用户名: 密码: 验证码:
Rab7b和LAPF负向调控TLRs信号通路的效应与机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分晚期内体/溶酶体定位的小G蛋白Rab7b抑制巨噬细胞TLR9刺激产生的促炎性因子和Ⅰ型干扰素
     大量研究证明,TLR9的异常活化参与了多种自身免疫性疾病如系统性红斑狼疮等的发病过程,。基于上述研究事实,TLR9拮抗剂有望成为这些自身免疫性疾病防治的潜在靶点。为此,必须对于TLR9受体介导的效应与相关信号转导机制了解清楚,同时,发现并鉴定TLR9信号通路新的负向调控因子也具有十分重要的意义。众所周知,TLR9被活化后最终将被转运到晚期内体/溶酶体中,但是对于TLR9在细胞中的这一重新定位过程到底有何生物学重要意义,目前还不十分清楚。Rab7b是本实验室从人树突状细胞cDNA文库中通过随机大规模测序得到的一个与Rab7高度同源的新型分子,因此命名为Rab7b。Rab7b是一类鸟苷三磷酸酶,其主要定位在细胞的晚期内体和溶酶体中。本实验室之前的研究表明,Rab7b通过促进TLR4的溶酶体途径降解以负向调节TLR4信号通路。在本研究中,我们发现在巨噬细胞中TLR9的交联可以通过ERK和p38途径有效地抑制Rab7b的表达。相反,晚期内体/溶酶体定位的Rab7b在细胞内可以与TLR9共定位在溶酶体相关膜蛋白1(LAMP1)阳性的细胞器室内,Rab7b对于MyD88以及其下游信号并不存在调控效应,但是当TLR9被活化后Rab7b通过直接促进TLR9本身的溶酶体途径降解的翻译后修饰下调TLR9在巨噬细胞中的表达。相应的,Rab7b抑制TLR9下游的MAPK和NF-κB等转录因子的活性进而负向调节TLR9诱导的TNF-α,IL-6等促炎性因子和IFN-β为代表的Ⅰ型干扰素的产生。本研究结果提示,Rab7b通过促进TLR9本身的降解从而抑制TLR9信号通路中多种信号分子和转录因子的活性,抑制由TLR9诱导的促炎性因子和Ⅰ型干扰素的产生。该结果对于进一步深入研究TLR9触发的生物效应与相关信号通路的调控机制提高了新的线索和实验基础。
     第二部分凋亡诱导蛋白LAPF负向调控TLR3和TLR9介导的促炎性因子和Ⅰ型干扰素产生的效应与机制研究
     TLRs家族受体根据各自不同的亚细胞定位可以分成细胞膜表面的TLRs和细胞内定位的TLRs两大类。TLRs成员的不同空间分布可能存在一种与它们空间定位相关的调控新模式,为TLRs信号调控的机制研究提供了新的方向。本实验之前我们从人树突状细胞cDNA文库中通过随机大规模测序发现了的溶酶体相关的包含PH和FYVE结构域的凋亡诱导蛋白LAPF并报道了其参与TNF-α诱导的肿瘤细胞凋亡过程。LAPF与细胞内定位的TLRs成员相近的亚细胞定位使我们考虑是否存在LAPF参与胞内定位TLRs信号调控的可能。结果发现,LAPF可以负向调控巨噬细胞中胞内定位的TLR3和TLR9的信号通路,但却不能调控细胞膜定位的TLR4信号通路。小鼠原代巨噬细胞中过表达LAPF可以抑制TLR3和TLR9介导的TNF-α,IL-6和IFN-β的产生,LAPF的这种负向调控效应部分依赖于其包含的PH结构域。不仅仅是细胞内定位的TLRs,胞内dsRNA识别受体RIG-I同样受到LAPF的调控。由RIG-I介导识别的仙台病毒感染巨噬细胞所产生的IFN-β也同样被LAPF所抑制。荧光差异双向凝胶电泳以及后续的蛋白质谱分析实验发现,过表达LAPF降低了细胞内Calmodulin的总蛋白表达量。Calmodulin是细胞内最重要的Ca2+结合蛋白,可以活化下游CamKII,而CaMKII在本实验室之前的工作中已经被证明是TLRs信号完全活化所必须的。此外,LAPF也可以通过其PH结构域与磷酸化的Akt相互结合从而促进Akt的磷酸化。Akt的活化可以磷酸化下游底物GSK-3位于N-末端的抑制性丝氨酸磷酸化位点,从而抑制GSK-3的活性。GSK-3活性被抑制后竞争性地削弱了NF-κB依赖的促炎性因子的产生。因此,与TLR3和TLR9有相同亚细胞定位的LAPF通过下调细胞内Calmodulin的表达量以及活化Akt/GSK-3信号通路从而负向调控TLR3/9介导的促炎性因子和Ⅰ型干扰素的产生。该部分研究结果为细胞内定位的TLR信号通路调控的分子机制的研究提供了新的认识。
PartⅠLate endosome/lysosome-localized Rab7b suppresses TLR9-initiated proinflammatory cytokine and typeⅠIFN production in macrophages and the underlying mechanisms
     Inappropriate activation of TLR9 has been found to be involved in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus. TLR9 antagonists have been proposed to be therapeutic for some kinds of autoimmune disease. However, new negative regulators of TLR9 signal pathway need to be identified, and the mechanisms for the control of TLR9 response need to be fully investigated. It is well known that TLR9 will be finally transported to late endosome/lysosome once activated; however, the exact mechanism and the biological significance of the subcellular redistribution have not been fully elucidated. Ras related in brain (Rab) 7b is a small guanosine triphosphatase, identified by us before, which is mainly localized in late endosome/lysosome. Our previous study shows that Rab7b can negatively regulate TLR4 signaling by promoting lysosomal degradation of TLR4. In this study, we show that TLR9 ligation can inhibit Rab7b expression in macrophages via ERK and p38 activation, In turn, the late endosome/lysosome-localized Rab7b can colocalize with TLR9 in lysosomal-associated membrane protein 1-positive compartment and down-regulate the expression of the TLR9 in macrophages by promoting TLR9 degradation once TLR9 is activated. Accordingly, Rab7b can negatively regulate TLR9-triggered production of TNF-a, IL-6, and IFN-βin macrophages by impairing activation of MAPKs and NF-κB pathways. Our results suggest that the late endosome/lysosome-localized Rab7b can down-regulate TLR9-triggered proinflammatory cytokine and type I IFN production by impairing TLR9 signaling via promotion of TLR9 degradation.
     Part II Apoptosis-inducing protein LAPF negatively regulates TLR3-and TLR9-meidiated proinflammatroy cytokine and type I interferon production and the underlying mechanisms
     According to the subcellular localizations, the Toll-like receptors (TLR) could be divided into two categories, cell surface TLRs and intracelluar TLRs. The spatial differences of TLRs might be regulated by a new pattern related with their subcellular localization, which would provide a new mechanism for regulation of TLRs-triggered inflammatory innate response. Lysosome-associated apoptosis-inducing protein containing the plechstrin homology (PH) and FYVE domains, LAPF, has been first identified by us and found to be involved in the TNF-a-induced apoptosis of turner cells. The similar subcellular localization of LAPF and intracellular TLRs made us look for the possibility that LAPF might involve in the regulation of these intracellular TLRs signaling. As expected, we discovered that LAPF could negative regulate TLR3-and TLR9-initiated signaling, but not the cell surface-located TLR4, in macrophages. Overexpression of LAPF in primary peritoneal macrophages attenuated TLR3-and TLR9-trigged TNF-a, IL-6 and IFN-βproductions, and such a downregulation was partially dependent on its PH domain. Not only the intracellular TLRs signaling but also the intracellular dsRNA sensor RIG-I signaling could be regulated by LAPF. Sendaivirus-induced IFN-βproduction in macrophages, which was already domenstrated that this virus is recoginized by RIG-I, was inhibited by LAPF.2-D fluorescent difference gel electrophoresis and sequential protein spectrum indicated that overexpression of LAPF would decrease the total protein level of calmodulin in the cytoplasm. Calmodulin is the most important Ca2+binding protein and activates downstream CaMKII which has been demonstrated as a positive regulator in TLRs signaling. In addition, LAPF associated with phospho-Akt via its PH domain and ficilitied Akt's phosphorylation. Activated Akt downstream phosphorylated the N-terminal Ser residues of GSK-3 which inhibited its activity. The inhibition of GSK-3 competitively attenuated the NF-κB-dependent proinflammatory cytokine production. Thus, LAPF, the protein with the same subcellular localization of intracellular TLR3 and TLR9, negatively regulates TLR3 and TLR9 signaling via downregulating the calmodulin expression and activating Akt/GSK-3 pathway.
引文
[1]S. Akira, S. Uematsu, O. Takeuchi.2006. Pathogen recognition and innate immunity. Cell.124:783-801.
    [2]T. Kawai, S. Akira.2007. TLR signaling. Semin. Immunol.19:24-32
    [3]S. Akira, K. Takeda.2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499-511.
    [4]K. A. Fitzgerald, Z. J. Chen.2006. Sorting out Toll signals. Cell.125:834-836.
    [5]M.S. Lee, Y.J. Kim.2007. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem.76:447-480.
    [6]L.A. O'Neill, A.G. Bowie.2007. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7:353-364.
    [7]A. Marshak-Rothstein, I. R. Rifkin.2007. Immunologically active autoantigens:the role of toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol.25:419-441.
    [8]R. Baccala, K. Hoebe, DH. Kono, B. Beutler, AN. Theofilopoulos.2007. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med.13:543-551.
    [9]M. Adib-Conquy, C. Adrie, C. Fitting, O. Gattolliat, R. Beyaert, J. M. Cavaillon. 2006. Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit. Care. Med. 34:2377-2385.
    [10]F.Y. Liew, D. Xu, EK. Brint, L.A. O'Neill.2005. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5:446-458.
    [11]I. Kinjyo, T. Hanada, K. Inagaki-Ohara, H. Mori, D. Aki, M. Ohishi, H. Yoshida, M. Kubo, A. Yoshimura.2002. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity.17:583-591.
    [12]A. Dalpke, K. Heeg, H. Bartz, A. Baetz.2008. Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology.213:225-35.
    [13]T. H. Chuang, R. J. Ulevitch.2004. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol.5:495-502.
    [14]P. Wu, J. Wu, S. Liu, X. Han, J. Lu, Y Shi, J. Wang, L. Lu, X. Cao.2008. TLR9/TLR7-triggered downregulation of BDCA2 expression on human plasmacytoid dendritic cells from healthy individuals and lupus patients. Clin. Immunol.129:40-48.
    [15]S. Pfeffer, D. Aivazian.2004. Targeting Rab GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell. Biol.5:886-896.
    [16]J. L. Seachrist, S. S. Ferguson.2003. Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life. Sci.4:225-235.
    [17]D.F. Markgraf, K. Peplowska, C. Ungermann.2007. Rab cascades and tethering factors in the endomembrane system. FEBS. Lett.581:2125-2130.
    [18]M. D. Snider,2003. A role for rab7 GTPase in growth factor-regulated cell nutrition and apoptosis. Mol. Cell.12:796-797.
    [19]K.W. Cheng, J. P. Lahad, J. W. Gray, G B. Mills.2005. Emerging role of RAB GTPases in cancer and human disease. Cancer. Res.65:2516-2519.
    [20]C.E. Becker, E.M. Creagh, L.A. J.O'Neill.2009. Rab39a binds caspase-1 and is required for caspase-1-dependent interleukine-1β secretion. J. Biol. Chem. 284:34531-34537.
    [21]M. Yang, T. Chen, C. Han, N. Li, T. Wan, X. Cao.2004. Rab7b, a novel lysosome-associated small GTPase, is involved in monocytic differentiation of human acute promyelocytic leukemia cells. Biochem. Biophys. Res. Commun. 318:792-729.
    [22]Y. Wang, T. Chen, C. Han, D. He, H. Liu, H. An, Z. Cai, X. Cao.2007. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood. 110:962-971.
    [23]E. Latz, A. Schoenemeyer, A. Visintin.2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol.5:190-198.
    [24]H. Xu, H. An, Y. Yu, M. Zhang, R. Qi, X. Cao.2003. Ras participates in CpG oligodeoxynucleotide signaling through association with toll-like receptor 9 and promotion of interleukin-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor 6 complex formation in macrophages. J. Biol. Chem. 278:36334-36340.
    [25]S. Ivanov, A. M. Dragoi, X. Wang, C. Dallacosta, J. Louten, G Musco, G. Sitia, G S. Yap, Y. Wan, C. A. Biron, M. E. Bianchi, H. Wang, W. M. Chu.2007. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood.110:1970-1981.
    [26]A.M. Krieg.2002. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20:709-760.
    [27]M. Gilliet, W. Cao, Y.J. Liu.2008. Plasmacytoid dendritic cells:sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol.8:594-606.
    [28]S.R. Christensen, J. Shupe, K. Nicherson, M. Kashgarian, RA. Flavell, MJ. Shlomchik.2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity.25:397-9.
    [29]T.K. Means,E. Latz, F, Hayashi,MR. Murali, DT. Golenbock, AD. Luster.2005. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Inves.115:407-417.
    [30]S.R. Christensen, M. Kashgarian, L. Alexopoulou, RA. Flavell, S. Akira, MJ, Shlomchik.2007. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp.Med.202:321-331.
    [31]F.S. Wong, C. Hu, L. Zhang, W. Du, L. Alexopoulou, RA. Flavell, L. Wen.2008. The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Annu N. Y. Acad. Sci.1150:146-148.
    [32]S.R. Chirstensen, MJ. Shlomchik.2007. Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin Immunol.19:11-23
    [33]F.J. Barrat, RL. Coffman.2008. Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol. Rev.223:271-283.
    [34]S.H. Kim, A. Visser, C. Cruijsen, AW. van der Velden, M. Boes.2008. Recruitment of Rab27a to phagosomes controls microbial antigen cross-presentation by dendritic cells. Infect. Immun.76:5373-5380.
    [35]L.A. O'Neill.2008. When signaling pathways collide:positive and negative regulation of toll-like receptor signal transduction. Immunity.29:12-20.
    [36]H. An, J. Hou, J. Zhou, W. Zhao, H. Xu, Y. Zheng, Y. Yu, S. Liu, X. Cao.2008. Phosphatase SHP-1 promotes TLR-and RIG-I-activated production of type I interferon by inhibiting the kinase IRAKI. Nat. Immunol.9:542-550.
    [37]H. An, W. Zhao, J. Hou, Y. Zhang, Y. Xie, Y. Zheng, H. Xu, C. Qian, J. Zhou, Y. Yu, S. Liu, G Feng, X. Cao.2006. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity.25:919-928.
    [38]C.A. Janeway Jr., R. Medzhitow.2002. Innate immune recognition. Annu. Rev. Immunol.20:197-216.
    [39]B.A. Beutler.2009. TLRs and innate immunity. Blood 113:1399-1407.
    [40]M.M. Brinkmann, E. Spooner, K. Hoebe, B. Beutler, H.L. Ploegh, Y.M. Kim. 2007. The interaction between the ER mambrane protein UNC93B and TLR3,7, and 9 is crucial for TLR signaling. J. Cell. Biol.177:265-275.
    [41]Y.M. Kim, M.M. Brinkmann, M.E. Paquet, H.L. Ploegh.2008. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature.452:234-238.
    [42]S.E. Ewald, B.L. Lee, L. Lau, K.E. Wickliffe, G.P. Shi, H.A. Chapman, G.M. Barton.2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature.456:658-662.
    [43]B. Park, M.M. Brinkmann, E. Spooner, C.C. Lee, Y.M. Kim, H.L. Ploegh.2008. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor. Nat. Immunol.9:1407-1414.
    [44]M. Asagiri, T. Hirai, T. Kunigami, S. Kamano, H. Gober, K.Okamoto, K. Nishikawa, E. Latz, D.T. Golenbock, K. Aoki, K. Ohya, Y. Imai, Y. Morishita, K. Miyazono, S. Kato, P. Saftig, H. Takayanagi.2008. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science. 319:624-627.
    [45]E. Latz, A. Verma, A. Visintin, M. Gong, C.M. Sirois, D.C.G Klein, B.G Monks, C.J. McKnight, M.S. Lamphier, W.P. Duprex, T. Espevik, D.T. Golenbock.2007. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol.8:772-779.
    [46]W. Chen, N. Li, T. Chen, Y. Han, C. Li, Y. Wang, W. He, L. Zhang, T. Wan, X. Cao.2005. The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains, representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J. Biol. Chem.280:40985-40995.
    [47]J.M. Gaullier, A. Simonsen, A. D'Arrigo, B. Bremnes, H. Stenmark, R. Aasland. 1998. FYVE fingers bind PtdIns(3)P. Nature.394:432-433.
    [48]S. Misra, J.H. Hurley.1999. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell.97:657-666.
    [49]Y. Mao, A. Nickitenko, X. Duan, T.E. Lloyd, M.N. Wu, H. Bellen, F.A. Quiocho. 2000. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell.100:447-456.
    [50]K. Salim, M.J. Bottomley, E. Querfurth, M.J. Zvelebil, I. Gout, R. Scaife, R.L. Margolis, R. Gigg, C.I.E. Smith, P.C. Driscoll, M.D. Waterfield, G. Panayotou. 1996. Distinck specificity in the recognition of phosphoinositedes by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 15:6241-6250.
    [51]P. Schreiner, X. Chen, K. Husnjak, L. Randles, N. Zhang, S. Elsasser, D. Finley, I. Dikic, K. Walters, M. Groll.2008. Ubiquitin docking at the proteasome via a novel PH domain interaction. Nature.453:548-552.
    [52]T. Kawase, R. Ohki, T. Shibata, S. Tsutsumi, N. Kamimura, J. Inazawa, T. Ohta, H. Ichikawa, H. Aburatani, F. Tashiro, Y. Taya.2009. PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell.136:535-550.
    [53]N. Li, Y. Zheng, W. Chen, C. Wang, X. Liu, W. He, H. Xu, X. Cao.2007. Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis. Cancer Res.67:11176-11185.
    [54]L.B. Ivashkiv.2008. A signal switch hypothesis for cross-regulation of cytokine and TLR signaling pathways. Nat. Rev. Immunol.8:816-822.
    [55]K. hazeki, K. Nigorikawa, O. Hazeki.2007. Role of phosphoinositide 3-kinase in innate immunity. Biol. Pharm. Bull.30:1617-1623.
    [56]P.I. Bird, J.A. Trapani, J.A. Villadangos.2009. Endolysosomal proteases and their inhibitors in immunity. Nat. Rev. Immunol.9:871-882.
    [57]H.A. Chapman.2006. Endosomal proteases in antigen presentation. Curr. Opin. Immunol.18:78-84.
    [58]J.S. Blum, P. Cresswell.1988. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc. Natl. Acad. Sci.85:3978-3979.
    [59]P.E. Jensen.2007. Recent advances in antigen processing and presentation. Nat. Immunol.8:1041-1048.
    [60]B. Manoury, D. Mazzeo, D.N. Li, J. Billson, K. Loak, P. Benaroch, C. Watts.2003. Asparagine endopeptidase can initiate the removal of the MHC class Ⅱ invariant chain chaperone. Immunity.18:489-498.
    [61]G Faure-Andre, P. Vargas, M. Yuseff, M. Heuze, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M.R. Bono, M. Rosemblatt, M. Piel, A.M. Lennon-Dumenil.2008. Regulation of dendritic cell migration by CD74, the MHC class Ⅱ-associated invariant chain. Science. 322:1705-1710.
    [62]L.C. Hsing, A.Y. Rudensky.2005. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev.207:229-241.
    [63]J.A. Villadangos, P. Schnorrer.2007. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol.7:543-555.
    [64]F. Matsumoto, S. Saitoh, R. Fukui, T. Kobayashi, N. Tanimura, K. Konno, Y. Kusumoto, S. Akashi-Takamura, K. Miyake.2008. Cathepsins are required for Toll-like receptor 9 responses. Biochem. Biophys. Res. Commun.367:693-699.
    [65]X. Liu, M. Yao, N. Li, C. Wang, Y. Zheng, X. Cao.2008. CaMKⅡ promotes TLR-triggerd proinflammatory cytokine and type Ⅰ interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood. 112:4961-4970.
    [66]M. Yoneyama, M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, T. Fujita.2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730-737.
    [67]T. Kawai, K. Takahashi, S. Sato, C. Coban, H. Kumar, H. Kato, K.J. Ishii, O. Takeuchi, S. Akira.2005. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type Ⅰ interferon induction Nat. Immunol.6:981-988.
    [68]W.Y. Cheung.1982. Calmodulin plays a pivotal role in cellular regulation. Science. 207:19-27.
    [69]D.J. Zou, H.T. Cline.1996. Expression of constitutively active CaMKII in target tissue modifies presynaptic axon arbor growth. Neuron.16:529-539.
    [70]J.J. Zhu, Y. Qin, M. Zhao, L. Van Aelst, R. Malinow.2002. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell.110:443-455.
    [72]G Szalai, R. Krishnamurthy, G Hajnoczky.1999. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBOJ.18:6349-6361.
    [73]L. Scorrano, S.A. Oakes, J.T. Opferman, E.H. Cheng, M.D. Sorcinelli, T. Pozzan, S.J. Korsmeyer.2003. BAX and BAK regulation of endoplasmic reticulum Ca2+:a control point for apoptosis. Science.300:135-139.
    [73]K.A. Christensen, J.T. Myers, J.A. Swanson.2002. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci.115:599-607.
    [74]H.J. Yuasa, T. Suzuki, M. Yazawa.2001. Structural organization of lower marine nonvertebrate calmodulin genes. Gene.279:205-212.
    [75]J.L. Gifford, M.P. Walsh, H.J. Vogel.2007. Structures and metalion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. 405:199-221.
    [76]J.R. Woodgett.2005. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol.17:150-157.
    [77]M. Martin, K. Rehani, R.S. Jope, S.M. Michalek.2005. Toll-like receptor-meidated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol.6:777-784.
    [1]C. de Duve, B.C. Pressman, R. Gianetto, R. Wattiaux, F. Appelmans.1955. Tissue fractionation studies.6. intracelluar distribution patterns of enzymes in rat-liver tissue. Biochem J.60:604-617.
    [2]C. Munz.2009. Enhancing immunity through autophagy. Annu. Rev. Immunol. 27:423-449.
    [3]J.D. Colbert, S.P. Matthews, G Miller, C. Watts.2009. Diverse regulatory roles for lysosomal proteases in the immune response. Eur. J. Immunol.39:2955-2965.
    [4]S.E. Ewald, B.L. Lee, L. Lau, K.E. Wichliffe, G Shi, H.A. Chapman, G.M. Barton. 2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature.456:658-662.
    [5]B. Park, M.M. Brinkmann, E. Spooner, C.C. Lee, Y.M. Kim, H.L. Ploegh.2008. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor. Nat. Immunol.9:1407-1414.
    [6]P. Cresswell.1996. Invariant chain structure and MHC class II function. Cell. 84:505-507.
    [7]R.A. Black, C.T.Rauch, C.J. Kozlosky, J.J.Peschon, J.L. Slack, M.F.Wolfson, B.J. Castner, K.L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K.A. Schooley, M. Gerhart, R.Davis, J.N. Fitzner, R.S. Johnson, R.J. Paxton, C.J. March, D.P. Cerretti.1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-a from cells. Nature.385:729-733.
    [8]P.I. Bird, J.A. Trapani, J.A. Villadangos.2009. Endolysosomal proteases and their inhibitors in immunity. Nat. Rev. Immunol.9:871-882.
    [9]H.A. Chapman.2006. Endosomal proteases in antigen presentation. Curr. Opin. Immunol.18:78-84.
    [10]K.W. Beyenbach, H. Wieczorek.2006. The V-type H+ ATPase:molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209:577-589.
    [11]K. Thomas, S. Konrad.2005. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingo-lipid activator proteins and anionic lysosomal lipids. Annu. Rev. CellDev. Bi.21:81-103.
    [12]C.L. Brett, D.N. Tukaye, S. Mukherjee, R. Rao.2005. The yeast endosomal Na+(K+)/H+ exchanger Nhxl regulates cellular pH to control vesicle trafficking. Mol. Biol. Cell.16:1396-1405.
    [13]F. Dittmer, E.J. Ulbrich, A. Hafner, W. Schmahl, T. Meister, R. Polmann, K. von Figura.1999. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci. 112:1591-1597.
    [14]S. Kornfeld.1987. Trafficking of lysosomal enzymes. FASEBJ.1:462-468.
    [15]T. Furuchi, K. Aikawa, H. Arai, K. Inoue.1993. Bafilomycin Al, a specific inhibitor of vacuolar-type H-ATPase, blocks lysosomal cholesterol trafficking in macrophages. J. Bio. Chem.268:27345-27348.
    [16]K.A. Christensen, J.T. Myers, J.A. Swanson.2002. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci.115:599-607.
    [17]C.A. Janeway Jr., R. Medzhitow.2002. Innate immune recognition. Annu. Rev. Immunol.20:197-216.
    [18]R. Medzhitov.2007. Recognition of microorganisms and activation of the immune response. Nature.449:819-826.
    [19]S. Akira, S. Uematsu, O. Takeuchi.2006. Pathogen recognition and innate immunity. Cell.124:783-801.
    [20]A. Marshak-Rothstein.2006. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol.6:823-835.
    [21]E. Latz, A. Schoenemeyer, A. Visintin, K.A. Fitzgerald, B.G. Monks, C.F. Knetter, E. Lien, N.J. Nilsen, T. Espevik, D.T. Golenbock.2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol.5:190-198.
    [22]GM. Barton, J.C. Kagan.2009. A cell biological view of Toll-like receptor function:regulation through compartmentalization. Nat. Rev. Immunol.9:535-542.
    [23]A. Chockalingam, J.C. Brooks, J.L. Cameron, L.K. Blum, C.A. Leifer.2009. TLR9 traffics through the Golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol. Cell Biol.87:209-217.
    [24]K. Tabeta, K. Hoebe, E.M. Janssen, X. Du, P. Georgel, K.Crozat, S. Mudd, N. Mann, S. Sovath, J. Goode, L. Shamel, A.A. Herskovits, D.A. Portnoy, M. Cooke, L.M. Tarantino, T. Wiltshire, B.E. Steinberg, S. Grinstein, B. Beutler.2006. The Unc93bl mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3,7 and 9. Nat. Immunol.7:156-164.
    [25]Y.M. Kim, M.M. Brinkmann, M.E. Paquet, H.L. Pleegh.2008. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452:234-238.
    [26]R. Fukui, S. Saitoh, F. Matsumoto, H. Kozuka-Hata, M. Oyama, K. Tabeta, B. Beutler, K. Miyake.2009. Unc93Bl basis Toll-like receptor responses to nucleic acid in dendritic cells toward DNA-but against RNA-sensing. J. Exp. Med. 206:1339-1350.
    [27]M. Asagiri, T. Hirai, T. Kunigami, S. Kamano, H. Gober, K.Okamoto, K. Nishikawa, E. Latz, D.T. Golenbock, K. Aoki, K. Ohya, Y. Imai, Y. Morishita, K. Miyazono, S. Kato, P. Saftig, H. Takayanagi.2008. Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science. 319:624-627.
    [28]E. Latz, A. Verma, A. Visintin, M. Gong, C.M. Sirois, D.C.G Klein, B.G Monks, C.J. McKnight, M.S. Lamphier, W.P. Duprex, T. Espevik, D.T. Golenbock.2007. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol.8:772-779.
    [29]F. Matsumoto, S. Saitoh, R. Fukui, T. Kobayashi, N. Tanimura, K. Konno, Y. Kusumoto, S. Akashi-Takamura, K. Miyake.2008. Cathepsins are required for Toll-like receptor 9 responses. Biochem. Biophys. Res. Commun.367:693-699.
    [30]J.C. Kagan, T. Su, T. Horng, A. Chow, S. Akira, R. Medzhitov.2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol.9:361-368.
    [31]H. Husebye,(?). Halaas, H. Stenmark, G Tunheim,(?). Sandanger, B. Bogen, A. Brech, E. Latz, T. Espevik.2006. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBOJ.25:683-692.
    [32]Y. Wang, T. Chen, C. Han, D. He, H. Liu, H. An, Z. Cai, X. Cao.2008. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood. 110:962-971.
    [33]M. Yao, X. Liu, D. Li, T. Chen, Z. Cai, X. Cao.2009. Late endosome/lysosome localized Rab7b suppresses TLR9-initiated proinflammatory cytokine and type I IFN production in macrophages. J. Immunol.183:1751-1758.
    [34]O. Takeuchi, S. Akira.2008. TLR4 signaling:negative regulation by degradation. Blood.110:794.
    [35]L.C. Hsing, A.Y. Rudensky.2005. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev.207:229-241.
    [36]J.A. Villadangos, P. Schnorrer.2007. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol.7:543-555.
    [37]H.K. Ziegler, E.R. Unanue.1982. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc. Natl. Acad. Sci.79:175-178.
    [38]R. Shimonkevitz, J. Kappler, P. Marrack, H. Grey.1983. Antigen recognition by H-2-restricted T cells.1. Cell-free antigen processing. J. Exp. Med.158:303-136.
    [39]H.W. Davidson, P.A. Reid, A. Lanzavecchia, C. Watts.1991. Processed antigen binds to newly synthesized MHC class II molecules in antigen-specific B lymphocytes. Cell.67:105-116.
    [40]J.S. Blum, P. Cresswell.1988. Role for intracellular proteases in the processing and transport of class ⅡHLA antigens. Proc. Natl. Acad. Sci.85:3978-3979.
    [41]H.A. Chapman.2006. Endosomal proteases in antigen presentation. Curr. Opin. Immunol.18:78-84.
    [42]P.E. Jensen.2007. Recent advances in antigen processing and presentation. Nat. Immunol.8:1041-1048.
    [43]B. Manoury, D. Mazzeo, D.N. Li, J. Billson, K. Loak, P. Benaroch, C. Watts.2003. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity.18:489-498.
    [44]C.H Tang, J.W. Lee, M.G. Galvez, L. Robillard, S.E. Mole, H.A. Chapman.2006. Murine cathepsin F deficiency cause neuronal lipofuscinosis and late-onset neurological disease. Mol. Cell Biol.26:2309-2316.
    [45]R. Maehr, H.C. Hang, J.D. Mintern, Y.M. Kim, A. Cuvillier, M. Nishimura. K. Yamada, K. Shirahama-Noda, I. Hara-Nishimura, H.L. Ploegh.2005. Asparagine endopeptidase is not essential for class ⅡMHC antigen presentation but is required for processing of cathepsin L in mice. J. Immunol.174:7066-7074.
    [46]G Faure-Andre, P. Vargas, M. Yuseff, M. Heuze, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G Raposo, M.R. Bono, M. Rosemblatt, M. Piel, A.M. Lennon-Dumenil.2008. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science. 322:1705-1710.
    [47]E.E. Sercarz, E. Maverakis.2003. MHC-guided processing:binding of large antigen fragment. Nat. Rev. Immunol.3:621-629.
    [48]C. Watts, S.P. Matthews, D. Mazzeo, B. Manoury, C.X. Moss.2005. Asparaginyl endopeptidase:case history of a class II MHC compartment protease. Immunol. Rev. 207:218-228.
    [49]B. Manoury, D, Mazzeo, L. Fugger, N. Viner, M. Ponsford, H. Streeter, G Mazza, D.C. Wraith, C. Watts.2002. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitople in MBP. Nat. Immunol.3:169-174.
    [50]C.X. Moss, J.A. Villadangos, C. Watts.2005. Destructive potential of the aspartyl protease cathepsin D in MHC class II-restricted antigen processing. Eur. J. Immunol. 35:3442-3451.
    [51]L. Shen, L.J. Sigal, M. Boes, K.L. Rock.2004. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity.21:155-165.
    [52]J.F. Fonteneau, D.G Kavanagh, M. Lirvall, C. Sander, T.L. Cover, N. Bhardwaj, M. Larsson.2003. Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood.102:4448-4455.
    [53]L. Delamarre, M. Pack, H. Chang, I. Mellman, E.S. Trombetta.2005. Differntial lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 307:1630-1634.
    [54]A. Savina, C. Jancic, S. Hugues, P. Guermonprez, P. Vargas, I.C. Moura, A.M. Lennon-Dumenil, M.C. Seabra, G Raposo, S. Amigorena.2006. NOX2 controls phagosomal pH to regulate antigen processing during cross-presentation by dendritic cells. Cell.126:205-218.
    [55]L. Delamarre, R. Couture, I. Mellman, E.S. Trombetta.2006. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med. 203:2049-2055.
    [56]A. Bendelac, M.N. Rivera, S. Park, J.H. Roark.1997. Mouse CD1-specific NK1 T cells-development, specificity, and function. Ann. Rev. Immunol.15:535-562.
    [57]K. Honey, K. Benlagha, C. Beers, K. Forbush, L. Teyton, M.J. Kleijmeer, A.Y. Rudensky, A. Bendelac.2002. Thymocyte expression of cathepsin L is essential for NKT cell development. Nat. Immunol.3:1069-1074.
    [58]R.J. Riese, G.P. Shi, J. Villadangos, D. Stetson, C. Driessen, A.M. Lennon-Dumenil, C.L. Chu, Y. Naumov, S.M. Behar, H. Ploegh, R. Locksley, H.A. Chapman.2001. Regulation of CD1 function and NK1.1(+) T cell selection and maturation by cathepsin S. Immunity.15:909-919.
    [59]T. Nakagawa, W. Roth, P. Wong, A. Nelson, A. Farr, J. Deussing, J.A. Villadangos, H. Ploegh, C. Peters, A.Y. Rudensky.1998. Cathepsin L:critical role in Ii degradation and CD4 T cell selection in thymus. Science.280:450-453.
    [60]K. Honey, T. Nakagawa, C. Peters, A.Y. Rudensky.2002. Cathepsin L regulates CD4+T cell selection independently of its effect on invariant chain:a role in the generation of positively selecting peptide ligands. J. Exp. Med.195:1349-1358.
    [61]J.C. Stinchcombe, GM. Griffiths.2007. Secretory mechanisms in cell-mediated cytotoxicity. Annu. Rev. Cell Dev Biol.23:495-517.
    [62]E.J. Blott, GM. Griffiths.2002. Secretory lysosomes. Nat. Rev. Mol. Cell. Bio. 3:112-131
    [63]D. Chowdhury, J. Lieberman.2008. Death by a thousand cuts:granzyme pathways of programmed cell death. Annu. Rev. Immunol.26:389-420.
    [64]J. Lieberman.2003. The ABCs of granule-mediated cytotoxicity:new weapons in the arsenal. Nat. Rev. Immunol.3:361-370.
    [65]J.A. Trapani, P.I. Bird.2008. A renaissance in understanding the multiple and diverse functions of granzymes? Immunity.29:665-667.
    [66]Y.M. Vyas, K.M. Mehta, M. Morgan, H. Maniar, L. Butros, S. Jung, J.K. Burkhardt, B. Dupont.2001. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and ctytolytic interactions. J. Immunol.167:4358-4367.
    [67]J.S. Orange, K.E. Harris, M.M. Andzelm, M.M. Valter, R.S. Geha, J.L. Strominger. 2003. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl. Acad. Sci.100:14151-14156.
    [68]Y.T. Bryceson, M.E. March, D.F. Barber, H.G Ljunggren, E.O. Long.2005. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J. Exp. Med.202:1001-1012.
    [69]K. Krzewski, X. Chen, J.L. Strominger.2008. WIP is essential for lytic granule polarization and NK cell cytotoxicity. Proc. Natl. Acad. Sci.105:2568-2573.
    [70]P.P. Banerjee, R. Pandey, R. Zheng, M.M. Suhoski, L. Monaco-Shawver, J.S. Orange.2007. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J. Exp. Med. 204:2305-2320.
    [71]G. Cantalupo, P. Alifano, V. Roberti, C.B. Bruni, C. Bucci.2001. Rab-interacting lysosomal protein (RILP):the Rab7 effector required for transport to lysosomes. EMBOJ.20:683-693.
    [72]J.C. Stinchcombe, D.C. Barral, E.H. Mules, S. Booth, A.N. Hume, L.M. Machesky, M.C. Seabra, GM. Griffiths.2001. Rab27a is required for regulated secretion in cytotoxic T lyphocytes. J. Cell Biol.152:825-834.
    [73]F. Andrade, E. Fellows, D.E. Jenne, A. Rosen, C.S. Young.2007. Granzyme H destroys the function of critical adenoviral proteins required for viral DNA replication and granzyme B inhibition. EMBO J.26:2148-2157.
    [74]M.S. Buzza, L. Zamurs, J. Sun, C.H. Bird, A.I. Smith, J.A. Trapani, C.J. Froelich, E.C. Nice, P.I. Bird.2005. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin and laminin. J. Biol. Chem. 280:23549-23558.
    [75]S.S. Metkar, C. Menaa, J. Pardo, B. Wang, R. Wallich, M. Freudenberg, S. Kim, S.M. Raja, L. Shi, M.M. Simon, C.J. Froelich.2008. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity.29:720-733.
    [76]S.Z. Raptis, S.D. Shapiro, P.M. Simmons, A.M. Cheng, C.T. Pham.2005. Serine protease cathepsin G regulates adhesion-dependent neutrophil effector functions by modulating integrin clustering. Immunity.22:679-691.
    [77]Z. Jevnikar, N. Obermajer, M. Bogyo, J. Kos.2008. The role of cathepsin X in the migration and invasiveness of T lymphocytes. J. Cell Sci.121:2652-2661.
    [78]A. Chaudhry, D.A. Verghese, S.R. Das, S. Jameel, A. George, V. Bal, S. Mayor, S. Rath.2009. HIV-1 Nef promotes endocytosis of cell surface MHC class Ⅱ molecules via a constitutive pathway. J. Immunol.183:2415-2424.
    [1]C.A. Janeway Jr., R. Medzhitow.2002. Innate immune recognition. Annu. Rev. Immunol.20:197-216.
    [2]S. Akira, S. Uematsu, O. Takeuchi.2006. Pathogen recognition and innate immunity. Cell 124:783-801.
    [3]B.A. Beutler.2009 TLRs and innate immunity. Blood 113:1399-1407.
    [4]R. Medzhitov.2007. Recognition of microorganisms and activation of the immune response. Nature 449:819-826.
    [5]C. Pasare, R. Medzhitov.2004. Toll-like receptors and acquired immunity. Semin. Immunol.16:23-26.
    [6]C.R. Sousa.2004. Toll-like receptors and dendritic cells:for whom the bug tolls. Semin. Immunol.16:27-34.
    [7]S. Akira, K. Takeda, T. Kaisho.2001. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat. Immunol.2:675-680.
    [8]R. Medzhitov.2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135-145.
    [9]F.Y. Liew, D. Xu, E.K. brint, L.A. O'Neill.2005. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5:446-458.
    [10]H. Kumar, T. Kawai, S. Akira.2009. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun.388:621-625.
    [11]D. Werling, O.C. Jann, V. Offord, E.J. Glass, T.J. Coffey.2009. Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol.30:124-130.
    [12]A.V. Kajava, G Vassart, S.J.1995. Wodak. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3:867-877.
    [13]B. Kobe, J. Deisenhofer.1995. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374:183-186.
    [14]S. Uematsu, S. Akira.2008. Toll-like receptors (TLRs) and their ligands. Handb. Exp. Pharmacol.183:1-20.
    [15]M.S. Jin, S.E. Kim, J.Y. Heo, M.E. Lee, H.M. Kim, S.G. Paik, H. Lee, J.O. Lee. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell.130:1071-1082.
    [16]B.S. Park, D.H. Song, H.M. Kim, B.S. Choi, H. Lee, J.O. Lee.2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 458:1191-1195.
    [17]L. Liu, I. Botos, Y. Wang, J.N. Leonard, J. Shiloach, D.M. Segal, D.R. Davies. 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science.320:379-381.
    [18]M.S. Jin, J.O. Lee.2008. Structure of the Toll-like receptor family and its ligand complexes. Immunity.29:182-191.
    [19]K. Tabeta, P. Georgel, E. Janssen, X. Du, K. Hoebe, K. Crozat, S. Mudd, L. Shamel, S. Sovath, J. Goode, L. Alexopoulou, R.A. Flavell, B. Beutler.2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci.101:3516-3521.
    [20]Y.M. Kim, M.M. Brinkmann, M.E. Paquet, H.L. Ploegh.2008. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature.452:234-238.
    [21]S.E. Ewald, B.L. Lee, L. Lau, K.E. Wickliffe, G.P. Shi, H.A. Chapman, G.M. Barton.2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature.456:658-662.
    [22]M.M. Brinkmann, E. Spooner, K. Hoebe, B. Beutler, H.L. Ploegh, Y.M. Kim. 2007. The interaction between the ER mambrane protein UNC93B and TLR3,7, and 9 is crucial for TLR signaling. J. Cell. Biol.177:265-275.
    [23]A. Poltorak, X. He, I. Smirnova, M.Y. Liu, C.V. Huffel, X. Du.1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutation in TLR4 gene. Science. 282:2085-2088.
    [24]S. Janssens, R. Beyaert.2003. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell. 11:293-302.
    [25]N. Suzuki, S. Suzuki, GS. Duncan, D.G Millar, T. Wada, C. Mirtsos.2002. Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4. Nature.416:750-756.
    [26]S. Li, A. Strelow, E.J. Fontana, H. Wesche.2002. IRAK-4:a novel member of IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. 99:5567-5572.
    [27]C. Wang, L. Deng, M. Hong, GR. Akkaraju, J. Inoue, Z. Chen.2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature.412:346-351.
    [28]Z. Chen.2005. Ubiquitin signaling in the NF-kappaB pathway. Nat. Cell. Biol. 7:758-765.
    [29]E. Shaulian, M. Karin.2002. AP-1 as a regulator of cell life and death. Nat. Cell. Biol.4:131-136.
    [30]T. Kawai, O. Adachi, T. Ogawa, K. Takeda, S. Akira.1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity.11:115-122.
    [31]T. Kawai, O. Takeuchi, T. Fujita, J. Inoue, P.F. Muhlradt, S. Sato, K. Hoshino, S. Akira.2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible gene. J. Immunol.167:5887-5894.
    [32]M. Yamamoto, S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, S. Akira. 2002. A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169:6668-6672.
    [33]H. Oshiumi, M. Matsumoto, K. Funami, T. Akazawa, T. Seya.2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol.4:161-167.
    [34]M. Yamamoto, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, S. Akira.2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science.301:640-643.
    [35]S. Sharma, B.R. tenOever, N. Grandvaux, GP. Zhou, R. Lin, J. Hiscott.2003. Triggering the interferon antiviral response through an IKK-related pathway. Science. 300:1148-1151.
    [36]K.A. Fitzgerald, S.M. McWhirter, K.L. Faia, D.C. Rowe, E. Latz, D.T. Golenbock, A.J. Coyle, S.M. Liao, T. Maniatis.2003. IKKepsilon and TBK1 are essential component of IRF3 signaling pathway. Nat. Immunol.4:491-496.
    [37]S.M. McWhirter, K.A. Fitzgerald, J Rosains, D.C. Rowe, D.T. Golenbock, T. Maniatis.2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci.101:233-238.
    [38]H. Hemmi, O. Takeuchi, S. Sato, M. Yamamoto, T. Kaisho, H. Sanjo, T. Kawai, K. Hoshino, K. Takeda, S. Akira.2004. The role of two IkappaB Kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199:1641-1650.
    [39]S. Sato, M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinasel, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol.171:4304-4310.
    [40]N. Cusson-Hermance, T.H. Lee, K.A. Fitzgerald, M.A. Kelliher.2005. Ripl mediates the Trif-dependent toll-like receptor 3 and 4-induced NF-kappa B activation but does not contribute to IRF-3 activation. J. Biol. Chem.280:36560-36566.
    [41]M.W. Covert, T.H. Leung, J.E. Gaston, D. Baltimore.2005. Achieving stability of lipopolysaccharide-inducedNF-kappaB activation. Science.309:1854-1857.
    [42]S.L. Werner, D. Barken, A. Hoffmann.2005. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science. 309:1857-1861.
    [43]K. Honda, T. Taniguchi.2006. IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol.6:644-658.
    [44]Y.J. Liu.2005. IPC:professional Type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol.23:275-306.
    [45]M. Colonna, G Trinchieri, Y.J. Liu.2004. Plasmacytoid dendritic cells in immunity. Nat. Immunol.5:1219-1226.
    [46]T. Kawai, S. Sato, K.J. Ishii, C. Coban, H. Hemmi, M. Yamamoto, K. Terai, M. Matsuda, J. Inoue, S. Uematsu, O. Takeuchi, S. Akira.2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol.5:1061-1068.
    [47]K. Honda, H. Yanai, T. Mizutani, H. Negishi, N. Shimada, N. Suzuki, Y. Ohba, A. Takaoka, W.C. Yeh, T. Taniguchi.2004. Role of a transductional-transcriptional processor complex involving MyD88 and IRF7 in Toll-like receptor signalling. Proc. Natl.Acad.Sci.101:15416-15421.
    [48]R.R. Graham, S.V. Kozyrev, E.C. Baechler, M.V. Reddy, R.M. Plenge, J.W. Bauer, W.A. Ortmann, T. Koeuth, M.F.G. Escribano, B. Pons-Estel, M. Petri, M. Daly, P.K. Gregersen, J. Martin, D. Altshuler, T.W. Behrens, M.E. Alarcon-Riquelme.2006. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet.38:550-555.
    [49]H. Tsujimura, T. Tamura, H.J. Kong, A. Nishiyama, K.J. Ishii, D.M. Klinman, K. Ozato.2004. Toll-like receptor 9 signaling activates NF-kappaB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells. J. Immunol.172:6820-6827.
    [50]K. Iwami, T. Matsuguchi, A. Masuda, T. Kikuchi, T. Musikacharoen, Y. Yoshikai. 2000. Cutting edge:naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling.J. Immunol.165:6682-6686.
    [51]E. LeBouder, J.E. Rey-Nores, N.K. Rushmere, M. Grigorov, S.D. Lawn, M. Affolter, G.E. Griffin, P. Ferrara, E.J. Schiffrin, B.P. Morgan, M.O. Labeta.2003. Soluble forms of Toll-like receptor (TLR) 2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J. Immunol.171:6680-6689.
    [52]K. Burns, S. Janssens, B. Brissoni, N. Olivos, R. Beyaert, J. Tschopp.2003. Inhibition of Interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp.Med.197:263-268.
    [53]S. Janssens, K. Burns, E. Vercammen, J. Tschopp, R. Beyaert.2003. MyD88S, a splice variant of MyD88, differentially modulates NF-κB-and AP-1-dependent gene expression. FEBS. Lett.548:103-107.
    [54]I. Kinjyo, T. Hanada, K. Inagaki-Ohara, H. Mori, D. Aki, M. Ohishi, H. Yoshida, M. Kubo, A. Yoshimura.2002. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity.17:583-591.
    [55]R. Nakagawa, T. Naka, H. Tsutsui, M. Fujimoto, A. Kimura, T. Abe, E. Seki, S. Sato, O. Takeuchi, K. Takeda, S. Akira, K. Yamanishi, I. Kawase, K. Nakanishi, T. Kishimoto.2002. SOCS-1 participates in negative regulation of LPS responses. Immunity.17:677-687.
    [56]D. Boone, E. Turer, E. Lee, R. Ahmad, M. Wheeler, C. Tsui, P. Hurley, M. Chien, S. Chai, O. Hitotsumatsu, E. McNally, C. Pickart, A. Ma.2004. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol.5:1052-1060.
    [57]C. Wang, T. Chen, J. Zhang, M. Yang, N. Li, X. Xu, X. Cao.2009. The E3 ubiquitin ligase Nrdpl'perferentially' promotes TLR-mediated production of type I interferon. Nat. Immunol.10:744-752.
    [58]T.H. Chuang, R.J. Ulevitch.2004. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol.5:495-502.
    [59]L. Lyakh, G Trinchieri, L. Provezza, G. Carra, F. Gerosa.2008. Regulation of interleukin-12/interleukin-23 production and T-helper 17 response in humans. Immunol. Rev.226:112-131.
    [60]G. Trinchieri.2003. Interleukin-12 and regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol.3:113-146.
    [61]U. Wille-Reece, B.J. Flynn, K. Lore, R.A. Koup, R.M. Kedl, J.J. Mattapallil, W.R. Weiss, M. Roederer, R.A. Seder.2005. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Thl and CD8+ T cell responses in nonhuman primates. Proc. Natl. Acad. Sci.102:15190-15194.
    [62]M. Kwissa, R.R. Amara, H.L. Robinson, B. Moss, S. Alkan, A. Jabbar, F. Villinger, B. Pulendran.2007. Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus. J. Exp. Med.204:2733-2746.
    [63]A.M. Krieg.2002. A role for Toll in autoimmunity. Nat. Immunol.3:423-424.
    [64]R. Baccala, K. Hoebe, D. Kono, B. Beutler, A. Theofilopoulos.2007. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med.13:543-551.
    [65]A.M. Lundberg, GK. Hansson.2010. Innate immune signals in atherosclerosis. Clin. Immunol.134:5-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700