用户名: 密码: 验证码:
磁珠联合MALDI-TOF MS技术在肾透明细胞癌血清和尿液差异蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     肾透明细胞癌早期常常无明显临床症状,临床缺乏准确、敏感的肾透明细胞癌诊断和监测用肿瘤标记物。肿瘤标志物大多为异常表达的蛋白质,通过对蛋白质的动态分析,可以探知疾病早期最微小的指标和征兆。寻找肿瘤中差异表达蛋白质是蛋白质组学研究的重点,因此蛋白质组学为肾癌标志物的筛选提供了理想的技术平台。
     第一部分
     目的:
     应用WCX磁珠联合MALDI-TOF MS技术对肾透明细胞癌进行血清差异蛋白研究,寻找显著性表达的差异蛋白。
     方法:
     应用WCX磁珠联合MALDI-TOF MS技术对肾透明细胞癌血清进行差异蛋白研究,筛选出肾透明细胞癌不同分组之间多个血清差异蛋白,并应用遗传算法建立诊断模型。
     结果:
     1.首次应用WCX磁珠联合MALDI-TOF-MS技术对肾透明细胞癌进行血清差异蛋白研究,该技术具有很好的重复性、可行性和可信性。
     2.首次应用WCX磁珠联合MALDI-TOF-MS技术筛选出肾透明细胞癌不同分组之间多个具有统计学意义的血清差异蛋白(P<0.05)。
     (1)肾透明细胞癌术前组与非肿瘤对照组之间有显著性差异的蛋白峰5个,最显著差异的2个蛋白峰为M=2682.68,2864.38(P=0.000166,0.03)
     (2)肾透明细胞癌术前组与肾血管平滑肌脂肪瘤组之间有显著性差异的蛋白峰6个,最显著差异的2个蛋白峰为M=2683.14,1331.32(P=0.00203,0.00388)
     (3)肾透明细胞癌局限组与浸润转移组之间有显著性差异的蛋白峰2个,M=9293.53,4646.76(P=0.0212,0.0389)。
     (4)肾透明细胞癌术前组与术后组之间有显著性差异的蛋白峰10个,最显著差异的2个蛋白峰为M=3885.32,7769.69(P=0.00231,0.0167)。
     3.首次应用遗传算法建立肾透明细胞癌不同分组的诊断模型,诊断识别能力分别为94.45%,100%,91.67%和100%。
     结论:
     1.首次应用WCX磁珠联合MALDI-TOF MS技术进行肾透明细胞癌血清和尿液差异蛋白研究,该技术具有很好的重复性、可行性和可信性。
     2.首次筛选出肾透明细胞癌与比较组之间多个具有统计学意义的血清差异蛋白(P<0.05)。
     3.首次应用遗传算法建立肾透明细胞癌血清和尿液差异蛋白的诊断模型,识别能力高。
     第二部分
     目的:
     应用WCX磁珠联合MALDI-TOF MS技术对肾透明细胞癌进行尿液差异蛋白研究,寻找显著性表达的差异蛋白。
     方法:
     应用WCX磁珠联合MALDI-TOF MS技术对肾透明细胞癌进行尿液差异蛋白研究,筛选出肾透明细胞癌不同分组之间多个尿液差异蛋白,并应用遗传算法建立诊断模型。
     结果:
     1.首次应用WCX磁珠联合MALDI-TOF MS技术对肾透明细胞癌进行尿液差异蛋白研究,该技术具有很好的重复性、可行性和可信性。
     2.首次应用WCX磁珠联合MALDI-TOF MS技术筛选出肾透明细胞癌不同分组之间多个具有统计学意义的尿液差异蛋白(P<0.05)。
     (1)肾透明细胞癌术前组与正常对照组之间有显著性差异的蛋白峰1个,差异蛋白峰为M=2221.71(P=0.0304)。
     (2)肾透明细胞癌组与肾血管平滑肌脂肪瘤组之间有显著性差异的蛋白峰41个,最显著差异的2个蛋白峰为M=4270.15,2251.62(P=0.0167,P=0.0167)。
     3.首次应用遗传算法建立肾透明细胞癌不同分组的诊断模型,识别能力分别为100%和100%。
     结论:
     1.首次应用WCX磁珠联合MALDI-TOF MS技术进行肾透明细胞癌血清和尿液差异蛋白研究,该技术具有很好的重复性、可行性和可信性。
     2.首次筛选出肾透明细胞癌与比较组之间多个具有统计学意义的血清差异蛋白(P<0.05)。
     3.首次应用遗传算法建立肾透明细胞癌血清和尿液差异蛋白的诊断模型,识别能力高。
Background
     The early symptoms of renal clear cell carcinoma are often not obvious, and we are short of accurate and sensitive tumor marker for diagnosis and monitoring of renal clear cell carcinoma in clinical practice. Most tumor markers are proteins with abnormal expression. By means of dynamic analysis of proteins, we can detect the minor index and early symptoms of disease. The emphasis of proteomics is to search for proteins differentially expressed in cancer. Therefore proteomics provide an ideal technology platform for the screening tumor marker of renal cell carcinoma.
     Part I
     Objective
     The application of WCX magnetic beads combined MALDI-TOF MS in detecting differentially expressed proteins in serum of renal clear cell carcinoma.
     Methods
     WCX magnetic beads combined MALDI-TOF MS are applied in order to screen differentially expressed proteins in serum of renal clear cell carcinoma. Genetic algorithm (GA) is applied to establish diagnosis model.
     Results
     1. We are the first to apply WCX magnetic beads combined MALDI-TOF MS in screening differentially expressed proteins in serum of renal clear cell carcinoma. And the technique has good reproducibility, feasibility and credibility.
     2. We are the first to find many proteins statistically differentially expressed in serum with application of WCX magnetic beads combined MALDI-TOF-MS between the group of renal clear cell carcinoma and other groups (P<0.05).
     (1) There are five protein peaks statistically differentially expressed between the group of preoperative renal clear cell carcinoma and the control group of non-tumor. The two protein peaks with the most significant difference are M=2682.68 and M=2864.38 (P=0.000166, P=0.03)
     (2) There are six protein peaks statistically differentially expressed between the group of preoperative renal clear cell carcinoma and the group of renal angiomyolipoma. The two protein peaks with the most significant difference are M=2683.14 and M=1331.32 (P=0.00203, P=0.00388).
     (3) There are two protein peaks statistically differentially expressed between the limited group and invasion and metastasis group of preoperative renal clear cell carcinoma. The two protein peaks with the most significant difference are M=9293.53 and M=4646.76 (P=0.0212, P=0.0389).
     (4) There are ten protein peaks statistically differentially expressed between the preoperative group and postoperative group of renal clear cell carcinoma. The two protein peaks with the most significant difference are M=3885.32 and M=7769.69 (P=0.00231,P=0.0167).
     3. We are the first to establish diagnosis models of renal clear cell carcinoma by means of genetic algorithm, and the recognition capabilities are 94.45%,100%,91.67% and 100%, respectively.
     Conclusions
     1. We are the first to apply WCX magnetic beads combined MALDI-TOF MS in screening differentially expressed proteins in serum of renal clear cell carcinoma. And the technique has good reproducibility, feasibility and credibility.
     2. We are the first to find many proteins statistically differentially expressed in serum with application of WCX magnetic beads combined MALDI-TOF-MS between the group of renal clear cell carcinoma and other groups (P<0.05).
     3. We are the first to establish diagnosis models of renal clear cell carcinoma by means of genetic algorithm, and the recognition capabilities are high.
     Part II
     Objective
     The application of WCX magnetic beads combined MALDI-TOF MS in detecting differentially expressed proteins in urine of renal clear cell carcinoma.
     Methods
     WCX magnetic beads combined MALDI-TOF MS are applied in order to screen differentially expressed proteins in urine of renal clear cell carcinoma. Genetic algorithm (GA) is applied to establish diagnosis model.
     Results
     1. We are the first to apply WCX magnetic beads combined MALDI-TOF MS in screening differentially expressed proteins in urine of renal clear cell carcinoma. And the technique has good reproducibility, feasibility and credibility.
     2. We are the first to find many proteins statistically differentially expressed in urine with application of WCX magnetic beads combined MALDI-TOF-MS between the group of renal clear cell carcinoma and other groups (P<0.05).
     (1) There are one protein peak statistically differentially expressed between the group of preoperative renal clear cell carcinoma and the normal control group. The protein peaks with significant difference is M=2221.71(P=0.0304).
     (2) There are forty-one protein peaks statistically differentially expressed between the group of renal clear cell carcinoma and the group of renal angiomyolipoma. The two protein peaks with the most significant difference are M=4270.15 and M=2251.62 (P=0.0167,P=0.0167).
     3. We are the first to establish diagnosis models of renal clear cell carcinoma by means of genetic algorithm, and the recognition capabilities are 100%and 100%.
     Conclusions
     1. We are the first to apply WCX magnetic beads combined MALDI-TOF MS in screening differentially expressed proteins in urine of renal clear cell carcinoma. And the technique has good reproducibility, feasibility and credibility.
     2. We are the first to find many proteins statistically differentially expressed in urine with application of WCX magnetic beads combined MALDI-TOF-MS between the group of renal clear cell carcinoma and other groups (P<0.05).
     3. We are the first to establish diagnosis models of renal clear cell carcinoma by means of genetic algorithm, and the recognition capabilities are high.
引文
[1]Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC):a literature review. Cancer Treat Rev.2008.34(3):193-205.
    [2]吴阶平主编.吴阶平泌尿外科学.2004.山东.山东科学技术出版社.888-917.
    [3]Chow WH, Devesa SS, Warren JL, et al. Rising incidence of renal cell cancer in the United States. JAMA.1999.281(17):1628-1631.
    [4]Hollingsworth JM, Miller DC, Daignault S, et al. Rising incidence of small renal masses:a need to reassess treatment effect. J Natl Cancer Inst.2006.98(18):1331-1334.
    [5]Delahunt B, Eble JN, McCredie MR, et al. Morphologic typing of papillary renal cell carcinoma:comparison of growth kinetics and patient survival in 66 cases. Hum Pathol,2001,32:590-595
    [6]Banks RE, Craven RA, Harnden P, et al. Key clinical issues in renal cancer:a challenge for proteomics. World J Urol.2007.25(6):537-556.
    [7]马建辉.肾癌的外科诊治现状.中华泌尿外科杂志,2003,24:569-672.
    [8]von Eggeling F, Junker K, Fiedler G, et al. Mass spectrometry meets chip technology:A new proteomic tool in cancer research. Electrophoresis,2001,22:2898-2902.
    [9]Diane G. Mass spectrometry:gaining mass appeal in proteomics. Nature Methods.2005,2:465-471.
    [10]SchurenbergM, Dreisewerd K, Hillenkamp F. Laser desorption/ ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem.1999,71:221-229.
    [11]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.2003. 422(6928):198-207.
    [12]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev.2004.23(1):34-44.
    [13]Hutchens, T, Yip T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993,7,576-580.
    [14]P. R. Srinivas, S. Srivastava, S. Hanash et al. Proteomics in early detection of cancer. Clinical Chemistry,2001,47:1901-1911.
    [15]S. R. Weinberger, E. A. Dalmasso, E. T. Fung Current achievements using ProteinChip(?) Array Technology. Current opinion in Chemical Biology,2001,6:86-91.
    [16]Fung, E. T., Wright Jr., G. L, Dalmasso, E. A. Proteomic strategies for biomarker identification:Progress and challenges. Current Opinion in Molecular Therapeutics,2000,2:643-650
    [17]Petricoin, E. F., Ardekani, A.M., Hitt, B. A., etal. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet,2002,359: 572-577.
    [18]Perry CG, Sawka AM, Singh R, et al. The diagnostic efficacy of urinary fractionated metanephrines measured by tandem mass spectrometry in detection of pheochromocytoma. Clin Endocrinol (Oxf).2007 May;66(5):703-8.
    [19]Poon TC, Yip TT, Chan AT, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem.2003.49(5):752-760.
    [20]Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet.2002.359(9306):572-577.
    [21]Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res.2002.62(6):1868-1875.
    [22]Le L, Chi K, Tyldesley S, et al. Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem.2005.51(4):695-707.
    [23]Grizzle WE, Adam BL, Bigbee WL, et al. Serum protein expression profiling for cancer detection:validation of a SELDI-based approach for prostate cancer. Dis Markers.2003.19(4-5):185-195.
    [24]Tolson J, Bogumil R, Brunst E, et al. Serum protein profiling by SELDI mass spectrometry:detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest.2004.84(7):845-856.
    [25]Liu W, Guan M, Wu D, et al. Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur Urol.2005.47(4):456-462.
    [26]Banks RE, Craven RA, Harnden P, et al. Key clinical issues in renal cancer:a challenge for proteomics. World J Urol.2007.25(6): 537-556.
    [27]Atzpodien J, Kirchner H, Rebmann U, et al. Interleukin-2/ interferon-alpha2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma:results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer.2006.95 (4):463-469.
    [28]张锐强,谢静,刘振元,等.血清蛋白质指纹图谱模型在肾细胞癌诊断中的应用.中华泌尿外科杂志,2006,27:527-529
    [29]Wu DL, Zhang WH, Wang WJ, et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis pattern. Technol Cancer Res Treat.2008.7(3):155-160.
    [30]Craven RA, Stanley AJ, Hanrahan S, et al. Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics.2006.6(9):2853-2864.
    [31]Nakamura K, Yoshikawa K, Yamada Y, et al. Differential profiling analysis of proteins involved in anti-proliferative effect of interferon-alpha on renal cell carcinoma cell lines by protein biochip technology. Int J Oncol.2006.28(4):965-970.
    [1]von Eggeling F, Junker K, Fiedler G, et al. Mass spectrometry meets chip technology:A new proteomic tool in cancer research. Electrophoresis,2001,22:2898-2902.
    [2]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.2003. 422(6928):198-207.
    [3]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev.2004.23(1):34-44.
    [4]Kumarathasan P, Mohottalage S, Goegan P, Vincent R. An optimized protein in-gel digest method for reliable proteome characterization by MALDI-TOF-MS analysis. Anal Biochem.2005.346(1):85-9.
    [5]李新举,贺大林,梁景仁.MALDI-TOF质谱技术筛选Ⅰ期肺鳞癌血清肿瘤标记物.第四军医大学学报.2009.30(12):1131-3.
    [6]王坚,李尧华,郑晓立,等.弱阳离子交换纳米磁珠介导的帕金森病血清蛋白质组学的初步研究.中华神经科杂志.2009.42(2):98-101.
    [7]柳金顺.肾细胞癌差异蛋白质发现与筛选的实验研究.北京:北京协和医学院,2009:
    [8]Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res.2002.62(13): 3609-3614.
    [9]Banks RE, Craven RA, Harnden P, et al. Key clinical issues in renal cancer:a challenge for proteomics. World J Urol.2007.25(6): 537-556.
    [10]Atzpodien J, Kirchner H, Rebmann U, et al. Interleukin-2 /interferon-alpha2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma:results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer.2006.95(4):463-469.
    [11]Holcakova J, Hernychova L, Bouchal P, et al. Identification of alphaB-crystallin, a biomarker of renal cell carcinoma by SELDI-TOF MS. Int J Biol Markers.2008.23(1):48-53.
    [12]Jones J, Otu HH, Grall F, et al. Proteomic identification of interleukin-2 therapy response in metastatic renal cell cancer. J Urol. 2008.179(2):730-736.
    [13]Castronovo V, Waltregny D, Kischel P, et al. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics.2006.5(11):2083-2091.
    [14]顾方六.肾肿瘤.见:吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社,2004.889-917.
    [15]Walsh PC, Retik AB, Vaugh ED, et al. Campbell's Urology.8th ed. Philadelphia, PA:WB Saunders Company,2002.2672-2719.
    [16]全国肿瘤防治研究办公室、卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡(1988~1992).北京:中国医药科技出版社,2001.265-291
    [17]全国肿瘤防治研究办公室、卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡(1993~1997).第2卷.北京:中国医药科技出版社,2002.271-297
    [18]Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomi'c burden of metastatic renal cell carcinoma (mRCC):a literature review. Cancer Treat Rev.2008.34(3):193-205.
    [19]马建辉.肾癌的外科诊治现状.中华泌尿外科杂志,2003,24:569-672.
    [20]Banks RE, Craven RA, Harnden P, et al. Key clinical issues in renal cancer:a challenge for proteomics. World J Urol.2007.25(6): 537-556.
    [21]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev.2004.23(1):34-44.
    [22]Hutchens, T, Yip T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993,7,576-580.
    [23]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev.2004.23(1):34-44.
    [24]Wong MY, Yu KO, Poon TC, et al. A magnetic bead-based serum proteomic fingerprinting method for parallel analytical analysis and micropreparative purification. Electrophoresis.2010 Apr 22. [Epub ahead of print]
    [25]Giebel R, Worden C, Rust SM, et al. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv Appl Microbiol.2010;71:149-84.
    [26]凌建春,寇林元,张爱莲,等.遗传算法在均匀试验设计最优条件选择中的应用.中国药物与临床.2009.9(8):695-697.
    [27]徐明智,邢克礼,丁红军,李燕菊.遗传算法在基因芯片图像分割中的应用研究.医疗卫生装备.2008.29(10):30-33.
    [28]李绍新,张延娇.标准遗传算法引入遗传策略和突变算子对蛋白质2D折叠模拟的影响.广东医学院学报.2008.26(5):499-502.
    [29]Dai Y, Hu C, Wang L, et al. Serum peptidome patterns of human systemic lupus erythematosus based on magnetic bead separation and MALDI-TOF mass spectrometry analysis. Scand J Rheumatol.2010 Feb 18. [Epub ahead of print]
    [30]Varghese RS, Goldman L, An Y, et al. Integrated peptide and glycan biomarker discovery using MALDI-TOF mass spectrometry. Conf Proc IEEE Eng Med Biol Soc.2008:2008:3791-4.
    [31]周金海,耿玉良.基于遗传算法的模糊聚类在临床决策分析中的研究.医学信息.2008.21(11):1926-1929.
    [32]S. R. Weinberger, E. A. Dalmasso, E. T. Fung Current achievements using ProteinChip(?) Array Technology. Current opinion in Chemical Biology,2001,6:86-91.
    [33]Fung, E. T., Wright Jr., G. L, Dalmasso, E. A. Proteomic strategies for biomarker identification:Progress and challenges. Current Opinion in Molecular Therapeutics,2000,2:643-650.
    [34]王英,邓碧萍,马龙华等.食管鳞癌血清WCX2蛋白芯片诊断模型的研究.中华检验医学杂志.2004.(10):10-13.
    [35]张锐强,谢静,刘振元等.血清蛋白质指纹图谱模型在肾癌诊断中的应用.中华泌尿外科杂志.2006.(08):527-529.
    [1]Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC):a literature review. Cancer Treat Rev.2008.34(3):193-205.
    [2]吴阶平主编.吴阶平泌尿外科学.2004.山东.山东科学技术出版社.888-917.
    [3]Chow WH, Devesa SS, Warren JL, et al. Rising incidence of renal cell cancer in the United States. JAMA.1999.281 (17):1628-1631.
    [4]Hollingsworth JM, Miller DC, Daignault S, et al. Rising incidence of small renal masses:a need to reassess treatment effect. J Natl Cancer Inst.2006.98(18):1331-1334.
    [5]Diane G. Mass spectrometry:gaining mass appeal in proteomics. Nature Methods.2005,2:465-471.
    [6]SchurenbergM, Dreisewerd K, Hillenkamp F. Laser desorption/ ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem.1999,71:221-229.
    [7]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.2003. 422(6928):198-207.
    [8]金慧铭.病理生理学(第四版).北京:人民卫生出版社.1996:210.
    [9]王海燕.肾脏病学(第二版).北京:人民卫生出版社.1998:28-86.
    [10]Wu DL, Zhang WH, Wang WJ, et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis pattern. Technol Cancer Res Treat.2008.7(3):155-160.
    [11]那颜群,孙光主编.中国泌尿外科疾病诊断治疗指南(2009版).北京:人民卫生出版社.2009:4-12.
    [12]Holcakova J, Hernychova L, Bouchal P, et al. Identification of alphaB-crystallin, a biomarker of renal cell carcinoma by SELDI-TOF MS. Int J Biol Markers.2008.23(1):48-53.
    [13]Jones J, Otu HH, Grall F, et al. Proteomic identification of interleukin-2 therapy response in metastatic renal cell cancer. J Urol. 2008.179(2):730-736.
    [14]Castronovo V, Waltregny D, Kischel P, et al. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics.2006.5(11):2083-2091.
    [15]von Eggeling F, Davis H, Lomas L, et al. Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. Biotechniques,2000,29:1066-1070.
    [16]Won Y, Song HJ, Kang TW, et al. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics,2003,3:2310-2316.
    [17]张锐强,谢静,刘振元,等.血清蛋白质指纹图谱模型在肾细胞癌诊断中的应用.中华泌尿外科杂志,2006,27:527-529
    [18]Craven RA, Stanley AJ, Hanrahan S, et al. Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics.2006.6(9):2853-2864.
    [19]Nakamura K, Yoshikawa K, Yamada Y, et al. Differential profiling analysis of proteins involved in anti-proliferative effect of interferon-alpha on renal cell carcinoma cell lines by protein biochip technology. Int J Oncol.2006.28(4):965-970.
    [20]吴登龙,王文静,关明,等.表面增强激光解吸_离子化质谱蛋白质芯片技术在筛选肾癌患者尿液标记物中的应用.中华医学杂志.2004.84(13):1092-1095.
    [21]Fung, E. T., Wright Jr., G. L, Dalmasso, E. A. Proteomic strategies for biomarker identification:Progress and challenges. Current Opinion in Molecular Therapeutics,2000,2:643-650
    [22]柳金顺.肾细胞癌差异蛋白质发现与筛选的实验研究.北京:北京协和医学院,2009:1-86.
    [23]S. R. Weinberger, E. A. Dalmasso, E. T. Fung Current achievements using ProteinChip(?) Array Technology. Current opinion in Chemical Biology,2001,6:86-91.
    [24]Ecke TH. Focus on urinary bladder cancer markers:a review. Minerva Urol Nefrol.2008 Dec;60(4):237-246.
    [25]Langbein S, Lehmann J, Harder A, et al. Protein profiling of bladder cancer using the 2D-PAGE and SELDI-TOF-MS technique. Technol Cancer Res Treat.2006 Feb;5(1):67-72.
    [26]吴昕.膀胱上皮肿瘤尿液差异蛋白的筛选.北京:北京协和医学院,2009:1-65.
    [1]Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC):a literature review. Cancer Treat Rev.2008.34(3):193-205.
    [2]吴阶平主编.吴阶平泌尿外科学.2004.山东.山东科学技术出版社.888-917.
    [3]Chow WH, Devesa SS, Warren JL, et al. Rising incidence of renal cell cancer in the United States. JAMA.1999.281(17):1628-1631.
    [4]Hollingsworth JM, Miller DC, Daignault S, et al. Rising incidence of small renal masses:a need to reassess treatment effect. J Natl Cancer Inst.2006.98(18):1331-1334.
    [5]Banks RE, Craven RA, Harnden P, et al. Key clinical issues in renal cancer:a challenge for proteomics. World J Urol.2007.25(6): 537-556.
    [6]马建辉.肾癌的外科诊治现状.中华泌尿外科杂志,2003,24:569-672.
    [7]von Eggeling F, Junker K, Fiedler G, et al. Mass spectrometry meets chip technology:A new proteomic tool in cancer research. Electrophoresis,2001,22:2898-2902.
    [8]Diane G. Mass spectrometry:gaining mass appeal in proteomics. Nature Methods.2005,2:465-471.
    [9]Taranenko N I, Potter NT, Allman SL, et al. Gender identification by atrix-Assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem.1999,71:3974-3976.
    [10]SchurenbergM, Dreisewerd K, Hillenkamp F. Laser desorption/ ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem.1999,71:221-229.
    [11]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.2003. 422(6928):198-207.
    [12]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev.2004.23(1):34-44.
    [13]Hutchens, T, Yip T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993,7,576-580.
    [14]P. R. Srinivas, S. Srivastava, S. Hanash et al. Proteomics in early detection of cancer. Clinical Chemistry,2001,47:1901-1911.
    [15]S. R. Weinberger, E.A. Dalmasso, E. T. Fung Current achievements using ProteinChip(?) Array Technology. Current opinion in Chemical Biology,2001,6:86-91.
    [16]Fung, E.T., Wright Jr., G. L, Dalmasso, E. A. Proteomic strategies for biomarker identification:Progress and challenges. Current Opinion in Molecular Therapeutics,2000,2:643-650
    [17]Petricoin, E. F., Ardekani, A. M., Hitt, B. A., etal. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet,2002,359: 572-577.
    [18]Perry CG, Sawka AM, Singh R, et al.The diagnostic efficacy of urinary fractionated metanephrines measured by tandem mass spectrometry in detection of pheochromocytoma. Clin Endocrinol (Oxf).2007 May;66(5):703-8.
    [19]Stigliano A, Cerquetti L, Borro M, et al. Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane. Endocr Relat Cancer.2008 Mar;15(1):1-10.
    [20]Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a patternmatching algorithm distinguishes prostate cancer from benign prostae hyperplasia and healthy men. Cancer Res,2002,62 (13): 3609-3614.
    [21]von Eggeling F,Davis H, Lomas L, et al. Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. Biotechniques,2000,29:1066-1070.
    [22]Won Y, Song HJ, Kang TW, et al. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics,2003,3:2310-2316.
    [23]Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol,2001,158 (4):1491-1502.
    [24]Kageyama S,Isono T, Iwaki H,et al. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem,2004,50(5): 857-866.
    [25]Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem.2002.48(10):1835-43.
    [26]Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res.2002.62(13): 3609-3614.
    [27]Banks RE, Craven RA, Harnden P, et al. Key clinical issues in renal cancer:a challenge for proteomics. World J Urol.2007.25(6): 537-556.
    [28]Atzpodien J, Kirchner H, Rebmann U, et al. Interleukin-2 /interferon-alpha2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma:results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer.2006.95 (4):463-469.
    [29]Holcakova J, Hernychova L, Bouchal P, et al. Identification of alphaB-crystallin, a biomarker of renal cell carcinoma by SELDI-TOF MS. Int J Biol Markers.2008.23(1):48-53.
    [30]Jones J, Otu HH, Grall F, et al. Proteomic identification of interleukin-2 therapy response in metastatic renal cell cancer. J Urol. 2008.179(2):730-736.
    [31]Castronovo V, Waltregny D, Kischel P, et al. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics.2006.5(11):2083-2091.
    [32]张锐强,谢静,刘振元,等.血清蛋白质指纹图谱模型在肾细胞癌诊断中的应用.中华泌尿外科杂志,2006,27:527-529
    [33]金慧铭.病理生理学(第四版).北京:人民卫生出版社.1996:210.
    [34]王海燕.肾脏病学(第二版).北京:人民卫生出版社.1998:28-86.
    [35]Wu DL, Zhang WH, Wang WJ, et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis pattern. Technol Cancer Res Treat.2008.7(3):155-160.
    [36]Craven RA, Stanley AJ, Hanrahan S, et al. Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics.2006.6(9):2853-2864.
    [37]Nakamura K, Yoshikawa K, Yamada Y, et al. Differential profiling analysis of proteins involved in anti-proliferative effect of interferon-alpha on renal cell carcinoma cell lines by protein biochip technology. Int J Oncol.2006.28(4):965-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700