用户名: 密码: 验证码:
黄土高原主要造林树种苗木根系对土壤干旱胁迫的响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择了在黄土高原广泛栽植的侧柏(Platycladus orientalis)、油松(Pinus tabulaeformis Carr.)刺槐(Robinia pseudoacacia )、山杏(Armeniaca sibiria )沙棘(Hippophae rhamnoides)、柠条(Caragana korshinkii)等树种,通过盆栽试验,研究了土壤干旱胁迫下,这些树种苗木根系的可溶性糖,游离氨基酸等生理指标以及根系内源激素和可溶性蛋白种类的变化,结合根系生物量、细根表面积等指标的测定,探讨苗木根系的抗旱机理。其主要结论如下:
     (1)干旱胁迫下,5个苗木均可通过调节根系内可溶性蛋白质、可溶性糖、淀粉和游离氨基酸的含量以提高自身对干旱的抵抗力。其中,山杏根系在干旱胁迫下积累此类渗透调节物质的能力均最强,侧柏次之,沙棘亦有显著积累可溶性糖、淀粉和游离氨基酸的能力,刺槐、柠条在积累可溶性蛋白和游离氨基酸方面能力较强。
     (2)干旱胁迫降低了油松根系的总长度、表面积、体积和根尖数量以及刺槐的干重,表明干旱胁迫不利于油松和刺槐根系的正常生长;侧柏和山杏根系在中度干旱范围内有继续生长的趋势,随着干旱程度的不断加剧,生长被阻止,但山杏的变化幅度小于侧柏,说明山杏较侧柏的根系生长能力更强,更抗旱。
     (3)干旱胁迫可刺激山杏、侧柏和油松根系合成ABA。ABA含量的增加,对于减少水分散失,减轻逆境伤害有重要意义。但这种保护机制在重度水分胁迫时被打破,ABA含量下降。刺槐根系在水分充足时ABA含量最高,具体原因需进一步探讨。
     (4)侧柏、刺槐根系IAA含量呈降低趋势,油松、山杏根系IAA含量均随胁迫加剧而增加,IAA含量的增加可认为是植物为减轻逆境伤害的保护性生理反应,有利于植物保持较高的水分状态,是油松、山杏对水分胁迫的一种适应性反应。
     (5)刺槐、山杏根系内的GA3、ZR含量均随胁迫程度加深而降低,且山杏降低幅度明显,可能是山杏在重度干旱胁迫下通过减缓生长来适应逆境的能力更强;侧柏、油松根系内的GA3、ZR有很小幅度的增涨。
     (6)干旱胁迫下,苗木根系内源激素的相互协调作用都朝着抵抗逆境伤害的方向进行,但苗木种类不同,其对干旱的耐受范围亦不尽相同。在中度干旱胁迫内,侧柏根系4种激素的协调是向着生长的方向进行,超过此限度生长停止;刺槐向着气孔关闭、促进根系生长的方向进行,超过此耐受范围则会受到逆境的伤害;山杏向着气孔关闭、降低代谢速度的方向进行,以增强根系对水分的吸收、提高自身抗旱性,随着胁迫程度的加剧,这种趋势被减弱。油松在整个胁迫过程中,内源激素的协调作用趋向以促进气孔关闭。
     (7)刺槐根系在整个干旱胁迫过程中普遍存在55KD、28KD、16KD蛋白,且均随着胁迫程度的加剧,蛋白质表现为先降低或消失后增加的趋势,说明此类蛋白质与刺槐干旱胁迫有关。
     (8)干旱胁迫可诱导柠条根系产生一些与干旱逆境相关的新蛋白,持续增强的干旱胁迫限制了柠条根系内37KD、31KD、27KD蛋白质含量的增加;23KD的蛋白质随着胁迫的产生,表现为先升后降的趋势;重度干旱胁迫可促使柠条根系产生20KD、18KD的蛋白质。
This study choices five trees as Platycladus orientalis, Pinus tabulaeformis Carr., Robinia pseudoacacia , Armeniaca sibiria, Hippophae rhamnoides , Caragana korshinkii, which planted widely in loess plateau. According the pot experiment to study the changes of content of soluble sugar, starch, free amino acids, endogenous hormones and soluble protein in these trees roots, combining with the index of root biomass and fine root surface area, to investigate the drought resistance mechanism of seedling root, analysis and compare the drought-resistant ability of trees. As the main conclusions follow:
     1. Under the water stress, these five seedlings can increases the soluble protein, soluble sugar, starch and free amino acid content in the root system to improve their drought- resistant ability. The abilities in root of A. sibiria to accumulate these osmoregulation substances are strongest in these five seedlings. P. orientalis have stronger ability. H. rhamnoides also have obvious abilities to accumulates soluble sugar, starch and free amino acid. R. pseudoacacia and Caragana korshinkii have more strong abilities to accumulates soluble protein and free amino acid content.
     2. Water stress reduced the total length, surface area, volumes and roots tip number of P. tabulaeformis and root dry weight of R. pseudoacacia, it shows that water stress goes against the root’s normal growth of P.tabulaeformis and R. pseudoacacia. The P. orientalis and A. sibiria roots have trend to continue growth under moderate drought. As the deepening of the stress degree, the growth was prevented, and the change range of A. sibiria is lower than P. orientalis, it shows that A. sibiria’s ability of root growth and drought resistance are more stronger.
     3. Water stress can stimulate the ABA synthesis in root of A. sibiria, P. orientalis and P. tabulaeformis, and it has important significance to reduce water loss and stress injury. But, the protection mechanism was broken under heavy water stress, and the content of ABA decreased. The content of ABA in root of R. pseudoacacia is highest under sufficient soil water, the reason need further study.
     4. As the stress, the content of IAA showed a decreasing tendency in roots of P. orientalis and R. pseudoacacia, and increasing tendency in P. tabulaeformis and A. sibiria. The increasing of IAA can be considered a protective physiological reaction for plant to reduce the adversity injury. Benefit from the change, plant can keep higher water state. It’s an adaptive response of A. sibiria and P. tabulaeformis to water stress.
     5. As the deepening of the stress degree, the content of GA3 and ZR in R. pseudoacacia and A. sibiria decreased, and lowered range in A. sibiria was obvious. It shows that A. sibiria has stronger ability of stress adaptation from slowing down growth under serious drought stress. The content of GA3 and ZR in P. orientalis and P. tabulaeformis increased very smally.
     6. Under the drought stress, the mutual coordination of endogenous hormones in seedlings roots towards resistant stress injury. Different seedlings often have different abilities to resistant drought stress and different tolerance ranges. Under moderate drought, the coordination of four endogenous hormones in P. orientalis toward to growth direction, and growth was limited over the range; In R. pseudoacacia, the direct tend to promote growth and stomatal closure, and over the range, the R. pseudoacacia may be encroached on stress; The coordination of endogenous hormones in A. sibiria towards stomatal closure and decrease its metabolic rate. It can enhanced the root ability for absorbing water and improve their own drought resistance. As the deepening of the stress degree, the trend was decreased. Under the whole stress range, the endogenous hormones in P. tabulaeformis tend to promote stomatal closure.
     7. 55KD, 28KD, 16KD proteins are universal existence in the root of R. pseudoacacia under the process of drought stress, and the protein shown a trend of decreasing or disappearing and then increasing as the deepening of the stress degree, it shows that these proteins are related to the drought-stress of R. pseudoacacia.
     8. The drought-stress can induced the C. korshinkii root to produce some new proteins related to drought stress. The continuous drought-stress can stop such content of proteins as 37KD, 31KD, 27KD from increasing. 23KD protein show a trendency of increasing at first and then decreasing as the causing of the stress degree, and C. korshinkii root can produce such 20KD, 18KD proteins under serious drought-stress.
引文
[1]彭祚登,李吉跃,沈熙环,等.林木抗旱性育种的现状与策略思考[J].北京林业大学学报,1998, 20(4):98-103.
    [2]杨敏生,裴保华,张树常.树木抗旱性研究进展[J].河北林果研究, 1997, 12(1):87-93.
    [3] Jackson, RB, J Canadell, JR Ehleringer,et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia, 1996, 108:389-411.
    [4]李鹏,赵忠.黄土高原沟坡地土地生产力评价的指标体系与评价方法[J].土壤与环境, 2001, 10(4):301-306.
    [5]赵忠,李鹏.渭北黄土高原主要造林树种根系分布特征及抗旱性研究[J].水土保持学报, 2002, 16(1):96-107.
    [6] Larcher W. Physiological Plant Ecology[M]. Berlin:Springer-Verlag, 1983:17-19.
    [7] Levitt J. Response of Plant to Environmental[M]. Stresses.Academic Press, NewYork, 1972:287-302.
    [8] Tuner N C. Drought resistance and adaptation to water deficits in crop plant.In: Mussel H, Stapes R C.Stress Physiology in Crop Plants. New York :Wikey, 1979:343-372.
    [9] Turner N C. Further profress in crop water relations[J]. Advances in gronomy,1997,58:293-339.
    [10]黎燕琼,郑绍伟,陈泓,刘军,吴永波,慕长龙.林木抗旱性研究及其进展[J].世界林业研究. 2007,20,1:10-15.
    [11]孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展[J].西北植物学报,2007,27(3):629-634.
    [12]张建国.中国北方主要造林树种耐早特性及其机理的研究[D].北京:北京林业大学, 1993:11-12
    [13]高洁,张尚云,傅美芬等.干热河谷主要造林树种旱性结构的初步研究[J].西南林学院学报, 1997, 17(2):59-63.
    [14] Passioura J B. Roots and drought resistance[J]. Agric Water Management,1983, 7:265-280.
    [15]梁银丽,陈培元.旱地小麦品种的特征特性[A].见:山仑,陈培元主编.旱地农业生理生态基础[C].北京:科学出版社, 1998:259-266.
    [16]刘殿英,石立岩,董庆裕.不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响[J].作物学报,1993,19(2):149-155.
    [17] Tuner N C. Drought resistance and adaptation to water deficits in crop plant.In: Mussel H, Stapes R C.Stress Physiology in Crop Plants. New York :Wikey,1979:343-372.
    [18]孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展[J].西北植物学报, 2007, 27(3):629-634.
    [19]邓艳,蒋忠诚,曹建华,李强,蓝芙宁. Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst Peak cluster areas in Nongla[J].广西植物,2004, 24(4):317-322.
    [20]蒋志荣.沙冬青抗旱机理的探讨[J],中国沙漠, 2000, 20(1):72-74.
    [21]阮成江,李代琼,等.黄土丘陵区沙棘抗旱性研究[J].植物资源与环境学报,2000, 9(3):54-56.
    [22]阮成江.半干旱黄土丘陵区沙棘的水分生理生态及群落特性研究[J].西北植物学报, 2000, 20(4):621-627.
    [23]郭连声,田友亮.八种针阔叶幼树清晨叶水势与土壤含水量关系及其抗旱性研究[J].生态学杂志, 1992. 11(2):4-7.
    [24] Mazzoleni S, Diekmann D I. Differential physiological and morphological responses of two hybrid Populus ciones to water stress[J]. Tree physiol, 1998, (4): 61-70.
    [25]裴保华,周宝顺.三种灌木耐旱性研究[J].林业科学研究, l993, 6(6):597-602.
    [26]李吉跃.植物耐旱性及其机理[J].北京林业大学学报, 1991, 13(3):92-100.
    [27]李春阳.桉树的抗旱性研究进展[J].世界林业研究, 1998, (3):12-21.
    [28]杨敏生.毛白杨不同种源光合特性的比较研究[J].北京林业大学学报, 1992, 14(增刊):65-71.
    [29]谢寅峰,沈惠娟,罗爱珍,等.南方七个造林树种幼苗抗旱生理指标的比较[J].南京林业大学学报, 1999, 23(4):13-16.
    [30]冯玉龙,王文章,敖红等.长白落叶松与樟子松等五种树种抗旱性的比较[J].东北林业大学学报, 1998, 26(6):16-20.
    [31]裴保华,陈绍光. 741杨耐旱性的研究[J].河北林学院学报, 1994, 9(4):282-287.
    [32]杨敏生,秦安臣,丛金山.白杨双交无性系抗旱性鉴定研究[J].河北农业大学学报, 1997, 20(1):17-23.
    [33]陈雅君,冯淑华,陈桂芬.植物抗旱性鉴定指标的研究现状与进展[J].中国林副特产, 2005, 6(79):62-63.
    [34]张国盛.干旱、半干旱的乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠, 2000, 20(4):363-368.
    [35] Bohnert H.J, Nelson R. G. Strategies for engineering water—stress tolerance in plants[J]. Trends in Bioteno|ogy, 1996, (14):89- 97.
    [36]高宁,高辉远,石定燧,等.水分胁迫下两种草坪草的渗透调节与抗旱性的关系[J].中国草地, 1995, (4):44-48.
    [37]陈鹏,潘晓玲干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化[J].植物生理学通讯, 2001, 37(6):520-522.
    [38] Bohnert H.J., Nelson R. G. Strategies for engineering water—stress tolerance in plants[J]. Trends in Bioteno|ogy, 1996, (14):89-97.
    [39]王忠主编.植物生理学[M].北京:中国农业出版社, 2000:136-138
    [40]马礻韦,王彩云.几种引进冷季型草坪草的生长及抗旱性生理指标[J].草业科学, 2001, 18(2):57-61.
    [41]孙彦,杨青川,张英华.不同草坪草种及品种苗期抗旱性比较[J].草地学报, 2001, 9(1):16-20.
    [42]籍越,孔德政,杨芳绒等.不同品种草坪草抗旱性的初步研究[J].河南科学, 2000, 18(4):23-28
    [43]周兴元,曹福亮,陈国庆.四种暖季型草坪草几种生理指标与抗旱性的关系研究[J].草原与草坪, 2003, 103(4):28-32.
    [44]王邦锡,黄久常,王辉等.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系[J].植物生理学报, 1989, 15(15):46-51.
    [45]徐新宇.作物的抗旱能力和体内游离氨基酸的关系[J].国外农业科技, 1983, (9):19-23.
    [46] AI Hakimi A. Monneveux P. Galiba G. Soluble sugars proline and relative water content(RWC) as traits for improving drought tolerance and divergent selection for RW C from T polonium to T durum J of Genetics. Breeding, 1995, 49(3):237-243.
    [47]陈立松等.水分胁迫对荔枝叶片糖代谢的影响及其与抗旱性的关系[J].热带作物学报, 1999, 20(2):31-36.
    [48] Koppenaal R S, T schaplinski T J, ColomboSJ. Carbohydrate accumulation and turgor maintenance in seedling shoots and roots of two boreal conifers subjected to water stress. Can. J. Bot, 1991, 69:2522-2528.
    [49] TanW, Blake T J, Boyle T J B. Drought tolerance in faster and slower growing black spruce (Piceamariana) progenies: II.Osmotic adjustment and changes of soluble carbohydrates and amino acids under osmotic stress. Physiol. Plant, 1992, 85:645-651.
    [50] Guehl J M, A Clement, P Kaushal, G Aussenac. Planting stress, water status and non-structural carbohysrate concentrations in Corsican pine seedlings[J]. Tree Physiol, 1993, 12:173-183.
    [51]韩刚,韩恩贤.树木抗旱生理与生化研究常用指标[J].陕西林业科技, 2006, (3):27-32.
    [52]沈惠娟等.渗透胁迫下多效唑对刺槐幼苗体内多胺、脯氨酸和保护酶系统的影响[J].植物生理学报, 1993, 19(1):53-60.
    [53]张晓岚,李洪山.梭梭幼苗抗旱性与生物自由基、膜伤害关系初探[J].新疆大学学报自然科学版, 1994, 11(3):87-90.
    [54]高天明,闫志坚,高丽.四种沙漠植物的抗旱研究[J].中国农业科技导报, 2008, 10(2):105-109.
    [55]吴林.水分逆境对沙棘叶片Pro、POD、CAT的影响[J].沙棘, 1996, 6(3):15-l8.
    [56]蒋明义.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响[J].植物生理学报, 1991, 17(2):80-84.
    [57]刘飞虎,张寿文,梁雪妮.干旱胁迫下苎麻生理生化指标研究简报[J].江西农业大学学报, 1998, 20(2):l95-196.
    [58] Borowitzka, Aspinall. The physiology and Biochemistry of Drought Resistance in plants[M]. Academic press, Sydney. 1981, 97-130.
    [59] Dong J-G, Olson D Silverstone A, Yang S-F. Sequence of a Cdna coding for a 1-aminocyclo prop an carboxylate oxidate homolog from apple fruit[J]. Plant Physiol, l982, (98):l530-l531.
    [60]王爱国.羟自由基启动下的脱氧核糖降解及其产物的TBA反应[J].生物化学与生物物理进展, 1993, (20):150-152.
    [61]曹帮华,张明如,翟明普,毛培利.土壤干旱胁迫下刺槐无性系生长和渗透调节能力[J].浙江林学院学报, 2005, 22(2):161-165.
    [62]姚允聪,曲泽洲,李树仁.不同浇水处理过程中柿幼树SOD、CAT和脂质过氧化作用的变化[J].北京农学院学报, 1994, 9(1):22-27.
    [63]胡景江,左仲武.外源多胺对油松幼苗生长及抗旱性的影响[J].西北林学院学报, 2004,19(4):5-8
    [64] Schwartz A, Wu W H, Tucker E B, et al.Inhibition of inward K+channels and stomata response by abscisic acid:an intracellular locus of phytohormone action[J]. Pro Natl Acad Sci, 1994,91 (9):4019-4023.
    [65]谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性的关系[J].浙江林学院学报. 2000,17(1):24-27.
    [66]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报. 2001,18(4):459-465.
    [67]陈颖,谢寅峰,沈惠娟.银杏幼苗对水分胁迫的生理响应[J].南京林业大学学报:自然科学版, 2002, 26(2):56-58.
    [68] Padmanabhan V, Diasdilip M A L,Newton R J. Expression analysis of a gene family in loblolly pine(Pinus taedaL.) induced by water deficit stress[J]. Plant Mol Bio, 1997,35(6):801-807.
    [69] Richard S, Morency M J, Drevent C, et al. Isolation and characterization of dehydrin gene from white spruce induced upon woun-ding, drought and cold stresses[J]. Plant Mol Biol, 2000,43(1):1-10.
    [70]于秋菊,吴锜,林忠平等.植物水孔蛋白研究进展[J].北京大学学报:自然科学版. 2002,38(6):855-866.
    [71]苏金,朱汝才.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学通报, 2001, 18(2): 129-136.
    [72]张宏一,朱志华.植物干旱诱导蛋白研究进展[J].植物遗传资源学报, 2004, 5(3):268-27.
    [73] Morillon R, Chrispeels M J . The role of ABA and transpiration stream in the regulation of the osmotic water permeability of leaf cells[J]. Proc Nat I Acad Sci USA,2001, 98(24): 14138-14143.
    [74]孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数量分析方法的研究进展[J].中国农学通报, 2002, 18(1): 49-51.
    [75]陈亚鹏,陈亚宁,李卫红,张宏锋.塔里木河下游干旱胁迫下的胡杨生理特点分析[J].西北植物学报, 2004,24(10):1943-1948.
    [76] Davies W I, Zhang J H. Root sifnals and the regulation of growth and development of plants in drying soil[J] Annu Rev Plant Physiol Mol Biol 1991,42: 55-76.
    [77]赵垦田,尚杰等.中国古代对植物根系生物学和生态学特性的认识[J].东北林业大学学报, 1993,21(6):26-30.
    [78] W.伯姆.根系研究法[M].北京:科学出版社.1985:75-76.
    [79]黄瑞冬,赵君实.植物根系研究方法进展[J].沈阳农业大学学报, 1991,22(3):164-168.
    [80]王佑民,刘秉正等.黄土高原防护林生态特征[M].北京:中国林业出版社, 1994:57.
    [81]宋维峰,王希群.林木根系研究综述[J].西南林学院学报. 2007, 27, 5: 8-13.
    [82]单建平,陶大立.国外对树木细根的研究动态[J].生态学杂志, 1992, 11(4):46-49.
    [83]李凌浩,林鹏等.武夷山甜储林细根生物量和生长量的研究[J].应用生态学报, 1998, 9(4): 337-340.
    [84]刘建军.林木根系生态研究综述[J].西北林学院学报, 1998, 13(3):74-78.
    [85]杨玉盛,陈光水,林瑞余等.衫木、观光林混交林群落细根能量动态变化[J].北京林业大学学报, 2002(l):31-35.
    [86]赵忠,李鹏,王乃江.渭北主要造林树种根系抗旱性研究[J].水土保持研究2000, 7(l):92-94.
    [87]李鹏,赵忠,李占斌等.植被根系与生态环境相互作用机制研究进展[J].西北林学院学报, 2002,17(2):26-32.
    [88]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展[J].生态学报, 1999, 19(2): 270-277.
    [89]张小全,吴可红, DieterMurach.树木细根生产与周转研究方法评述[J].生态学报, 2000, 20(5):875-883.
    [90]李勇,徐晓琴,朱显漠.黄土高原油松人工林根系改善土壤物理性质的有效性研究[J].林业科学, 1993, 29(3): 193-198.
    [91]张其水,俞新妥.连栽杉木林的根系研究[J].植物生态学与地植物学学报, 1991, 15(4): 374-379.
    [92]赵垦田.国外针叶树种根系生态学研究综述[J].世界林业研究, 2000, 13(5): 7-12.
    [93] Feil W. Kottlee L. Oberwinkler F. The effect of drought on mycorrhizal Produetion and very fine Root system development of Norway spruce under natural and experimeatal conditions. Plant and soil.1988, 108(2): 221-231.
    [94] Wight R A.Wein R A. Daneik B P. PoPulation differentiation in seedling root siza between adjacent stands of jack pine.Forest Seience.1992, 38(4): 777-785.
    [95] Hurd E A. Phenotype and drought tolerance in wheat[J]. Agric Meteor,1974, 14: 39-45.
    [96] Nour A E, Wiebel D E. Evaluation of root characteristics in grain sorghm[J]. Agron J,1987, 70: 217-218.
    [97]梁银丽,陈培元.旱地小麦品种的特征特性[A].见:山仑,陈培元主编.旱地农业生理生态基础[C].北京:科学出版社, 1998: 259-266.
    [98] Slafer G A, Araus J L. Improving wheat responses to abiotic stresses [A]. In: A E Slinkard (ed.) .Proceedings of the 9th International Wheat Genetics Syposium [C]. Vol.1.Saskatchewan, Canada: University Extension Press,1998: 201-213.
    [99]王有信,王迷珍.第三代果树欧李抗旱机理与开发利用[J].中国果菜, 2004, 3:11-13.
    [100]徐敏云,谢帆.冷地型草坪草抗旱性及蒸散需水研究综述[J].草业科学, 2004, 21(5):82-85.
    [101]刘振虎,李魁英,张爱峰.草坪草需水研究概述[J].中国草地, 2001, 23(4):66-68.
    [102]李吉跃.太行山区主要造林树种耐旱特性的研究[J].北京林业大学学报, 1991, 13(增刊):251-255.
    [103]宋娟丽,姚军,吴发启.黄土高原21种造林树种的苗木根系活力与土壤含水量关系的研究[J].西北植物学报, 2003, 23(10): 168-169.
    [104]朱维琴,吴良欢,陶勤南.作物根系对干旱胁迫逆境的适应性研究进展[J].土壤与环境, 2002, 1l(4): 430-433.
    [105] Davies W J, Metcalfe J, Lodget A, et al. Plant growth substances and the regulation of growth under drought[J]. Aust.J.Plant Physical, 1986, 13: 105-125.
    [106] ZHANG J, Davies W J. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil [J].Plant cell Environ., 1989, 12:73-81.
    [107]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998:54.
    [108]梁宗锁,孙群,王俊锋等.干旱多风条件下造林成活与致死机理研究[J].沙棘, 2003,(1):16-20.
    [109]刘淑明,陈海滨,孙长忠,孙丙寅.黄土高原主要造林树种的抗旱性研究[J].西北农林科技大学学报(自然科学版), 2003, 31(4): 149-153.
    [110]李文华,吴万兴,张忠良,等.土壤水分对仁用杏水分和生长特征的研究[J].西北农林科技大学学报, 2003,31(4): 139-144.
    [111]梁宗锁,李敏,王俊峰.沙棘抗旱生理机制研究进展[J].沙棘, 1998,11(3):8-13.
    [112]单长卷,郝文芳,梁宗锁,韩蕊莲.不同土壤干旱程度对刺槐幼苗水分生理和生长指标的影响[J].西北农业学报, 2005, 14(2) :44~49.
    [113]曹帮华,张明如,翟明普,毛培利.土壤干旱胁迫下刺槐无性系生长和渗透调节能力[J].浙江林学院学报, 2005, 22(2):161-165.
    [114]严成,侯平,尹林克,朱金星.干旱沙漠区侧柏苗木生物量的研究[J].干旱区研究, 1998, 15(2):22-26.
    [115]刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报. 1999,14(4):27-30.
    [116]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学报,2002, 24(5):50-55.
    [117]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报, 2002, 22(9):1380-1386.
    [118]黄华,梁宗锁,韩蕊莲,王培榛.干旱胁迫条件下油松幼苗生长及抗旱性的研究[J].西北林学院学报. 2004, 19(2):1-4.
    [119]马成仓,高玉葆,蒋福全等.小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究[J].生态学报, 2004, 24 (7): 1442-1451.
    [120]王孟本,李洪建,柴宝峰.柠条的水分生理生态学特性[J].植物生态学报, 1996,20(6): 494-501.
    [121]郑元润.毛乌素沙地中几种植物水分特性的研究[J].干旱区研究, 1998, 15(2):17-21.
    [122]温国胜,张国盛,张明如等.干旱胁迫条件下臭柏的气孔蒸腾与角质层蒸腾[J].浙江林学院学报, 2003, 20(3):268-272.
    [123]李彦瑾,赵忠,孙德祥,韩刚.干旱胁迫下柠条锦鸡儿的水分生理特征[J].西北林学院学报2008, 23(3):1-4.
    [124]邓艳,蒋忠诚,曹建华,李强,蓝芙宁. Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst Peak cluster areas in Nongla[J].广西植物, 2004, 24(4):317-322.
    [125]马红梅,陈明昌,张强.柠条生物形态对逆境的适应性机理[J].山西农业科学2005, 33(3):47-49.
    [126]李代琼.半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究[J].水土保持研究, 1998, 5(1):97-102.
    [127]刘瑞香,杨吉力,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报, 2005, 19(3):148-151.
    [128]李丽霞,梁宗锁,韩蕊莲.土壤干旱对沙棘苗木生长及水分利用的影响[J].西北植物学报2002,22(2):296-302.
    [129]李丽霞,梁宗锁,韩蕊莲.干旱对沙棘休眠、萌芽期内源激素及萌芽特性的影响[J].林业科学,2001, 37(5):35-40.
    [130]王乃江,赵忠.三种杏抗旱生理特性比较研究[J].西北林学院学报, 2001, 16(1):1-4.
    [131]赵忠,成向荣,薛文鹏,王迪海,袁志发.黄土高原不同水分生态区刺槐细根垂直分布的差异[J].林业科学, 2006,42(11):1-7.
    [132]高俊凤.植物生理学实验技术[M].北京:世界图书出版社, 2000:145-148.
    [133]史玉炜,王燕凌,李文兵.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报, 2007, 30(2):5-8.
    [134]颜华,贾良辉,王根轩.植物水分胁迫诱导蛋白的研究进展[J].生命的化学, 2002, 22(2):165-168.
    [135]张大鹏,罗国光.不同时期水分胁迫对葡萄果实生长发育的影响[J].园艺学报, 1992, 19(4):296-300.
    [136]冯福生.水分胁迫对不同冬小麦品种PEP Case活性的影响[J].华北农学报, 1990,5(增刊):76-82.
    [137]于同泉,秦岭,王有年.渗透胁迫板栗苗可溶性糖累积组分变化的研究[J].北京农学院学报, 1996,11(6):43-47.
    [138]顾振瑜,胡景江,文建雷等.元宝枫对干旱适应性的研究[J].西北林学院学报, 1999,14(2):1-6.
    [139]陈立松,刘星辉.果树逆境生理[M].北京:中国农业出版社, 2003.
    [140]袁琳,克热木·伊力,盐胁迫对阿月浑子可溶性糖、淀粉、脯氨酸含量的影响[J].新疆农业大学学报, 2004,27(2): l9-23
    [141]齐永青,肖凯,李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展[J].河北农业大学学报,2003, 5(26):24-27.
    [142]贺道耀,余叔文.水稻高脯氨酸变异系高脯氨酸含量和耐盐性遗传[J].植物生理学报,1997, 23(4):357-362.
    [143]吴晓红,唐中华,祖元刚.水分胁迫对迷迭香中游离氨基酸的影响[J].东北林业大学学报, 2006, 34(3):57-58.
    [144] Bewley J D, Black M. Physiolog and Biochemiscry of Seeds in Relation to Germination[M]. Heidelberg, Germany:Spring-Verlag Berlin L,1978,106.
    [145]董宝娣,刘孟雨,张正斌,李全起.水分胁迫条件下不同抗旱类型小麦灌浆初期内源激素的变化[J].麦类作物学报, 2007,27(5):852-858
    [146]韩瑞宏,张亚光,田华,卢欣石.干旱胁迫下紫花苜蓿叶片几种内源激素的变化[J].华北农学报, 2008,23(3):81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700