用户名: 密码: 验证码:
辐射诱发HL-7702细胞基因组不稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在细胞、基因和蛋白水平上检测60Co-γ射线诱发人肝细胞基因组的不稳定性,并用基因芯片和双向电泳-质谱技术探讨其分子机制,筛选与辐射诱发基因组不稳定性相关的基因和蛋白,为阐明辐射诱发基因组不稳定性的分子机制提供基础资料。
     方法:(1)采用60Co-γ射线照射人正常肝细胞7702(HL-7702),照射剂量为0 Gy(对照组)、2 Gy、4 Gy、6 Gy、8 Gy、10 Gy。检测受照后7702细胞克隆存活率、微核形成率、单细胞凝胶电泳(SCGE)、细胞凋亡率。(2)检测各剂量点受照细胞子代的上述指标。(3)对各剂量受照细胞克隆子代同时给予2Gy的二次照射,然后检测克隆存活率、微核形成率、单细胞凝胶电泳、细胞凋亡率。(4)分别提取经2、4、6 Gyγ射线照射后子代细胞的总RNA,采用Illumina人全基因组基因芯片分析基因表达情况,并筛选出差异表达基因。(5)用实时荧光定量PCR(RT-PCR)技术验证部分差异基因。(6)用GeneSpring GX 10软件对差异表达基因进行生物信息学分析,并构建差异表达基因相互作用网络。(7)提取受照射后子代细胞的总蛋白进行2-DE分离,考马斯亮蓝染色,差异表达点进行MALDI-TOF质谱分析,NCBInr数据库搜索鉴定分析结果。(8)用Western blot方法验证质谱鉴定出的差异表达蛋白热休克蛋白60(HSP60)和珠蛋白转录因子1(GATA-1)在各剂量克隆子代中的表达。(9)用激光共聚焦显微技术观察差异表达蛋白HSP60、GATA-1和真核翻译起始因子5A (EIF5A)在各剂量克隆子代中的定位及表达。
     结果:(1)首次照射后,HL-7702细胞的克隆存活率、微核形成率、SCGE尾长、细胞凋亡率与照射剂量之间存在明显的剂量效应关系。(2)首次照射后各剂量组存活的克隆子代细胞经传代培养后,克隆存活率、微核形成率、SCGE尾长与对照组无显著差异。(3)首次照射后各剂量组存活的克隆子代细胞经2Gy的二次照射后,上述检测结果与首次照射剂量之间存在剂量效应关系。(4)基因芯片测定2Gy照射后子代细胞差异表达显著的基因有262个;4Gy照射组有2746个差异表达基因;6Gy照射组有3406个差异表达基因;三个剂量组的共同差异表达基因有71个,其中上调基因35个,下调基因36个。这些基因的功能涉及细胞周期、细胞骨架和运动、细胞凋亡、DNA结合、细胞信号转导、代谢、DNA复制和修复等。利用生物信息学分析软件构建了差异表达基因相互作用网络图并分析了RAN、CDT1、IER3、V-FOS等基因的生物学功能。(5)受照射7702细胞克隆子代细胞双向电泳图谱与对照组相比,共发现差异蛋白点42个,其中10个上调蛋白,32个下调蛋白。经质谱分析,成功鉴定出17个差异表达蛋白,这些差异蛋白包括翻译控制肿瘤蛋白(TCTP)、热休克蛋白27(HSP27)、热休克蛋白60(HSP60)、珠蛋白转录因子1(GATA-1)、巯基特异性抗氧化酶(TSA)、氯离子通道蛋白1(CLIC1)、真核翻译起始因子(EIF1A, EIF5A)、真核翻译延长因子1(EEF1A)等。(6)Western blot分析结果表明HSP60和GATA-1表达与受照剂量的关系与2-DE结果一致。(7)激光共聚焦结果显示HSP60与EIF5A蛋白在细胞中表达丰富,主要分布于细胞质中细胞核的周围。荧光定量分析结果与双向电泳分析结果一致。
     结论:(1)电离辐射诱发的基因组不稳定性可传递给受照细胞的后代,并在细胞复制多代后仍以潜在的方式存在于子代中,从而表现出滞后的遗传学效应。基因组不稳定性的发生与DNA的首次损伤事件之间存在明显的相关关系。(2)二次事件的放大作用在基因组不稳定性的传递过程中起着重要的作用。二次损伤放大了处于不稳定状态的基因组损伤,使其更容易被检测,因而可作为研究基因组不稳定性的有效工具。(3)电离辐射可诱发HL-7702子代细胞中一系列基因与蛋白质表达的改变,提示基因组不稳定性涉及复杂的调控机制。其中,RAN、CDT1、IER3、RAD51AP1、HAVCR2基因及HSP60、GATA-1蛋白在受照肝细胞子代中均显示出特征性的差异表达,有望成为辐射诱发基因组不稳定性的分子生物学标志。
Objective: Radiation-induced genomic instability(RIGI) in human liver cells was detected at the cellular, molecular and proteomic level. cDNA chip and proteomic analysis was conducted upon progeny of irradiated human liver cells to provide experimental data for exploring the molecular mechanism of RIGI.
     Merhods: (1) The cloning efficiency, micronucleus frequency and apoptosis efficiency of human liver cells 7702(HL-7702) irradiated by 60Co-γrays were detected, and the method of single cell gel electrophoresis(SCGE) was used to measure DNA chains damage. (2) The progeny of HL-7702 cells were irradiated by 0, 2, 4, 6, 8, and 10Gy of 60Coγ-irradiation, and the effects mentioned above were detected in the progeny of the irradiated cells. (3) The progeny were secondly irradiated with 2Gy of 60Coγ- irradiation, and the delayed effects were detected. (4) cDNA gene chip was used to measure the transcriptional profile in progeny of HL-7702 cells exposed to 0, 2, 4, and 6Gy 60Coγ-irradiation, and the differentially expressed genes were further identified by Quantitative real-time PCR. A pathway-based network was constructed using a software (Genespring GX10) to analyze the functional relations among the differential genes. (5) Two-dimensional electrophoresis(2-DE) was used to screen the proteins differentially expressed in the progeny of human liver cells surviving from ionizing radiation, and mass spectrometry was used to identify the protein-spots significantly altered in expression. (6) The differential expression proteins of GATA-1, HSP60 were verified by Western blot. (7) Laser confocal scanning microscopy(LGSM) was used to detect the differential expression proteins of EIF5Aand HSP60 to confirm the 2-DE result.
     Results: (1) The cloning efficiency decreased with the increase of doses after the initial irradiation, while micronucleus frequency, percentage of apoptosis and comet rate increased with the increase of doses. (2) Damage of the survival cells secondly irradiated was correlated with the original irradiation doses. (3) A total of 71 differentially expressed genes were screened, most of which associated with transduction, cell cycle regulation, cellular immunity, cytoskeleton and movement, cell replication and repair mechanism. A pathway-based network was constructed to reveal the biological functions of RAN、CDT1、IER3、V-FOS.(4) A total of 42 differentially expressed proteins from the progeny of irradiated cells were screened, of which 17 were identified by MALDI-TOF-MS analysis, including 4 up-rugulated and 13 down-regulated proteins. The up-regulated expression of two proteins, mitochondrial heat shock 60kD protein (HSP60) and globin transcription factor 1 (GATA-1), were further confirmed by immunoblotting. (5) The differentially expressed proteins of HSP60 and EIF5A were localized in the cytoplasm, and the expression of HSP60 was up-regulated in the progeny of irradiated cells in a dose-dependent manner, which was consistent with the result of 2-DE.
     Conclusions: (1) Radiation-induced genomic instability may sustain in the progeny of surviving cells. The delayed damage after a second irradiation was correlated to the original irradiation dose. (2) A second irradiation plays an important role in transforming the genomic instability to the progeny, to make the damage more easily to be detected. (3) Irradiation can induce differentially expressed genes and proteins in the progeny of irradiated cells, which may be applied as potential biomarkers of radiation damage in future studies.
引文
1. McBride WH, Chiang CS, Olson JL, et al. A sense of danger from radiation. Radiation research 2004;162:1-19
    2.周永增.辐射防护的生物学基础.辐射防护通讯2006;26 1-7
    3. Coleman WB, Tsongalis GJ. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. Clinical chemistry 1995;41:644-657
    4. Coleman CN, Stevenson MA. Biologic basis for radiation oncology. Oncology (Williston Park, NY 1996;10:399-411; discussion: 411-395
    5. Kadhim MA, Macdonald DA, Goodhead DT, et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 1992;355:738-740
    6. Limoli CL, Corcoran JJ, Milligan JR, Ward JF, Morgan WF. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation. Radiation research 1999;151:677-685
    7. Limoli CL, Ponnaiya B, Corcoran JJ, et al. Genomic instability induced by high and low LET ionizing radiation. Adv Space Res 2000;25:2107-2117
    8. Sabatier L, Dutrillaux B, Martin MB. Chromosomal instability. Nature 1992;357:548
    9. Marder BA, Morgan WF. Delayed chromosomal instability induced by DNA damage. Molecular and cellular biology 1993;13:6667-6677
    10. Ponnaiya B, Cornforth MN, Ullrich RL. Induction of chromosomal instability in human mammary cells by neutrons and gamma rays. Radiation research 1997;147:288-294
    11. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiation research 1996;146:247-258
    12. Weissenborn U, Streffer C. Analysis of structural and numerical chromosomal aberrations at the first and second mitosis after X irradiation of two-cell mouse embryos. Radiation research 1989;117:214-220
    13. Dubrova YE, Nesterov VN, Krouchinsky NG, et al. Further evidence forelevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutation research 1997;381:267-278
    14. Roy K, Kodama S, Suzuki K, Fukase K, Watanabe M. Hypoxia relieves X-ray-induced delayed effects in normal human embryo cells. Radiation research 2000;154:659-666
    15. Snyder AR, Morgan WF. Lack of consensus gene expression changes associated with radiation-induced chromosomal instability. DNA Repair (Amst) 2005;4:958-970
    16. ICRP, 2007. The 2007 Recommendations of the international commission on radiological protection. ICRP publication 103 Ann ICRP 37(3 )
    17.强晖,谢渭芬,张忠兵.基因芯片技术及其在肝脏疾病中的应用研究进展.国外医学?消化系疾病分册2003;23:29-32
    18. Fenech M. Chromosomal biomarkers of genomic instability relevant to cancer. Drug discovery today 2002;7:1128-1137
    19. Alvarez-Rosero RE, Rodriguez-Argote J, Arboleda-Moreno YY, Munoz-Benitez SL, Sierra-Torres CH. Chromosome aberrations in peripheral blood lymphocytes of high-risk HPV-infected women with HGSIL. Environmental and molecular mutagenesis 2008;49:688-694
    20. Cavallo D, Ursini CL, Bavazzano P, et al. Sister chromatid exchange and oxidative DNA damage in paving workers exposed to PAHs. The Annals of occupational hygiene 2006;50:211-218
    21. Heenard H, Lapointe E, Rochdi M. Insights into rhrumatoid arthritis derived from the sa immune system. Arthritis Rheum 2000;2:429~432
    22. Morgan WF, Corcoran J, Hartmann A, et al. DNA double-strand breaks, chromosomal rearrangements, and genomic instability. Mutation research 1998;404:125-128
    23. Cui X, Brenneman M, Meyne J, et al. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutation research 1999;434:75-88
    24. Trott KR, Teibe A. Lack of specificity of chromosome breaks resulting from radiation-induced genomic instability in Chinese hamster cells. Radiation and environmental biophysics 1998;37:173-176
    25. Puck TT, Marcus PI. Action of x-rays on mammalian cells. The Journal of experimental medicine 1956;103:653-666
    26.刘炳辰,董连锴,金虎林等.γ射线诱发鼠骨髓干细胞染色体不稳定性传递及时相分析.癌变,畸变,突变1998;10:69-72
    27. Kadhim MA, Wright EG. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells. Adv Space Res 1998;22:587-596
    28. Chang WP, Little JB. Delayed reproductive death in X-irradiated Chinese hamster ovary cells. International journal of radiation biology 1991;60:483-496
    29. Seymour CB, Mothersill C, Alper T. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. International journal of radiation biology 1986;50:167-179
    30. Sinclair WK. X-Ray-Induced Heritable Damage (Small-Colony Formation) in Cultured Mammalian Cells. Radiation research 1964;21:584-611
    31.沈波,沈冰. CB法微核检测技术应用于诱导基因组不稳定性的研究.辐射研究与辐射工艺学报2005;23:45-48
    32. Jamali M, Trott KR. Increased micronucleus frequency in the progeny of irradiated Chinese hamster cells. International journal of radiation biology 1996;69:301-307
    33. Abend M, Rhein A, Gilbertz KP, Blakely WF, Van Beuningen D. Correlation of micronucleus and apoptosis assays with reproductive cell death. International journal of radiation biology 1995;67:315-326
    34. Trucco C, Rolli V, Oliver FJ, et al. A dual approach in the study of poly (ADP-ribose) polymerase: in vitro random mutagenesis and generation of deficient mice. Molecular and cellular biochemistry 1999;193:53-60
    35. Tatsumi-Miyajima J, Kupper JH, Takebe H, Burkle A. Trans-dominant inhibition of poly(ADP-ribosyl)ation potentiates alkylation-induced shuttle-vector mutagenesis in Chinese hamster cells. Molecular and cellular biochemistry 1999;193:31-35
    36. Little JB. Radiation carcinogenesis. Carcinogenesis 2000;21:397-404
    37. Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiation research 2003;159:567-580
    38. Nowell PC. The clonal evolution of tumor cell populations. Science (New York, NY 1976;194:23-28
    39. Kadhim MA, Lorimore SA, Townsend KM, et al. Radiation-induced genomic instability: delayed cytogenetic aberrations and apoptosis in primary human bone marrow cells. International journal of radiation biology 1995;67:287-293
    40. Little JB, Nagasawa H, Pfenning T, Vetrovs H. Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X rays and alpha particles. Radiation research 1997;148:299-307
    41. Spivak G, Hanawalt PC. Translesion DNA synthesis in the dihydrofolate reductase domain of UV-irradiated CHO cells. Biochemistry 1992;31:6794-6800
    42. Grosovsky AJ, Parks KK, Giver CR, Nelson SL. Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability. Molecular and cellular biology 1996;16:6252-6262
    43. Ullrich RL, Ponnaiya B. Radiation-induced instability and its relation to radiation carcinogenesis. International journal of radiation biology 1998;74:747-754
    44. Cheung VG, Morley M, Aguilar F, al e. Making and reading microarrays. Nature genetics 1999;21:15-19
    45.李瑶.基因芯片与功能基因组:化学工业出版社; 2004:31
    46. Yu Y, Okayasu R, Weil MM, et al. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer research 2001;61:1820-1824
    47. Baverstock K. Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutation research 2000;454:89-109
    48. Barcellos-Hoff MH, Brooks AL. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiation research 2001;156:618-627
    49. Snyder A, Morgan W. Radiation-induced chromosomal instability and gene expression profiling: searching for clues to initiation and perpetuation. Mutation research 2004;568:89-96
    50. Modesti M, Budzowska M, Baldeyron C, et al. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Molecular cell 2007;28:468-481
    51. Wiese C, Dray E, Groesser T, et al. Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Molecular cell 2007;28:482-490
    52. Wu MX. Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis 2003;8:11-18
    53. Charles CH, Yoon JK, Simske JS, Lau LF. Genomic structure, cDNA sequence, and expression of gly96, a growth factor-inducible immediate-early gene encoding a short-lived glycosylated protein. Oncogene 1993;8:797-801
    54.修明贺,谌錾.即刻早期反应基因X一1表达调控的研究进展.医学信息2009;1
    55. Ning S, Knox SJ. G2/M-phase arrest and death by apoptosis of HL60 cells irradiated with exponentially decreasing low-dose-rate gamma radiation. Radiation research 1999;151:659-669
    56. Yan T, Schupp JE, Hwang HS, et al. Loss of DNA mismatch repair imparts defective cdc2 signaling and G(2) arrest responses without altering survival after ionizing radiation. Cancer research 2001;61:8290-8297
    57. Fletcher CM, Uuni K, Mertens F. World Health Organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone Lyon 2002:168-169
    58. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annual review of biochemistry 2002;71:333-374
    59. Lei M, Tye BK. Initiating DNA synthesis: from recruiting to activating the MCM complex. Journal of cell science 2001;114:1447-1454
    60. Takisawa H, Mimura S, Kubota Y. Eukaryotic DNA replication: from pre-replication complex to initiation complex. Current opinion in cell biology 2000;12:690-696
    61. Gopalakrishnan V, Simancek P, Houchens C, et al. Redundant control of rereplication in fission yeast. Proceedings of the National Academy of Sciencesof the United States of America 2001;98:13114-13119
    62. Yanow SK, Lygerou Z, Nurse P. Expression of Cdc18/Cdc6 and Cdt1 during G2 phase induces initiation of DNA replication. The EMBO journal 2001;20:4648-4656
    63. Vaziri C, Saxena S, Jeon Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Molecular cell 2003;11:997-1008
    64. Zhong W, Feng H, Santiago FE, Kipreos ET. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 2003;423:885-889
    65. Wohlschlegel JA, Dwyer BT, Dhar SK, et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science (New York, NY 2000;290:2309-2312
    66. McGarry TJ, Kirschner MW. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 1998;93:1043-1053
    67. Maiorano D, Moreau J, Mechali M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 2000;404:622-625
    68.刘晓雁,刘淑琴,王红阳.复制许可因子CDT1在人正常肝脏和肝癌组织中的表达与意义现代生物医学进展2008;8:2059-2059
    69. Bischoff FR, Ponstingl H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 1991;354:80-82
    70. Bischoff FR, Ponstingl H. Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proceedings of the National Academy of Sciences of the United States of America 1991;88:10830-10834
    71. Drivas GT, Shih A, Coutavas E, Rush MG, D'Eustachio P. Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Molecular and cellular biology 1990;10:1793-1798
    72. Matsumoto T, Beach D. Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 1991;66:347-360
    73.曹允考,张贵学,陈大元,孙青原. GTPase Ran及其生物学作用细胞生物学杂志2004;26: 241-245
    74. Blow JJ, Hodgson B. Replication licensing--defining the proliferative state? Trends in cell biology 2002;12:72-78
    75. Blow JJ. A new role for Ran in ensuring precise duplication of chromosomal DNA. Cell 2003;113:2-4
    76. McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nature immunology 2001;2:1109-1116
    77.胡华军,陈勇,洪艳.甲型肝炎病毒受体HAVcr-1及其与过敏性疾病的关系.国外医学(流行病学传染病学分册2005;32:168
    78. Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ. The TIM gene family: emerging roles in immunity and disease. Nature reviews 2003;3:454-462
    79. Sabatos CA, Chakravarti S, Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nature immunology 2003;4:1102-1110
    80. Finkel MP, Biskis BO, Jinkins PB. Virus induction of osteosarcomas in mice. Science (New York, NY 1966;151:698-701
    81. Ransone LJ, Verma IM. Nuclear proto-oncogenes fos and jun. Annual review of cell biology 1990;6:539-557
    82. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochimica et biophysica acta 1991;1072:129-157
    83.于士柱,浦佩玉,江德华等.胶质瘤细胞c-fos和c-myc基因表达与血小板源生长因子B链的纯和二聚体自分泌环活性的观察.中华病理学杂志1999;28:182-186
    84. Zhang L, Li X, Zhao M, et al. Antisense oligonucleotide targeting c-fos mRNA limits retinal pigment epithelial cell proliferation: a key step in the progression of proliferative vitreoretinopathy. Experimental eye research 2006;83:1405-1411
    85. Langer S, Singer CF, Hudelist G, et al. Jun and Fos family protein expression in human breast cancer: correlation of protein expression and clinicopathological parameters. European journal of gynaecological oncology 2006;27:345-352
    86. Ashida R, Tominaga K, Sasaki E, et al. AP-1 and colorectal cancer. Inflammopharmacology 2005;13:113-125
    87.钱小红,贺福初.蛋白质组学:理论与方法:科学出版社; 2003
    88. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laserdesorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000;21:1164-1177
    89. Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000;21:1037-1053
    90. Corbett JM, Dunn MJ, Posch A, Gorg A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 1994;15:1205-1211
    91.张明,刘立思.热休克蛋白60与肿瘤关系的研究进展.国外医学(分子生物学分册2003;25:43-46
    92. Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351-366
    93. Itoh H, Komatsuda A, Ohtani H, et al. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. European journal of biochemistry / FEBS 2002;269:5931-5938
    94.曹智,马骏,袁文俊等.热休克蛋白60与细胞凋亡.生理科学进展2008;39:77-80
    95. Gupta S, Knowlton AA. HSP60, Bax, apoptosis and the heart. Journal of cellular and molecular medicine 2005;9:51-58
    96. Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002;105:2899-2904
    97. Kadhim MA, Marsden SJ, Malcolmson AM, et al. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radia Res 2001;155:122-126
    98. Kadhim MA, Moore SR, Goodwin EH. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutation research 2004;568:21-32
    99.冯雪梅,祝彼得. GATA1的研究现状.四川医学2006;27:132-134
    100. Romero-Benitez M, Aguirre M, Juaristi J. In vivo erythreid recovery following panlitaxel injury:correlation between GATA-1,cMYB,NFE2, Epe receptor expressions, and apoptosis. Toxicol Appl Pharma-col 2004;194:230-238
    101. Cromer BA, Morton CJ, Board PG, Parker MW. From glutathione transferase to pore in a CLIC. Eur Biophys J 2002;31:356-364
    102. Valenzuela SM, Martin DK, Por SB, et al. Molecular cloning and expression of a chloride ion channel of cell nuclei. The Journal of biological chemistry 1997;272:12575-12582
    103. Heiss NS, Poustka A. Genomic structure of a novel chloride channel gene, CLIC2, in Xq28. Genomics 1997;45:224-228
    104. Qian Z, Okuhara D, Abe MK, Rosner MR. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. The Journal of biological chemistry 1999;274:1621-1627
    105. Edwards JC. A novel p64-related Cl- channel: subcellular distribution and nephron segment-specific expression. The American journal of physiology 1999;276:F398-408
    106. Berryman M, Bretscher A. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Molecular biology of the cell 2000;11:1509-1521
    107. Strippoli P, D'Addabbo P, Lenzi L, et al. Segmental paralogy in the human genome: a large-scale triplication on 1p, 6p, and 21q. Mamm Genome 2002;13:456-462
    108. Board PG, Coggan M, Watson S, Gage PW, Dulhunty AF. CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. The international journal of biochemistry & cell biology 2004;36:1599-1612
    109. Valenzuela SM, Mazzanti M, Tonini R, et al. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. The Journal of physiology 2000;529 Pt 3:541-552
    110. Teyssier F, Bay JO, Dionet C, Verrelle P. [Cell cycle regulation after exposure to ionizing radiation]. Bulletin du cancer 1999;86:345-357
    111.魏群,曹江.真核翻译起始因子与肿瘤.细胞生物学杂志2007;29:197-201
    112. Jiang HY, Wek RC. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. The Biochemical journal 2005;385:371-380
    113. von Arnim AG, Chamovitz DA. Protein homeostasis: a degrading role for Int6/eIF3e. Curr Biol 2003;13:R323-325
    114. Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annual review of biochemistry 2004;73:657-704
    115. Park MH. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). Journal of biochemistry 2006;139:161-169
    116. Dorian B, Herbert J, Martin O. Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes. Science (New York, NY 1996;271:1858-1860
    117. Takeuchi K, Nakamura K, Fujimoto M, et al. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis. Electrophoresis 2002;23:662-669
    118. Chitpatima ST, Makrides S, Bandyopadhyay R, Brawerman G. Nucleotide sequence of a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic acids research 1988;16:2350
    119. Gross B, Gaestel M, Bohm H, Bielka H. cDNA sequence coding for a translationally controlled human tumor protein. Nucleic acids research 1989;17:8367
    120. Thiele H, Berger M, Lenzner C, Kuhn H, Thiele BJ. Structure of the promoter and complete sequence of the gene coding for the rabbit translationally controlled tumor protein (TCTP) P23. European journal of biochemistry / FEBS 1998;257:62-68
    121. Sanchez JC, Schaller D, Ravier F, et al. Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 1997;18:150-155
    122. Thomas G, Thomas G, Luther H. Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proceedings of the National Academy of Sciences of the United States of America 1981;78:5712-5716
    123. Yenofsky R, Bergmann I, Brawerman G. Messenger RNA species partially in arepressed state in mouse sarcoma ascites cells. Proceedings of the National Academy of Sciences of the United States of America 1982;79:5876-5880
    124. Yenofsky R, Cereghini S, Krowczynska A, Brawerman G. Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Molecular and cellular biology 1983;3:1197-1203
    125. Thomas G, Thomas G. Translational control of mRNA expression during the early mitogenic response in Swiss mouse 3T3 cells: identification of specific proteins. The Journal of cell biology 1986;103:2137-2144
    126. MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM. Molecular identification of an IgE-dependent histamine-releasing factor. Science (New York, NY 1995;269:688-690
    127. Nielsen HV, Johnsen AH, Sanchez JC, Hochstrasser DF, Schiotz PO. Identification of a basophil leukocyte interleukin-3-regulated protein that is identical to IgE-dependent histamine-releasing factor. Allergy 1998;53:642-652
    128. Gnanasekar M, Rao KV, Chen L, et al. Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Molecular and biochemical parasitology 2002;121:107-118
    129.孙晶,吴毓,王继红,李庆伟.受翻译调节的肿瘤蛋白的结构与功能.中国生物化学与分子生物学报2006;22:603-608
    130. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Molecular and cellular biology 2005;25:3117-3126
    131. Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K. Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. The Journal of biological chemistry 2002;277:37430-37438
    132. Yang Y, Yang F, Xiong Z, et al. An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 2005;24:4778-4788
    133. Kurien BT, Scofield RH. Western blotting. Methods (San Diego, Calif 2006;38:283-293
    134.陈耀文,林珏龙,赖效莹等.激光扫描共聚焦显微镜系统及其在细胞生物学中的应用.激光生物学报1998;7:52-55
    135.姚小武,陈仕生,杨利和等.电离辐射对血管内皮细胞纤维肌动蛋白的影响.中华放射医学与防护杂志2006;26:363-366
    136.仇玉兰,夏昭林等.接触生物标志物及其在危险度评价中的应用.中国职业医学2005;32:2(58-60)
    137.吴晓薇,黄国城.生物标志物的研究进展.广东畜牧兽医科技2008;33:2(14-18)
    138.张忠彬,李岩,夏昭林.效应生物标志物与危险度评价.职业卫生与应急救援2005;23:1(15-17)
    1. McBride WH, Chiang CS, Olson JL, et al. A sense of danger from radiation. Radiation research 2004;162:1-19
    2. Preston RJ. Bystander effects, genomic instability, adaptive response, and cancer risk assessment for radiation and chemical exposures. Toxicology and appliedpharmacology 2005;207:550-556
    3.周永增.辐射防护的生物学基础.辐射防护通讯2006;26:1-7
    4. Kadhim MA, Moore SR, Goodwin EH. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response. Mutation research 2004;568:21-32
    5. Kadhim MA, Macdonald DA, Goodhead DT, et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 1992;355:738-740
    6. Limoli CL, Corcoran JJ, Milligan JR, Ward JF, Morgan WF. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation. Radiation research 1999;151:677-685
    7. Limoli CL, Ponnaiya B, Corcoran JJ, et al. Genomic instability induced by high and low LET ionizing radiation. Adv Space Res 2000;25:2107-2117
    8.耿晓华,王仲文.电离辐射诱发的基因组不稳定性和旁效应.辐射防护通讯2005;25:15-21
    9. Weissenborn U, Streffer C. Analysis of structural and numerical chromosomal aberrations at the first and second mitosis after X irradiation of two-cell mouse embryos. Radiation research 1989;117:214-220
    10.仲恒高,童建.α粒子辐射与基因组不稳定性.国外医学?放射医学核医学分册2004;28:267-271
    11.曾学富,郎锦义.辐射旁效应及其研究进展.四川医学2009;30:599-602
    12. Freeman SM, Abboud CN, Whartenby KA, et al. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer research 1993;53:5274-5283
    13. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer research 1992;52:6394-6396
    14. Wu LJ, Randers-Pehrson G, Xu A, et al. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 1999;96:4959-4964
    15. Zhou H, Randers-Pehrson G, Waldren CA, et al. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proceedings of theNational Academy of Sciences of the United States of America 2000;97:2099-2104
    16. Mothersill C, Seymour CB. Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiation research 1998;149:256-262
    17.熊杰,韩铃.微束在辐射诱导的旁效应研究中的应用.国外医学?放射医学核医学分册2002;26:281-284
    18. Hu B, Wu L, Han W, et al. The time and spatial effects of bystander response in mammalian cells induced by low dose radiation. Carcinogenesis 2006;27:245-251
    19. Han W, Wu L, Hu B, et al. The early and initiation processes of radiation-induced bystander effects involved in the induction of DNA double strand breaks in non-irradiated cultures. The British journal of radiology 2007;80 Spec No 1:S7-12
    20. Yang H, Anzenberg V, Held KD. The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts. Radiation research 2007;168:292-298
    21.王转子,李文建,魏巍等.电离辐射旁效应的研究方法概述.辐射研究与辐射工艺学报2009;27:193-200
    22. Xue LY, Butler NJ, Makrigiorgos GM, Adelstein SJ, Kassis AI. Bystander effect produced by radiolabeled tumor cells in vivo. Proceedings of the National Academy of Sciences of the United States of America 2002;99:13765-13770
    23. Ueno AM, Vannais DB, Gustafson DL, Wong JC, Waldren CA. A low, adaptive dose of gamma-rays reduced the number and altered the spectrum of S1- mutants in human-hamster hybrid AL cells. Mutation research 1996;358:161-169
    24. Zhou H, Randers-Pehrson G, Geard CR, et al. Interaction between radiation-induced adaptive response and bystander mutagenesis in mammalian cells. Radiation research 2003;160:512-516
    25. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiation research 1996;146:247-258
    26. Roy K, Kodama S, Suzuki K, Fukase K, Watanabe M. Hypoxia relieves X-ray-induced delayed effects in normal human embryo cells. Radiation research 2000;154:659-666
    27. Iyer R, Lehnert BE, Svensson R. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer research 2000;60:1290-1298
    28. Edouard IA, John BL. Response to the letter by colin seymour and carmel mothersill Radiation research 1999 151:5052506
    29. Mothersill C, Seymour C. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. International journal of radiation biology 1997;71:421-427
    30. Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer research 2003;63:8437-8442
    31. Edouard IA, John BL. Response to the letter by colin seymour and carmel mothersill. Radiation research 1999;151:505-506
    32. Szumiel I. Monitoring and signaling of radiation-induced damage in mammalian cells. Radiation research 1998;150:S92-101
    33. Khodarev NN, Beckett M, Labay E, et al. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proceedings of the National Academy of Sciences of the United States of America 2004;101:1714-1719
    34. Rigaud O, Moustacchi E. Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutation research 1996;358:127-134
    35. Bravard A, Luccioni C, Moustacchi E, Rigaud O. Contribution of antioxidant enzymes to the adaptive response to ionizing radiation of human lymphoblasts. International journal of radiation biology 1999;75:639-645
    36. Lorimore SA, Kadhim MA, Pocock DA, et al. Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proceedings of the National Academy of Sciences of the United States of America 1998;95:5730-5733
    37. Mothersill C, Seymour C. Radiation-induced bystander effects: past history and future directions. Radiation research 2001;155:759-767
    38. Sawant SG, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ. The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiation research 2001;155:397-401
    39.方福德,梦雁.癌基因组学研究进展.癌症进展杂志2003;2:97-102
    40. Coleman CN, Stevenson MA. Biologic basis for radiation oncology. Oncology (Williston Park, NY 1996;10:399-411
    41. Marcon F, Palli D, Zufferli A, et al. Evaluation of radiation-induced chromosome instability in subjects with a family history of gastric cancer. Biomarkers 2009;14:226-234
    42. Sudo H, Garbe J, Stampfer MR, Barcellos-Hoff MH, Kronenberg A. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation. Radiation research 2008;170:23-32
    43. Emerit I. Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free radical biology & medicine 1994;16:99-109
    44.刘自民,于洪升,崔复宪.低剂量辐射诱导适应性反应的研究进展.齐鲁医学杂志2007;22:280-282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700