用户名: 密码: 验证码:
传染性法氏囊病毒感染鸡靶器官的比较蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性法氏囊病(Infectious bursal disease, IBD)是由传染性法氏囊病毒(Infectious bursal disease virus, IBDV)引起的一种高度接触性传染病,主要侵害雏鸡和青年鸡的法氏囊器官,破坏法氏囊中的B淋巴细胞,导致免疫抑制,使病鸡更易感其它疫病。为进一步了解病毒与宿主的相互关系,我们利用差异蛋白质组学方法分析了IBDV感染前后,鸡法氏囊组织蛋白表达的变化。
     (一)家禽免疫器官二维凝胶电泳技术的建立和优化。二维凝胶电泳技术(2-DE)是研究生物体内蛋白表达和功能强有力的工具,通过对蛋白提取物的分析,能快速了解细胞内发生的变化。目前尚无2-DE技术用于分析家禽法氏囊组织的报道。样品制备是二维凝胶电泳中的关键环节。组织中含有多种杂质,这些杂质可引起2-DE图谱中的横纹或纵纹。所以,在组织样品制备过程中,如何增大蛋白质的溶解度和获得尽可能多的蛋白质种类是2-DE中具有挑战性的问题,这个问题也最终决定了2-DE技术的成败。本实验中,我们优化了鸡法氏囊组织的蛋白质组样品制备中的一些关键环节,包括样品裂解液、样品抽提方法、IPG胶条。发现由7 M urea、2 M thiourea、2%(w/v) CHAPS、50 mM DTT、0.2% Bio-Lyte 3/10、1mM PMSF、20 U/ml DNase I、0.25 mg/ml RNase A组成的裂解液结合超声+振荡的抽提方法能产生高质量的2-DE图谱。最后我们将优化的蛋白质组学样品制备方法应用于鸡的脾脏和胸腺,也获得了高质量的二维电泳图谱。稳定、有效的禽法氏囊蛋白质组二维电泳样品制备技术为研究禽免疫器官的差异蛋白质组学(differential proteomics)奠定了基础。
     (二)宿主细胞在不同病毒感染时,会做出各种防御反应。为了从分子水平上分析病毒与宿主之间的相互作用,本研究应用二维电泳(2-DE)结合基质辅助激光解吸电离飞行时间质谱技术(MALDI-TOF-MS)鉴定的差异蛋白质组学方法,研究分析了IBDV感染鸡后12h、24h、48h、72h和96h五个不同时间点法氏囊组织蛋白的动态表达变化。二维凝胶的差异表达分析显示,鸡感染IBDV后,其法氏囊组织共有96个蛋白点出现了显著的差异表达。采用MALDI-TOF/TOF质谱法对96个差异表达蛋白点进行质谱鉴定,结果成功鉴定了65个表达差异显著的蛋白点,对应54种蛋白,包括12种表达上调蛋白和42种表达下调的蛋白。数据库搜索和对鉴定蛋白的功能分析表明,这些差异蛋白主要涉及细胞骨架网络、应激反应、大分子合成、能量代谢、泛素-蛋白酶体通路、信号传导通路及一些功能未知的蛋白的变化,这些差异蛋白可能通过不同途径参与了IBDV感染机体的过程并发挥着不同的功能。采用荧光实时PCR方法在mRNA水平上分析了部分差异蛋白相应基因的变化情况。此外,用Western blot方法在蛋白水平上对部分差异蛋白进行了验证,结果与2-DE试验结果基本相符。这些差异蛋白的鉴定为进一步揭示IBDV致病的分子机制提供了丰富的实验数据和有用线索,对发现和开发潜在的生物标记分子提供了重要参考。
Infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus within the family Birnaviridae, is the causative agent of infectious bursal disease (IBD). IBDV causes severe immunodeficiency in young chickens by destroying immature antibody-producing B lymphocytes in the bursa of Fabricius (BF), which is followed by bursal atrophy. This renders the animal increasingly susceptible to disease, and decreases the effectiveness of vaccination against infectious diseases. To characterize the host response to IBDV infection, the differential proteomes of bursa of chicken, with and without IBDV infection, were analyzde at different time with two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF/TOF identification.
     Optimized two-dimensional gel electrophoresis protocol for isolation of soluble proteins from poultry immune organs.2-DE is a potent method to study protein expression and function in living organisms. It allows a fast overview of changes in cell processes by analysis of the entire protein extracts. However there is little information about the use of 2-DE in avian organs. In this study,2-DE sample preparation methodologies including removal of interfering compounds, protein extraction methods and extraction buffers, were optimized using bursa of Fabricius (BF) of chickens as a model system, when dealing with poultry immune organs. An extraction protocol involving in the extraction buffer IV containing 7M urea,2M thiourea,2%(w/v) CHAPS,50mM DTT,0.2% Bio-Lyte 3/10, 1mM PMSF,20U/ml DNase I,0.25 mg/ml RNase A and combination of sonication and vortex, gave the best 2-DE quality. Compared to non-frozen IPG strips, after IEF, the frozen IPG strips did not result in significant difference in the 2-DE patterns. In addition, this optimized protocol was also successfully applied in 2-DE analysis of spleen and thymus in chicken. Theses data imply that the optimized protocol is a potential useful tool for comparative proteomics analysis of avian immune tissues.
     Comparative proteomic analysis of infectious bursal disease virus-infect bursal of chicken. In different viral infection, host cells will make a variety of defense response. To understand the interaction between the host and virus at the molecular level, the comparative proteomes of IBDV-infected and mock-infected bursal of chicken at five different time points were analyzed using two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF/TOF protein identification. The analyses of multiple 2-DE gels indicated that a total of 65 protein spots (corresponding to 54 altered proteins) differentially expressed during IBDV infection, including 12 up-regulated proteins and 42 down-regulated proteins. Database search and identification of functional protein analysis showed that these altered proteins mainly related to cytoskeleton network, stress response, macromolecular biosynthesis, energy metabolism ubi-quitin-proteosome pathway, signal trasduction. These proteins may be involved, through various pathwaym, in the IBDV infection and play different functions. This work effectively provides a wealth of experimental data and useful clues to further reveal the molecular mechanism of IBDV pathogenicity, and provides an important reference for the discovery and development of potential molecular biomarkers.
引文
Aich, P., Jalal, S., Czuba, C., Schatte, G, Herzog, K., Olson, D. J., Ross, A. R., Potter, A. A., Babiuk, L. A., and Griebel, P. (2007). Comparative approaches to the investigation of responses to stress and viral infection in cattle. OMICS 11, 413-34.
    Alfonso, P., Rivera, J., Hernaez, B., Alonso, C., and Escribano, J. M. (2004). Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 4,2037-46.
    Alldridge, L. C., Harris, H. J., Plevin, R., Hannon, R., and Bryant, C. E. (1999). The annexin protein lipocortin 1 regulates the MAPK/ERK pathway. J Biol Chem 274,37620-8.
    Azad, A. A., Barrett, S. A., and Fahey, K. J. (1985). The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143,35-44.
    Azad, A. A., Jagadish, M. N., Brown, M. A., and Hudson, P. J. (1987). Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology 161,145-52.
    Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J. C., Blackstock, W., Pappin, D. J., and Selby, P. J. (2000). Proteomics:new perspectives, new biomedical opportunities. Lancet 356,1749-56.
    Bartee, E., McCormack, A., and Fruh, K. (2006). Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog 2, e107.
    Becht, H., Muller, H., and Muller, H. K. (1988). Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. J Gen Virol 69,631-40.
    Bedair, M., and El Rassi, Z. (2004). Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography. J Chromatogr A 1044,177-86.
    Bellizzi, D., Dato, S., Cavalcante, P., Covello, G., Di Cianni, F., Passarino, G., Rose, G., and De Benedictis, G. (2007). Characterization of a bidirectional promoter shared between two human genes related to aging:SIRT3 and PSMD13. Genomics 89,143-50.
    Benton, W. J., Cover, M. S., Rosenberger, J. K., and Lake, R. S. (1967). Physicochemical properties of the infectious bursal agent (IBA). Avian Dis 11, 438-45.
    Berro, R., de la Fuente, C., Klase, Z., Kehn, K., Parvin, L., Pumfery, A., Agbottah, E., Vertes, A., Nekhai, S., and Kashanchi, F. (2007). Identifying the membrane proteome of HIV-1 latently infected cells. J Biol Chem 282,8207-18.
    Boot, H. J. (1991). Rescue of infectious bursal disease virus from mosaic full-length clones composed of serotype I and II cDNA. Arch Virol 146,1991-2007.
    Boot, H. J., ter Huurne, A. A., Hoekman, A. J., Peeters, B. P., and Gielkens, A. L. (2000). Rescue of very virulent and mosaic infectious bursal disease virus from cloned cDNA:VP2 is not the sole determinant of the very virulent phenotype. J Virol 74,6701-11.
    Boot, H. J., ter Huurne, A. A., Peeters, B. P., and Gielkens, A. L. (1999). Efficient rescue of infectious bursal disease virus from cloned cDNA:evidence for involvement of the 3'-terminal sequence in genome replication. Virology 265, 330-41.
    Bottcher, B., Kiselev, N. A., Stel'Mashchuk, V. Y, Perevozchikova, N. A., Borisov, A. V., and Crowther, R. A. (1997). Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol 71, 325-30.
    Bourchookarn, A., Havanapan, P. O., Thongboonkerd, V., and Krittanai, C. (2008). Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Biochim Biophys Acta 1784,504-11.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72,248-54.
    Brown, M. D., and Skinner, M. A. (1996). Coding sequences of both genome segments of a European'very virulent'infectious bursal disease virus. Virus Res 40,1-15.
    Bruenn, J. A. (1991). Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res 19,217-26.
    Burkhardt, E., and Muller, H. (1987). Susceptibility of chicken blood lymphoblasts and monocytes to infectious bursal disease virus (IBDV). Arch Virol 94, 297-303.
    Calvert, J. G., Nagy, E., Soler, M., and Dobos, P. (1991). Characterization of the VPg-dsRNA linkage of infectious pancreatic necrosis virus. J Gen Virol 72, 2563-7.
    Cao, Y. C, Yeung, W. S., Law, M., Bi, Y. Z., Leung, F. C., and Lim, B. L. (1998). Molecular characterization of seven Chinese isolates of infectious bursal disease virus:classical, very virulent, and variant strains. Avian Dis 42, 340-51.
    Carlson, K. A., Ciborowski, P., Schellpeper, C. N., Biskup, T. M., Shen, R. F., Luo, X., Destache, C. J., and Gendelman, H. E. (2004). Proteomic fingerprinting of HIV-1-infected human monocyte-derived macrophages:a preliminary report. J Neuroimmunol 147,35-42.
    Casanas, A., Ferrer-Orta, A. N. C., Gonzalez, D., Rodriguez, J. F., and Verdaguer, N. (2008). Structural Insights into the Multifunctional Protein VP3 of Birnaviruses. Structure 16,29-37.
    Chen, B. K., Kung, H. C., Tsai, T. Y, and Chang, W. C. (2000). Essential role of mitogen-activated protein kinase pathway and c-Jun induction in epidermal growth factor-induced gene expression of human 12-lipoxygenase. Mol Pharmacol 57,153-61.
    Chen, H. Y., Zhou, Q., Zhang, M. F., and Giambrone, J. J. (1998). Sequence analysis of the VP2 hypervariable region of nine infectious bursal disease virus isolates from mainland China. Avian Dis 42,762-9.
    Chertova, E., Chertov, O., Coren, L. V., Roser, J. D., Trubey, C. M., Bess, J. W., Jr., Sowder, R. C.,2nd, Barsov, E., Hood, B. L., Fisher, R. J., Nagashima, K., Conrads, T. P., Veenstra, T. D., Lifson, J. D., and Ott, D. E. (2006). Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80,9039-52.
    Chevalier, C., Galloux, M., Pous, J., Henry, C., Denis, J., Da Costa, B., Navaza, J., Lepault, J., and Delmas, B. (2005). Structural peptides of a nonenveloped virus are involved in assembly and membrane translocation.J Virol 79, 12253-63.
    Chevallet, M., Santoni, V., Poinas, A., Rouquie, D., Fuchs, A., Kieffer, S., Rossignol, M., Lunardi, J., Garin, J., and Rabilloud, T. (1998). New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19,1901-9.
    Chi-Yong Eom, I. R. L. (2003). Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. PNAS 100,9803-7.
    Chongsatja, P. O., Bourchookarn, A., Lo, C. F., Thongboonkerd, V, and Krittanai, C. (2007). Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 7, 3592-601.
    Churchward, M. A., Butt, R. H., Lang, J. C., Hsu, K. K., and Coorssen, J. R. (2005). Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci 3,5.
    Ciborowski, P., Kadiu, I., Rozek, W., Smith, L., Bernhardt, K., Fladseth, M., Ricardo-Dukelow, M., and Gendelman, H. E. (2007). Investigating the human immunodeficiency virus type 1-infected monocyte-derived macrophage secretome. Virology 363,198-209.
    Ciechanover, A. (1994). The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21.
    Coiras, M., Camafeita, E., Urena, T., Lopez, J. A., Caballero, F., Fernandez, B., Lopez-Huertas, M. R., Perez-Olmeda, M., and Alcami, J. (2006). Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression. Proteomics 6 Suppl 1, S63-73.
    Cortes, A., Fonfria, J., Vicente, A., Varas, A., Moreno, J., and Zapata, A. G. (1995). T-dependent areas in the chicken bursa of Fabricius:an immunohistological study. Anat Rec 242,91-5.
    Brown, C. R., Hong-Brown, L. Q., Doxsey, S. J., and Welch, W. J. (1996). Molecular chaperones and the centrosome. JBiol Chem 271,824-32.
    Cruz-Coy, J. S., Giambrone, J. J., and Hoerr, F. J. (1993). Immunohistochemical detection of infectious bursal disease virus in formalin-fixed, paraffin-embedded chicken tissues using monoclonal antibody. Avian Dis 37, 577-81.
    Da Costa, B.,Chevalier, C., Henry, C., Huet, J. C., Petit, S., Lepault, J., Boot, H., and Delmas, B. (2002). The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol 76, 2393-402.
    Da Costa, B., Soignier, S., Chevalier, C., Henry, C., Thory, C., Huet, J. C., and Delmas, B. (2003). Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. J Virol 77, 719-25.
    Delgui, L., Gonzalez, D., and Rodriguez, J. F. (2009). Infectious bursal disease virus persistently infects bursal B-lymphoid DT40 cells. J Gen Virol 90,1148-52.
    Dholakia, J. N., and Wahba, A. J. (1989). Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein. J Biol Chem 264,546-50.
    Dole, M. (1968). Molcular Beams of Macroions. J Chem Phys 49,2240-9.
    Donnelly, S. R., and Moss, S. E. (1997). Annexins in the. secretory pathway. Cell Mol Life Sci 53,533-8.
    Duncan, R., Mason, C. L., Nagy, E., Leong, J. A., and Dobos, P. (1991). Sequence analysis of infectious pancreatic necrosis virus genome segment B and its encoded VP1 protein:a putative RNA-dependent RNA polymerase lacking the Gly-Asp-Asp motif. Virology 181,541-52.
    Dusserre, E., Moulin, P., and Vidal, H. (2000). Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta 1500,88-96.
    Ellis, M. J., Coop, A., Singh, B., Mauriac, L., Llombert-Cussac, A., Janicke, F., Miller, W. R., Evans, D. B., Dugan, M., Brady, C., Quebe-Fehling, E., and Borgs, M. (2001). Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1-and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer:evidence from a phase Ⅲ randomized trial. J Clin Oncol 2001 19,3808-16.
    Eterradossi, N., Arnauld, C., Toquin, D., and Rivallan, G. (1998). Critical amino acid changes in VP2 variable domain are associated with typical and atypical antigenicity in very virulent infectious bursal disease viruses. Arch Virol 143, 1627-36.
    Fahey, K.J., Erny,.K., and Crooks, J. (1989). A conformational immunogen on VP-2 of infectious bursal disease virus that induces virus-neutralizing antibodies that passively protect chickens. J Gen Virol 70,1473-81.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246,64-71.
    Fernandez-Arias, A., Martinez, S., and Rodriguez, J. F. (1997). The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol 71,8014-8.
    Fernandez-Arias, A., Risco, C., Martinez, S., Albar, J. P., and Rodriguez, J. F. (1998). Expression of ORF Al of infectious bursal disease virus results in the formation of virus-like particles. J Gen Virol 79,1047-54.
    Fonfria, J., Moreno, J., Gomez del Moral, M., Alonso, L., and Zapata, A. G. (1994). The diffusely-infiltrated lymphoid tissue of the bursa of Fabricius of Sturnus unicolor. Histological organization and functional significance. Histol Histopathol 9,333-8.
    Fuchigami, T., Misumi, S., Takamune, N., Takahashi, I., Takama, M., and Shoji, S. (2002). Acid-labile formylation of amino terminal proline of human immunodeficiency virus type 1 p24 (gag) was found by proteomics using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Biochem Biophys Res Commun 293,1107-13.
    Fujii, J., and Ikeda, Y. (2002). Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Report 7,123-130.
    Galloux, M., Chevalier, C., Henry, C., Huet, J. C., Costa, B. D., and Delmas, B. (2004). Peptides resulting from the pVP2 C-terminal processing are present in infectious pancreatic necrosis virus particles. J Gen Virol 85,2231-6.
    Galvani, M., Rovatti, L., Hamdan, M., Herbert, B., and Righetti, P. G. (2001). Protein alkylation in the presence/absence of thiourea in proteome analysis:a matrix assisted laser desorption/ionization-time of flight-mass spectrometry investigation. Electrophoresis 22,2066-74.
    Garriga, D., Navarro, A., Querol-Audi, J., Abaitua, F., Rodriguez, J. F., and Verdaguer, N. (2007). Activation mechanism of a noncanonical RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 104,20540-5.
    Glick, B.(1991). Historical perspective:the bursa of Fabricius and its influence on B-cell development, past and present. Vet Immunol Immunopathol 30,3-12.
    Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and
    Weiss, W. (2000). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21,1037-53.
    Granzow, H., Birghan, C., Mettenleiter, T. C., Beyer, J., Kollner, B., and Mundt, E. (1997). A second form of infectious bursal disease virus-associated tubule contains VP4. J Virol 71,8879-85.
    Gygil, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17,994-9.
    Hamdan, M., and Righetti, P. G. (2005). "2D Electrophoresis and Microarray Technology." Wiley-VCH, Hoboken.
    Harada, J. N., Shevchenko, A., Pallas, D. C., and Berk, A. J. (2002). Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery.J Virol 76,9194-206.
    Havarstein, L. S., Kalland, K. H., Christie, K. E., and Endresen, C. (1990). Sequence of the large double-stranded RNA segment of the N1 strain of infectious pancreatic necrosis virus:a comparison with other Birnaviridae. J Gen Virol 71,299-308.
    Hayden, M. R., and Tyagi, S. C. (2003). Is type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO, and redox stress. Cardiovascular Diabetology12,2.
    He, F., Fenner, B. J., Godwin, A. K., and Kwang, J. (2006). White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination. J Virol 80,3884-92.
    Heine, H. G., Haritou, M., Failla, P., Fahey, K., and Azad, A. (1991). Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains. J Gen Virol 72,1835-43.
    Herbert, B. (1999). Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 20,660-3.
    Herbert, B., Galvani, M., Hamdan, M., Olivieri, E., MacCarthy, J., Pedersen, S., and Righetti, P. G. (2001). Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when,and how? Electrophoresis 22, 2046-57.
    Herbert, B. R., Molloy, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G., and Williams, K. L. (1998). Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845-51.
    Hiraga, M., Nunoya, T., Otaki, Y., Tajima, M., Saito, T., and Nakamura, T. (1994). Pathogenesis of highly virulent infectious bursal disease virus infection in intact and bursectomized chickens. J Vet Med Sci 56,1057-63.
    Hudson, P. J., McKern, N. M., Power, B. E., and Azad, A. A. (1986). Genomic structure of the large RNA segment of infectious bursal disease virus. Nucleic Acids Res 14,5001-12.
    Iannello, A., Debbeche,O., Martin, E., Attalah, L. H., Samarani, S., and Ahmad, A. (2006). Viral strategies for evading antiviral cellular immune responses of the host. JLeukoc Biol 79,16-35.
    Inoue, M., Yamamoto, H., Matuo, K., and Hihara, H. (1992). Susceptibility of chicken monocytic cell lines to infectious bursal disease virus. J Vet Med Sci 54,575-7.
    Ismail, N. M.,. Saif, Y M., Wigle, W. L., Havenstein, G. B., and Jackson, C. (1990). Infectious bursal disease virus variant from commercial Leghorn pullets. Avian Dis 34,141-5.
    Jackwood, D. H., and Saif, Y. M. (1987). Antigenic diversity of infectious bursal disease viruses. Avian Dis 31,766-70.
    Jagadish, M. N., and Azad, A. A. (1991). Localization of a VP3 epitope of infectious bursal disease virus. Virology 184,805-7.
    Kandouz, M., Nie, D., Pidgeon, G. P., Krishnamoorthy, S., Maddipati, K. R., and Honn, K. V. (2003). Platelet-type 12-lipoxygenase activates NF-kappa B in prostate cancer cells. Prostaglandins Other Lipid Mediat 71,189-204.
    Kaori, T., Christopher, H. H., Kasanga, J., Maw, M. T., Ohya, K., Yamaguchi, T., and Fukushi, H. (2008). Chicken B Lymphoma DT40 Cells as a Useful Tool for in vitro Analysis of Pathogenic Infectious Bursal Disease Virus. Virology 70, 407-10.
    Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60,2299-301.
    Kathryn S. L., Razzaq, A., and Dupree, P. (2002). Two-dimensional gel electrophoresis: recent advances in sample preparation detection and quantitation. Curr Opin Chem Biol 6,46-50.
    Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). A basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26,239-57.
    Khatri, M., and Sharma, J. M. (2007). Modulation of macrophages by infectious bursal disease virus. Cytogenet Genome Res 117,388-93.
    Khatri, M., and Sharma, J. M. (2009). Response of embryonic chicken lymphoid cells to infectious bursal disease virus. Vet Immunol Immunopathol 127,316-24.
    Kibenge, F. S., Dhillon, A. S.; and Russell, R. G. (1988). Biochemistry and immunology of infectious bursal disease virus. J Gen Virol 69,1757-75.
    Kibenge, F. S., Jackwood, D. J., and Mercado, C. C. (1990). Nucleotide sequence analysis of genome segment A of infectious bursal disease virus. J Gen Virol 71,569-77.
    Kibenge, F. S., McKenna, P.K, and Dybing, J. K. (1991). Genome cloning and analysis of the large RNA segment (segment A) of a naturally avirulent serotype 2 infectious bursal disease virus. Virology 184,437-40.
    Kibenge, F. S., Nagarajan, M. M., and Qian, B. (1996). Determination of the 5'and 3' terminal noncoding sequences of the bi-segmented genome of the avibirnavirus infectious bursal disease virus. Arch Virol 141,1133-41.
    Kibenge, F. S., Qian, B., Cleghorn, J. R., and Martin, C. K. (1997). Infectious bursal disease virus polyprotein processing does not involve cellular proteases. Arch Virol 142,2401-19.
    Kibenge, F. S., Qian, B., Nagy, E.,.Cleghorn, J. R., and Wadowska, D. (1999). Formation of virus-like particles when the polyprotein gene. (segment A) of infectious bursal disease virus is expressed in insect cells. Can J Vet Res 63, 49-55.
    Kim, I. J., and Sharma, J. M. (2000). IBDV-induced brusal T lymphocytes inhibit mitogenic response of normal splenocytes Vet Immunol and Immunopathol 74, 47-57.
    Klose, J. (1999). Genotypes and phenotypes. Electrophoresis 20,643-52.
    Komine, K., Ohta, H., Kamata, S., Uchida, K., and Hirai, K. (1989). Infectivity of infectious bursal disease virus neutralized by matamal antibody in various chicken cells. Nippon Juigaku Zasshi 51,634-5.
    Kroon, D. J., Freedy, J., Burinsky, D. J., and Sharma, B. (1995). Rapid profiling of-.carbohydrate glycoforms in monoclonal antibodies using.MALDI/.TOF mass spectrometry. J Pharm Biomed Anal 13,1049-54.
    Ku, N. O., Zhou, X., Toivola, D. M., and Omary, M. B. (1999). The cytoskeleton of digestive epithelia in health and disease. Am J Physiol 277, G1108-37.
    Lee, S. W., Cho, B. H., Park, S. G, and Kim, S. (2004). Aminoacyl-tRNA synthetase complexes:beyond translation. J Cell Sci 117,3725-34.
    Lewis, S., Korsmeyer, K. K., and Correia, M. A. (1993). Matrix-assisted laser desorption mass spectrometry of cytochromes P450. Rapid Commun Mass Spectrom 7,16-9.
    Lim, B. L., Cao, Y, Yu, T., and Mo, C. W. (1999). Adaptation of very virulent infectious bursal disease virus to chicken embryonic fibroblasts by site-directed mutagenesis of residues 279 and 284 of viral coat protein VP2. J. Virol. 73,2854-62.
    Liu, N., Song, W., Wang, P., Lee, K., Chan, W., Chen H., and Cai, Z. (2008). Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics 8,1851-8.
    Lombardo, E., Maraver, A., Cast n, J. R., Rivera, J., Fernandez-Arias, A., Serrano, A., Carrascosa, J. L., and Rodriguez, J. F. (1999). VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73,6973-83.
    Lombardo, E., Maraver, A., Espinosa, I., Fernandez-Arias, A., and Rodriguez, J. F. (2000). VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology 277,345-57.
    Lovat, P. E., Oliverio, S., Ranalli, M., Corazzari, M., Rodolfo, C., Bernassola, F., Aughton, K., Maccarrone, M., Hewson, Q. D., Pearson, A. D., Melino, G, Piacentini, M., and Redfern, C. P. (2002). GADD153 and 12-lipoxygenase mediate fenretinide-induced apoptosis of neuroblastoma. Cancer Res 62, 5158-67.
    Luche, S., Santoni, V., and Rabilloud, T. (2003). Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3,249-53.
    Lukert, P. D., and Davis, R. B. (1974). Infectious bursal disease virus:growth and characterization in cell cultures. Avian Dis 18,243-50.
    Luo, J., Zhang, G. P., Fan, J. M., Teng, M., You, L. M., Zhou, L., Deng, R. G, Wang, X. N., Yang, Y. Y., Wang, L., Xing, G. X., and Cheng, N. (2009). Infectivity and propagation of attenuated infectious bursal disease virus in the chicken B-lymphocyte cell line DT40. Arch Virol 154,513-7.
    Ma, G, Greenwell-Wild, T., Lei, K., Jin, W., Swisher, J., Hardegen, N., Wild, C. T., and Wahl, S. M. (2004). Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1. infection. J Exp Med 200, 1337-46.
    Macleod, J. C., Sayer, R. J., Lucocq, J. M., and Hubbard, M. J. (2004). ERp29, a general endoplasmic reticulum marker, is highly expressed throughout the brain. J Comp Neurol 477,29-42.
    Magnuson, B., Rainey, E. K., Benjamin, T., Baryshev, M., Mkrtchian, S., and Tsai, B. (2005). ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20,289-300.
    Malhotra, R., Ward, M., Bright, H., Priest, R., Foster, M. R., Hurle, M., Blair, E., and Bird, M. (2003). Isolation and characterization of potentialrespiratory syncytial virus receptor(s) on epithelial cells. Microbes Infect.5,123-33.
    Mannova, P., Fang, R., Wang, H., Deng, B., McIntosh, M. W., Hanash, S. M., and Beretta, L. (2006). Modification of host lipid raft proteome upon hepatitis C virus replication. Mol Cell Proteomics 5,2319-25.
    Masteller, E. L., Pharr, G. T., Funk, P. E., and Thompson, C. B. (1997). Avian B cell development. Int Rev Immunol 15,185-206.
    Matsumoto, Y. (2001). Molecular mechanism of PCNA-dependent base excision repair. Prog Nucleic Acid Res Mol Biol 68,129-38.
    McArdle, A., Dillmann, W. H., Mestril, R., Faulkner, J. A., and Jackson, M. J. (2004). Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-relate muscle dysfunction. FASEB J 18,355-7.
    McFerran, J. B., McNulty, M. S., McKillop, E. R., Connor, T. J., McCracken, R. M., Collins, D. S., and Allan, G. M. (1980). Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks:demonstration of a second serotype. Avian Pathol 9,395-404.
    Misumi, S., Fuchigami, T., Takamune, N., Takahashi,.I., Takama, M., and Shoji, S. (2002). Three isoforms of cyclophilin A associated with human immunodeficiency virus type 1 were found-by proteomics by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Virol 76,10000-8.
    Moldave, K. (1985). Eukaryotic protein synthesis. Annu Rev Biochem 54,1109-49.
    Molloy, M. P. (2000). Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280,1-10.
    Morgan, M. M., Macreadie, I. G.,Harley, V. R., Hudson, P. J., and Azad, A. A. (1988). Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology 163,240-2.
    Muller, H. (1996a). Characterization and interfering capacity of a small plague mutant and of imcomplete virus particles of the infectious bursal disease virus (IBDV). Virus Res 4,297-309.
    Muller, H. (1996b). Replication of IBDV in lymphoid cell. Arch Virol 87,191-203.
    Muller, H., Schnitzler, D., Bernstein,F., Becht, H., Cornelissen, D., and Lutticken, D. H. (1992). Infectious bursal disease of poultry:antigenic structure of the virus and control. Vet Microbiol 33,175-83.
    Mundt, E. (1999). Tissue culture infectivity of different strains of infectious bursal disease virus is determined by distinct amino acids in VP2. J Gen Virol 80, 2067-76.
    Mundt, E., Kollner, B., and Kretzschmar, D. (1997). VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol 71,5647-51.
    Mundt, E., and Muller, H. (1995). Complete nucleotide sequences of 5'-and 3'-noncoding regions of both genome segments of different strains of infectious bursal disease virus. Virology 209,10-8.
    Mundt, E., and Vakharia, V. N. (1996). Synthetic transcripts of double-stranded Birnavirus genome are infectious. Proc Natl Acad Sci U S A 93,11131-6.
    Nagarajan, M. M., and Kibenge, F. S. (1997). The 5'-terminal 32 basepairs conserved between genome segments A and B contain a major promoter element of infectious bursal disease virus. Arch Virol 142,2499-514.
    Nandakumar, M. P., Shen, J., Raman, B., and Marten, M. R. (2003). Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis. J Proteome Res 2,89-93.
    O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250,4007-21.
    Okoye, J. (1984). Infectious bursal disease of chickens. Vet Bulletin 54,425-36.
    Olsson, I., Larsson, K., Palmgren, R., and Bjellqvist, B. (2002). Organic disulfides as a means to generate streak-free two-dimensional maps with narrow range basic immobilized pH gradient strips as first dimension. Proteomics 2,1630-2.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1,376-86.
    Oppling, V., Muller, H., and Becht, H. (1991). The structural polypeptide VP3 of infectious bursal disease virus carries group-and serotype-specific epitopes. J Gen Virol 72,2275-8.
    Park, M. J., Park, J. H., and Kwon, H. M. (2009). Mice as potential carriers of infectious bursal disease virus in chickens. Vet J doi:10.1016/j.tvjl.2008.12.005.
    Perret, E., Moudjou, M., Geraud, M. L., Derancourt, J., Soyer-Gobillard, M. O., and Bornens, M. (1995). Identification of an HSP70-related protein associated with the centrosome from dinoflagellates to human cells. J Cell Sci 108, 711-25.
    Pickart C. M., Eddins, M. J. (2004). Ubiquitin:structures, functions, mechamisms. B iochem Biophys Acta 1695,55-72.
    Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., and Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha (v) beta (3) and alpha (v) beta (5) integrin expression. Cancer Res 63,4258-67.
    Pocernich, C. B., Boyd-Kimball, D., Poon, H. F., Thongboonkerd, V., Lynn, B. C., Klein, J. B., Calebrese, V., Nath, A., and Butterfield, D. A. (2005). Proteomics analysis of human astrocytes expressing the HIV protein Tat. Brain Res Mol Brain Res 133,307-16.
    Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997). Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18,307-16.
    Rainey-Barger, E. K., Magnuson, B., and Tsai, B. (2007). A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 81,12996-3004.
    Ramaekers, F.C., and Bosman, F.T. (2004). The cytoskeleton and-disease.J Pathol 204,351-4.
    Rameshthangam, P., and Ramasamy, P. (2005). Protein expression in white spot syndrome virus infected Penaeus monodon fabricius. Virus Res 110,133-41.
    Ratcliffe, M. J. (2002). B cell development in gut associated lymphoid tissues. Vet Immunol Immunopathol 87,337-40.
    Reddy, S. K., Silim, A., and Ratcliffe, M. J. (1992). Biological roles of the major capsid proteins and relationships between the two existing serotypes of infectious bursal disease virus. Arch Virol 127,209-22.
    Rhee, H. J., Kim, G. Y., Huh, J. W., Kim, S. W., and Na, D. S. (2000). Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur J Biochem 267,3220-5.
    Righetti, P. G., Castagna, A., Antonioli, P., and Boschetti, E. (2005). Prefractionation techniques in proteome analysis:the mining tools of the third millennium. Electrophoresis 26(2),297-319.
    Rodriguez-Lecompte, J. C,, and Kibenge, F. S. (2002). Site-directed mutagenesis of Avibirnavirus VP4 gene. Virology 292,241-6.
    Rodriguez-Lecompte, J. C., Nino-Fong, R., Lopez, A., Frederick Markham, R. J., and Kibenge, F. S. (2005). Infectious bursal disease virus (IBDV) induces apoptosis in chicken B cells. Comp Immunol Microbiol Infect Dis 28,321-37.
    Ryzhova, E. V., Vos, R. M., Albright, A. V., Harrist, A. V., Harvey, T., and Gonzalez-Scarano, F. (2006). Annexin 2:a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol 80,2694-704.
    Spengler, S. J. (2000). Bioinformatics in the Information Age. Science 287,1221-3.
    Saif, Y. M. (1991). Immunosuppression induced by infectious bursal disease virus. Vet Immunol Immunopathol 30,45-50.
    Saijo, K., Higashihara, M., Fujisaki, Y., and Matumoto, M. (1990). Isolation and characterization of attenuated plaque variants of infectious bursal disease virus. Vet Microbiol 22,171-8.
    Saphire A. C. S., Gallay, P. A., and Bark S. J. (2006). Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spect rometry effectively distinguishes specific incorporated host proteins. J Proteome Res 5,530-8.
    Saravanan, R. S., and Rose, J. K, (2004). A critical evaluation of.sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4.2522-32.
    Schroder, A., van Loon, A. A., Goovaerts, D., Teifke, J. P., and Mundt, E. (2001). VP5 and the N terminus of VP2 are not responsible for the different pathotype of serotype I and II infectious bursal disease virus. J Gen Virol 82,159-69.
    Sharma, J. M., Dohms, J. E., and Metz, A. L. (1989). Comparative pathogenesis of serotype 1 and variant serotype 1 isolates of infectious bursal disease virus and their effect on humoral and cellular immune competence of specific-pathogen-free chickens. Avian Dis 33,112-24.
    Shnyder S. D., Hubbard, M. J. (2002). ERp29 is a ubiquitous resident of the endoplasmic reticulum with a distinct role in secretory protein production. J Histochem Cytochem 50,557-66.
    Skiba, M., Mettenleiter, T. C., and Karger, A. (2008). Quantitative Whole-Cell Proteome Analysis of Pseudorabie Virus-Infected Cells.J Virol 82,9689-9.
    Snyder, D. B., Vakharia, V. N., and Savage, P. K. (1992). Naturally occurring-neutralizing monoclonal antibody escape variants define the epidemiology of infectious bursal disease viruses in the United States. Arch Virol 127,89-101.
    Spies, U., and Muller, H. (1990). Demonstration of enzyme activities required for cap structure formation in infectious bursal disease virus, a member of the birnavirus.group. J Gen Virol 71,977-81.
    Spies, U., Muller, H., and Becht, H. (1987). Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Res 8,127-40.
    Stanley, B. A., Neverova, I., Brown, H. A., and Van Eyk, J. E. (2003). Optimizing protein solubility for two-dimensional gel electrophoresis analysis of human myocardium. Proteomics 3,815-20.
    Steitz, T. A. (1998). A mechanism for all polymerases. Nature 391,231-2.
    Sternlicht, H., Farr, G. W., Sternlicht, M. L., Driscoll, J. K., Willison, K., and Yaffe, M. B. (1993). The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proceedings of the National Academy of Sciences 90, 9422-6.
    Sun, J., Jiang, Y., Shi, Z., Yan, Y, Guo, H., He, F., and Tu, C. (2008). Proteomic alteration of PK-15 cells after, infection.by classical swine fever virus. J Proteome Res 7,5263-9.
    Tanaka, K. (1988). Protein and polymer analyses of up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Mass Spectrom.2,151-3.
    Tanimura, N., and Sharma, J. M. (1997). Appearance of T cells in the bursa of Fabricius and cecal tonsils during the acute phase of infectious bursal disease virus infection in chickens. Avian Dis 41,638-45.
    Tastet, C., Charmont, S., Chevallet, M., Luche, S., and Rabilloud, T. (2003). Structure-efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimensional electrophoresis. Proteomics 3,111-21.
    Tham, K. M. (1996). Apoptosis in cell culture induced by infectious bursal desease virus following in vitro infection. Avian Dis 40,109-13.
    Thorpe, C. (1991). "In Chemistry and Biochemistry of Flavoenzyme." CRC Press, Boca Raton.
    Toda, T., and Sugimoto, M. (2003). Proteome analysis of Epstein-Barr virus-transformed B-lymphoblasts and the proteome database. J Chromatogr B Analyt Technol Biomed Life Sci 787,197-206.
    Tsukamoto, K. (1995). A highly sensitive, broad spectrum infectivity assay for IBDV Avian Dis 11,575-86.
    Unlu, M., Morgan, M. E., and Minden, J. S. (1997). Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071-7.
    Vakharia, V. N., Snyder, D. B., Lutticken, D., Mengel-Whereat, S. A., Savage, P. K., Edwards, G. H., and Goodwin, M. A. (1994). Active and passive protection against variant and classic infectious bursal disease virus strains induced by baculovirus-expressed structural proteins. Vaccine 12,452-6.
    Van den Berg, T. P. (2000). Acute infectious bursal disease in poultry:a review. Avian Pathol 29,175-94.
    Vasconcelos, A. C., and Lam, K. M. (1994). Apoptosis induced by infectious bursal disease virus. J Gen Virol 75,1803-6.
    Wang, B. H., and Biemann, K. (1994). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of chemically modified oligonucleotides. Anal Chem 66,1918-24.
    Wang, S. B., Hu, Q., Sommerfeld, M., Chen, F. (2003). An optimized protocol for isolation of soluble proteins from microalgae for two-dimensional gel electrophoresis analysis. JApp Phycol 15,485-96.
    Wang, X., Ye, Y., Lencer, W., and Hansen, T. H. (2006). The viral E3 ubiquitin ligase mK3 uses the Derlin/p97 endoplasmic reticulum-associated degradation pathway to mediate down-regulation of major histocompatibility complex class I proteins. J Biol Chem 281,8636-44.
    Wang, Y. Z., Wu X. P., Li, H. B., Wu, Y. P., Shi, L. X., Zheng, X. J., Luo, M., Yan, Y, and Zhou. J. Y. (2009). Antibody to VP4 protein is an indicator discriminating pathogenic and nonpathogenic IBDV infection. Mol Immunol 46,1964-69.
    Wiener, M. C., Sachs, J. R., Deyanova, E. G., and Yates, N. A. (2004). Differential mass spectrometry:a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76,6085-96.
    Williams, J. G, and Tomer, K. B. (2004). Disposable chromatography for a high-throughput nano-ESI/MS and nano-ESI/MS-MS platform.J Am Soc Mass Spectrom 15,1333-40.
    Winer, I., Normolle, D. P., Shureiqi, I., Sondak, V. K., Johnson, T., Su, L., and Brenner, D. E. (2002). Expression of 12-lipoxygenase as a biomarker for melanoma carcinogenesis. Melanoma Res 12(5),429-34.
    Wu, F. S., and Wang, M. Y. (1984). Extraction of proteins for sodium dodecyl sulfate-polyacrylamide gel electrophoresis from protease-rich plant tissues. Anal Biochem 139,100-3.
    Yamaguchi, T., Ogawa, M., Inoshima, Y, Miyoshi, M., Fukushi, H., and Hirai, K. (1996). Identification of sequence changes responsible for the attenuation of highly virulent infectious bursal disease virus. Virology 223,219-23.
    Yamaguchi, T., Ogawa, M., Miyoshi, M., Inoshima, Y, Fukushi, H., and Hirai, K. (1997). Sequence and phylogenetic analyses of highly virulent infectious bursal disease virus. Arch Virol 142,1441-58.
    Yamaoka, K., Imajoh-Ohmi, S., Fukuda, H., Akita, Y, Kurosawa, K., Yamamoto, Y, and Sanai, Y. (2006). Identification of phosphoproteins associated with maintenance of transformed state in temperature-sensitive Rous sarcoma-virus infected cells by proteomic analysis. Biochem Biophys Res Commun 345, 1240-6.
    Yan, G., Li, L., Tao, Y, Liu, S., Liu, Y, Luo, W., Wu, Y, Tang, M., Dong, Z., and Cao, Y. (2006). Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein.1 using functional proteomics technology. Proteomics 6,1810-21.
    Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., and Dunn, M. J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21,3666-72.
    Yao, K., Goodwin, M. A., and Vakharia, V. N. (1998). Generation of a mutant infectious bursal disease virus that does not cause bursal lesions. J Virol 72, 2647-54.
    Yao, K., and Vakharia, V. N. (2001). Induction of apoptosis in vitro by the 17-kDa nonstructural protein of infectious bursal disease virus:possible role in viral pathogenesis. Virology 285,50-8.
    Yehuda, H., Pitcovski, J., Michael, A., Gutter, B., and Goldway, M. (1999). Viral protein 1 sequence analysis of three infectious bursal disease virus strains:a very virulent virus, its attenuated form, and an attenuated vaccine. Avian Dis 43(1),55-64.
    Yip, T. T., and Hutchens, T. W. (1992). Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. FEBS Lett 308,149-53.
    Yoder, J. D., Chen, T. S., Gagnier, C. R., Vemulapalli, S., Maier, C. S., and Hruby, D. E. (2006). Pox proteomics:mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J 3,10.
    Yu, G. Y., and Lai, M. M. (2005). The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79,644-8.
    Yu, L., Song, A. K., Zhang, A. B., and Deng, R. (2000). Cloning and expression of the VP2 gene of an infectious bursal disease virus. Avian Dis 44(1),170-8.
    Zeuschner, D., Stoorvogel, W., and Gerke, V. (2001). Association of annexin 2 with recycling endosomes requires either calcium-or cholesterol-stabilized membrane domains. Eur J Cell Biol 80,499-507.
    Zhang, H., Xinna Ge, X. G., Chen, Y, Sun, Q., and Yang H. (2009). Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J .Proteome Res 8:3091-7
    Zhang, X., Zhou, J., Wu, Y, Zheng, X., Ma, G., Wang, Z., Jin, Y, He, J., and Yan, Y. (2009). Differential Proteome Analysis of Host Cells Infected with Porcine Circovirus Type 2. JProteome Res. DOI:10.1021/pr900488q.
    Zheng, X., Hong, L., Shi, L., Guo, J., Sun, Z., and Zhou, J. (2008). Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics 7,612-25.
    Zhou, J. Y, Ye, J. X., Ye, W. C., Chen, Q. X., Zheng, X. J., and Guo, J. Q. (2005). Antigenic and molecular characterization of infectious bursal disease virus in China from layer chicken flocks. Prog Biochem Biophys 32,37-45
    Zierenberg, K., Nieper, H., van den Berg,T.P., Ezeokoli, C. D., Voss, M., and Muller, H. (2000). The VP2 variable region of African and German isolates of infectious bursal disease, virus:comparison with very virulent, "classical" virulent, and attenuated tissue culture-adapted strains. Arch Virol 145,113-25.
    毛炳宗.马晓丽,赵晖,刘存仁,张红卫(1998).人工感染IBDV鸡法氏囊的电镜研究.畜牧兽医学报 29,455-61.
    王笑梅,付朝阳,高宏雷(2002).传染性法氏囊病超强毒株GX的分离鉴定及分子生物学和抗原性分析.In“中国畜牧兽医学会禽病学分会第十一次学术讨论会论文剂”,Vol.10,pp.215-9,成都.
    卡尔尼克,B.W.(1991).“禽病学.”第3版北京农业大学出版社,北京.
    何近敏,向连宾,林雨霖(1996).“分子生态学.”湖北科学技术出版社,长沙.
    宋坤华,黄耀伟,金勇丰(2000).重组家蚕病毒表达传染性法囊病病毒VP2蛋白.生物化学性物物理学报 32,281-4.
    周圣文,李成,周蛟(1984).传染性法氏囊病病毒北京CJ-801毒株人工感染雏鸡病理发生形态学观察.中国兽医杂志 10,2-8.
    金文杰,崔治中,刘岳龙(2001).传染性法氏囊病病料中MDV、CAV、REV的共同感染检测.中国兽医学报 21,6-8.
    侯勇跃(1991).传染性法氏囊病理形态学及其发病机理的研究.中国兽医科技21,5-8.
    曹永长,毕英佐,罗晚秋,何洁(1995).传染性法氏囊病病毒诱导细胞凋亡的初步观察.中国兽药杂志,29,2-11.
    曹永长,毕英佐,罗文新,杨永成,梁志清,林文量(1997).传染性法氏囊病病毒变异株主要免疫原基因cDNA的克隆及鉴定.中国兽医杂志,23,3-5.
    郭尧军(1999).“蛋白质电泳实验技术.”科学出版社,北京.
    彭大新(2000).传染性法氏囊病病毒分子与功能研究进展.动物医学进展 21,36-40.
    曾祥伟,王笑梅,高宏雷,付朝阳,魏萍(2003).传染性法氏囊病超强毒GX株的致弱研究.中国预防兽医学报 25,140-4.
    刘爵,刘有昌,曹永长(1999).鸡传染性法氏囊病病毒的分子生物研究进展.中国兽医学报 20,205-8.
    叶菊秀(2006).“传染性法氏囊病毒粒子感染及其A节段编码基因转化细胞的转录本初步分析(博士论文).”
    吕英姿,曹永长,陈峰(2002).传染性法氏囊病病毒VP2蛋白诱导细胞凋亡的研究.华南农业大学学报 23,70-3.
    吴石金,谌南辉(1999).传染性法氏囊病病毒分子生物研究近况.预防兽医学进展 1,17-9.
    孙建和,陆萍,李晖(2002).鸡传染性法氏囊病上海超强毒株NH99的分离和鉴定.中国病毒学 17,252-6.
    孙淑红,崔治中,金文杰(2003).1997-2001间31个不同传染性法氏囊病毒分离株的致病性研究.In“中国畜牧兽医学会家禽传染病学分会第十次学术讨论会论文集”,Vol.10,pp.884-9,苏州.
    张小青,陆宇,丁明孝(1998).痘苗病毒诱导Hela细胞的凋亡.中国病毒学 13,365-8.
    张艳英,孙继国,郑世学(2002).鸡传染法氏囊病毒3个毒株VP2高变区的基因扩增与序列分析.河边农业大学学报 25,240-2.
    郑肖娟(2007).“传染性法氏囊病毒感染细胞的差异蛋白质组学研究(浙江大学博士论文).”
    钱小红(1998).蛋白质组与生物质谱技术.质谱学报 19,48-54.
    陆承平(2007).“兽医微生物学.”中国农业出版社,北京.
    韦平(2001).家禽病毒性免疫抑制病的危害及其防制策略禽.中国兽医杂志 23,182-5.
    黄金海,李建强(1999).传染性法氏囊病病毒在细胞中的增殖及其分子机制.动物医学进展 20,20-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700