and slower growing black spruce (P icea mariana) progenies:II. Osmotic adjustment and changes of so luble carbohydrates and aminoacids under osmotic stress [J]. Physiol.Plant, 1992,85:64-651.
    [125]Surekha Bhatia , Rangil Singh. Phytohormone2mediated trans formation of sugars to starch in relation to the activities of amylases , sucrose-metabolizing enzymes in sorghum grain[J]. Plant Growth Regulation , 2002 ,00:1-8.
    [126]Shi P, K?rner C.h, Hoch G . End of season carbon supply status of woody species near the treeline in western China[J]. Basic and Applied Ecology, 2006, 7, 370-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700