用户名: 密码: 验证码:
负载型TiO_2光催化剂的制备及其降解有害挥发物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化是一项环境友好的技术,在环境净化领域,特别是在治理室内空气污染方面有着很好的应用前景。制备负载型纳米TiO_2光催化剂,获得很好的光催化活性,用于降解空气中的易挥发性有机物。并可将活性组分和载体的各种功能进行组合,设计出更理想的光催化反应。
     本文利用泡沫镍网做载体,负载具有大比表面积的SiO_2中孔材料中间层,以增大泡沫镍载体比表面积,提高复合光催化剂的活性和稳定性。再负载纳米TiO_2,制得光催化效率高的泡沫镍基纳米TiO_2-SiO_2复合光催化剂。在该复合光催化剂上通过热还原法沉积贵金属Pt,进一步提高其光催化反应活性。对制得的各种复合光催化剂光催化降解乙醛和甲醛的光催化活性进行静态和动态的测试及评价。主要研究内容包括:
     1.用溶胶-凝胶法在已经过预处理的泡沫镍基上负载二氧化硅中间层,再负载二氧化钛,制得泡沫镍基TiO_2-SiO_2复合光催化剂。对该光催化剂进行静态测评,结果表明:泡沫镍基TiO_2-SiO_2复合光催化剂在主波长为253.7nm的紫外光源下,调节催化剂表面光强为400μW/cm2,乙醛初始浓度为100ppm,光照1.5小时以内,对乙醛的降解率可达100%。连续7次实验后,降解率下降约40%。将经过反复实验而部分失活的复合光催化剂在马弗炉中于空气气氛下在300℃加热1小时,或者用大量去离子水冲洗,再100℃烘干,其光催化活性均能完全恢复。
     2.为了在实际生产中便于操作,采用热还原法在泡沫镍基TiO_2-SiO_2复合光催化剂上沉积贵金属Pt,以Pt:TiO_2为1wt%的比例,制得泡沫镍基Pt/TiO_2-SiO_2光催化剂。实验结果显示负载Pt的复合光催化剂比没负载时的光催化活性提高了两倍。同时对日本某株式会社生产的蓝色泡沫网状光催化剂和某液态喷涂型光催化剂在本实验条件下进行测试,结果表明,这些光催化剂无法达到满意的降解效果。故将采用泡沫镍基Pt/TiO_2-SiO_2光催化剂进行动态测试及评价。
     3.对泡沫镍基TiO_2-SiO_2复合光催化剂进行静态条件下的乙醛降解实验,考察不同光照强度和不同波长光源对光催化效率的影响,对其中机理进行分析,并确定出实际应用中各个反应条件的参数。根据实验结果,在实际的光催化空气净化机中将采用主波长为253.7nm的紫外灯管,并确保其照射到光催化剂表面的光强不低于400μW/cm2。
     4.将泡沫镍基Pt/TiO_2-SiO_2光催化剂在本实验室自行开发设计的风洞和测试仓中进行动态测试。结果表明,在风洞实验中,该光催化剂对甲醛的光催化降解效率平均约为15%;在测试仓实验中,其光催化降解效率约为每小时降解0.1ppm的目标气体。
     本文中的泡沫镍基TiO_2-SiO_2复合光催化剂具备较高的光催化活性。通过进一步改性,该复合光催化剂将有望应用到实际的空气净化机中,投入市场,带来一定的社会和经济效益。
Photocatalysis as an environment friendly technology has attracted much attention and showed great potential in environmental protect applications, especially in the purification of indoor air pollution. Combined with the charactaristcs of the photocatalysts and the supports, the immobilization of nano-size TiO_2 is an ideal material to photocatalytic degredate the VOCs.
     In this study, foam nickel was chosen as the support for TiO_2 photocatalysts. First, SiO_2 layers, the mesoporous transition layers with large specific surface area, were coated on foam nickel substrate. Then the nano-size TiO_2 layers were coated on. The composite nano-size TiO_2-SiO_2 photocatalysts loaded on foam nickel substrate have high photocatalytic ability. For higher photocatalytic ability, Pt was loading on the composite photocatalysts. All of the composite photocatalysts were tested in static system and dynamic real-time system. The main content and innovation of this work are presented as follow:
     1. TiO_2 photocatalysts and SiO_2 layers loaded on pre-oxidized foam nickel substrate prepared by sol-gel processes. The composite TiO_2-SiO_2 photocatalysts were tested in static system. Results showed that when the .wavelength was 253.7nm, the light intensity was 400μW/cm2, and the initial concentration of acetaldehyde was 100ppm, the removal ratio of acetaldehyde by composite photocatalysts was 100% after 1.5 hours under the UV light irradiation. After 7 consecutive runs, the photocatalytic activity of composite photocatalysts reduced almost 40%. The composite photocatalysts can be regenerated easily by two methods: 1) Heating at 300℃in muffle 2) washing under pure water followed by dring at 100℃.
     2. The noble metal Pt was loaded on the composite TiO_2-SiO_2 photocatalysts. Considering the production in factory, the noble metal Pt nano-particles were deposited on TiO_2-SiO_2 surface by heating reduction method (MTiO_2: MPt=1%). Results showed that the photocatalytic activity was enhanced greatly by Pt deposition; the acetaldehyde removal ratio by Pt/TiO_2-SiO_2 composite photocatalysts was two times higher than that of TiO_2-SiO_2. Test of other photocatalysts under the same work conditions were also made, such as the blue foam photocatalyst produced in Japan and the liquid photocatalyst. Results showed the acetaldehyde removal ratios were much lower than Pt/TiO_2-SiO_2 composite photocatalysts. So the Pt/TiO_2-SiO_2 composite photocatalysts will be tested in dynamic real-time system.
     3. The composite TiO_2-SiO_2 photocatalysts were tested in static system. The influences of different intensity and wavelength on the degradation activity were investigated. It was found that the bactericidal lamp withλ=253.7nm, and the light intensity between 400-450μW/cm2 has the best degradation activity. Therefore, the ultraviolet lamp used in the nano-photocatalytic air purification equipment has the rationg voltage of 15W, the wavelength of 253.7nm and the light sensitivity more than 400μW/cm2.
     4. Pt/TiO_2-SiO_2 composite photocatalysts were tested in dynamic real-time experimentation equipments. Results showed the rate of degradation formaldehyde is almost 15% in the wind tunnel. In the test house, the photocatalysts can degrade formaldehyde almost 0.1ppm per hour.
     The TiO_2-SiO_2 composite photocatalysts loaded on foam nickel substrates showed a good degradation activity. The modified composite photocatalysts will be used in the nano-photocatalytic air purification equipment to create more social and economic profits.
引文
[1]Fujishima A., Honda K. Electrochemical photolysisi of water at a semiconductor electrode [J] Nature, 1972, 238:37-38.
    [2]Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension [J] Bull. Environ. Contam. Toxicol. 1976, 16: 697-701.
    [3]李英柳,戴青华,黄勇.TiO_2光催化氧化净化空气的研究与应用前景[J]江苏工业学院学报2005, 17(4): 58-61.
    [4]Teichner S J, Formenti M. Heterogeneous Photocatalysis, Photoelectrochemistry, Photocatalysis and Phtoreactors [A]. Amsterdam: Reidel Publishing Company, 1985. 457-489.
    [5]Robert Bent, Lloyd Orr, Randall Baker, Energy [M] Washington D. C.: Island Press, c2002. 9-10.
    [6]刘恢,袁坚,上官文峰等.可见光响应光催化剂BiYWO6制备表征及其完全分解水的研究[J]高等学校化学学报2008, 29(8): 1603-1608.
    [7]马红梅,朱志良.半导体多相光催化技术研究现状及发展趋势[J]环境保护科学, 2006, 32(1): 28-30.
    [8]周连芳,李闯,金顺爱.半导体光催化氧化法在环保中的应用[J]黑龙江水利科技2007, 35(1): 150-151.
    [9]胡海,肖文浚,袁坚等.泡沫镍负载TiO_2和TiO_2/Al2O3薄膜的光催化性能研究[J]无机材料学报2007, 22(2): 363-368.
    [10]胡伟武,冯传平.纳米材料和纳米技术在环境保护方面的应用[J]化工新型材料2007, 35: 14-16.
    [11]杨丽萍,刘震炎,施建伟等.光催化降解室内气相甲醛的光强研究[J]太阳能学报2007, 28(7): 689-693.
    [12]Hoffmann M. R.., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysisi [J] Chem. Rev., 1955, 95(1): 69-96.
    [13]Fox M. A., Dulay M. T. Heterogeneous photocatalysisi [J] Chem. Rev., 1993, 93: 341-357.
    [14]Marta I. L., Heterogeneous photocatalysisi: Transition metal ions in photocatalytic systems [J] Appl. Catal. B: Environ., 1999, 23: 89-114.
    [15]Peller J., Wiest O., Kamat P. V., Synergy of Combining Sonolysis and Photocatalysis in the Degradation and Mineralization of Chlorinated Aromatic Compounds [J] Environ. Sci. Technol., 2003, 37: 1926-1932.
    [16]Rengaraj S., Li X. Z., Enhanced photocatalytic activity of TiO_2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension [J] J. Mol. Catal. A: Chem., 2006, 243: 60-67.
    [17]Rabani J., Yamashita K., Ushida K., et al. Fundamental Reactions in Illuminated Titanium Dioxide Nanocrystallite Layers Studied by Pulsed Laser [J] J. Phys. Chem. B., 1998, 102: 1689-1695.
    [18]Babelon P., Dequiedt A. S., Mostefasba H., et al. SEM and XPS studies of titanium dioxide thin films grown by MOCVD [J] Thin Solid Film, 1998, 322: 63-67.
    [19]Negishi N., Iyoda T., Hashimoto K., et al. Preparation of transparent TiO_2 thin film photocatalyst and its photocatalytic activity [J] Thin Solid Film, 1998, 322: 63-67.
    [20]朱永法,张利,姚文清等.溶胶-凝胶法制备薄膜型TiO_2光催化剂[J]催化学报,1999, 20(3): 362-364.
    [21]陈士夫,赵梦月,陶跃武等.玻璃纤维负载TiO_2光催化降解有机磷农药[J]环境科学,1996, 17(4): 33-35.
    [22]付小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性燃料的光电催化降解[J]应用化学,1997, 14(4): 77-79.
    [23]Negishi N., Takeuchi K., Ibusuki T. The surface structure of titanium dioxide thin film photocatalyst [J] Appl. Surf. Sci., 1997, 121/122: 417-420.
    [24]Deki S., Aoi Y., Hiroi O., et al. Titanium (IV) oxide thin films prepared from aqueous solution [J] Chem. Lett., 1996, 23: 433-434.
    [25]Sauer M L, Ollis D F, Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air [J] Catal., 1996, 158:570-582.
    [26]Lu M C, Roam G D, Chen J N et al. Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass, J. Photochem. Photobilo. [A]: Chem., 1993, 76:103-110.
    [27]Matthews R W. Kinetics of Photocatalytic Oxidation of Organic Solutes over Titanium Dioxide. [J]. Catal., 1988, 111: 264-272.
    [28]Uchida H, Katoh S, Watanabe M, Photocatalytic Decomposition of Trichlorobenzene Using TiO_2 Supported on Nickel-Poly composite Plate [J] Chem. Lett., 1995, 261-262.
    [29]Inoue H, Matsuyama T, Liu B J et al. Photocatalytic Activities for Carbon Dioxide Reduction of TiO_2 Microcrystals Prepared in SiO_2 Matrices Using a Sol-Gel Method [J] Chem. Lett., 194, 653-656.
    [30]王俭.载钛多孔玻璃光催化苯酚废水[J]环境工程,1994, 12(6): 16-17.
    [31]Decher G. Fuzzy nano assemblies: toward layered polymeric multicomposites [J] Science, 1997, 277(5330): 1232-1237.
    [32]Gerischer H., Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles [J] J. Phys. Chem., 1991, 95(13): 5261-5267.
    [33]Kesselman J. M., Shreve G. A., Hoffmann M. R., et al. Flux-matching conditions at TiO_2 photoelectrodes: Is interfacial electron transfer to O2 rate-limiting in the TiO_2-catalyzed photochemical degradation of organics [J] J. Phys. Chem., 1994, 98(50): 13385-13395.
    [34]Nicole J. R., Pierre P., Alain F., et al. Study of the effect of deposited platinum particles on the surface charge of titanium aqueous susensions by potentiometry, electrophoresis, and labeled-ion adsorption [J] J. Phys. Chem., 1986, 90(12): 2733-2738.
    [35]Senevirathna M. K. I., Pitigala P. K. D. D. P., Tennakone K. High quantum efficiency Pt/TiO_2 catalyst for sacrificial water reduction [J] Catal. Today, 2006, 111: 259-265.
    [36]Sathish M., Viswanathan B. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting [J] Int. J. Hydrogen Energy, 2006, 31: 891-898.
    [37]Stir M., Nicula R., Burkel E., Pressure-temperature phase diagrams of pure and Ag-doped nanocrystalline TiO_2 photocatalysts [J] J. Eur. Ceram. Soc., 2006, 54: 143-146.
    [38]Kanan S. M., Kanan M. C., Patterson H. H. Photoluminescence spectroscopy as a probe of silver doped zeolites as photocatalysts [J] Curr. Opin. Solid State Mater. Sci., 2003, 7: 443-449.
    [39]Sasirekha N., Basha S. J. S., Shanthi K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide [J] Appl. Catal. B: Environ., 2006, 62: 169-180.
    [40]Hadjiivanov K., Vasileva E., Kantcheva M., et al. Ir spectroscopy study of silver ions adsorbed on titania (anatase) [J] Mater. Chem. Phys., 1991, 28(4): 367-377.
    [41]Ileperuma O. A., Tennakone K., Dissanayake W. D. D. P. Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesisi of ammonia on Mg/TiO_2 catalyst systems [J] Appl. Catal., 1990, 621: 1-5.
    [42]Wang X. H., Li J. G., Kamiyama H., et al. Fe-doped TiO_2 nanopowders by oxidative pyrolysis of organometallic precursors in induction themal plasma: synthesisi and structural characterization [J] Thin Solid Films, 2006, 506-507: 278-282.
    [43]Chen S., Cao G., Study on the photocatalytic oxidation of NO2- ions using TiO_2 beads as a photocatalyst [J] Desalination, 2006, 194: 127-134.
    [44]Choi W., Termin A., Hoffmann M. R., The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J] J. Phys. Chem., 1994, 98: 13699-13679.
    [45]Butler Z. C., Davis A. P., Photocatalytic oxidation in aqueous titanium dioxide suspensions; the Influence of Dissolved Transition Metals [J] J. Photochem. Photobiol. A: Chem., 1993, 70: 273-283.
    [46]Hwang D., Kim H., Jang J., et al. Photocatalytic decomposition of water-methanol solution over metal-doped layered perovskites under visible light irradiation [J] Catal. Today 2004, 93: 845
    [47]Gratzel M., Russell F. H. Electron paramagnetic resonance studies of doped titanium dioxide colloids [J] J. Phys. Chem., 1990, 94(6): 2566-2572.
    [48]Stafford U., Gray K. A., Kamat P. V., Photocatalytic degradation of 4-chlorophenol: The effects of varying TiO_2 concentration and light wavelength [J] J. Catal., 1997, 167: 25-32.
    [49]Uchihara T., Matsumura M., Ono J., et al. Effect of EDTA on the photocatalytic activities andflatband potentials of cadmium sulfide and cadmium selenide [J] J. Electroanal. Chem., 1989, 258: 193-205.
    [50]Vrachmou E., Gratzel M., McEvoy A. J. Efficient visible light photoresponse following surface complexation of titanium dioxide with transition metal cyanides [J] J. Electroanal. Chem., 1989, 258: 193-205.
    [51]Nozik A. J., Micic O. I., Curtis C. J. Synthesis and characterization of InP quantum dots [J] J. Phys. Chem., 1994, 98: 4966-4969.
    [52]Bedja I., Kamat P. V. Capped semiconductor colloids synthesisi and photoelectrochemical behavior of TiO_2 capped SnO2 nanocrystallites [J] J. Phys. Chem., 1995, 99(22): 9182-9188.
    [53]Tanabe K., Sumiyoshi T., Shibata K., et al. A New Hypothesisi Regarding the Surface Acidity of Binary Metal Oxides [J] Bull. Chem. Soc., 1974, 47: 1064-1066.
    [54]清山哲郎著,黄敏明译.金属氧化物及其催化作用[M]合肥:中国科学技术大学出版社, 1991, 248-249.
    [55]濑升等著,赵修建译.超微颗粒导论[M]武汉:武汉工业大学出版社, 1991, 50-51.
    [56]Kawai M., Onaka M., Izumi Y., Clay montmorillonite-catalyzed aldo reactions of silyl enol ethers with aldehydes and acetals [J] Chem. Lett., 1986, 9: 1581-1584.
    [57]梁娟,王善鎏主编.催化新材料:催化科学与技术[M]北京:化学工业出版社, 1990, 52-53.
    [58]Enea O., Bard A. J., Photoredox reactions at semiconductor particles incorporated into clays. Cadmium sulfide and zinc sulfide+cadmium sulfide mixtures in colloidal montmorillonite suspensions [J] J. Phys. Chem., 1986, 90: 301-306.
    [59]Stramel R. D., Nakamura T., Thomas J. K. Cadmium sulfide on synthetic clay [J] Chem. Phys. Lett., 1986, 130: 423-425.
    [60]Shoji Y., Yamanaka S., Nishihara T., et al. Preparation and properties of titania pillared clay [J] Mater. Chem. Phys., 1987, 17: 87-101.
    [61]Miyoshi H., Mori H., Yoneyama H., Light-induced decomposition of saturated carboxylic acids on iron oxide incorporated clay suspended in aqueous solutions [J] Languir, 1991, 7: 503-507.
    [62]Kazunari K., Domen K., Kudo A., et al. Overall photodecomposition of water on a layered niobiate catalyst [J] Catal. Today, 1990, 8: 77-84.
    [63]成通宝,江亿.建筑装饰材料挥发性有机物及去除设备研究现状[J]暖通空调HV&AC, 2002, 32(5): 41-43.
    [64]Vinodgopal K., Stafford U., Electrochemically assisted photocatalysisi. 2. The role of oxygen and reaction intermediates in the degradation of 4-chloropenol on immobilized TiO_2 particulate films [J] J. Phys. Chem., 1994, 98: 6797-6803.
    [65]郑宜,李旦振,付贤智.C2H4的微波场助气相光催化氧化[J]高等学校化学学报, 2001, 22(3): 443-445.
    [66]Sopyan I., Murasawa S., Hashimoto K., et al. Highly Efficient TiO_2 Film Photocatalyst. Degradation of Gaseous Acetaldehyde [J] Chem. Lett., 1994, 23: 723-726.
    [67]Dibble L. A., Raupp G. B. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide [J] Catal. Lett., 1990, 4: 345-354.
    [68]Raupp G. B., Junto C. T. Photocatalytic oxidation of oxygenated air toxics [J] Appl. Surf. Sci., 1993, 72: 321-327.
    [69]Sopyan I., Watanabe M., Murasawa S., et al. An efficient TiO_2 thin-film photocatalyst photocatalytic property in gas-phase acetaldehyde degradation [J] J. Photoch. Photobio. A: Chem., 1996, 98: 79-86.
    [70]Toshinori T., Takehiro K., Tomohisa Y., et al. A photocatalytic membrane reactor for VOCs decomposition using Pt-modified titanium oxide porous membranes [J] J. Member. Sci., 2006, 280: 156-162.
    [71]Zhang C. B., He H., Tanaka K. Catalytic performance and mechanism of a Pt/TiO_2 catalyst for the oxidation of formaldehyde at room temperature [J] Appl. Catal. B: Environ. 2006, 65: 37-43.
    [72]Thammanoon S., Susumu Y. Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO_2 prepared by single-step sol-gel process with surfactant template [J] Int. J. Hydrogen Energy, 2006, 31: 786-796.
    [73]Yoshiteru M., Yoji M., Tatsuya S., et al. Immobilization of noble metal nanoparticles on the surface of TiO_2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol [J] Ultrason. Sonochem. 2007, 14: 387-392.
    [74]Falconer J. L., Magrini B. K. A. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO_2 [J] J. Catal., 1998, 179(1): 171-178.
    [75]Sano T., Kutusna S., Negishi N., et al. Effect of Pd-photodepositon over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer [J] J. Mol. Catal. A, 2002, 189: 263-270.
    [76]Sheng J., Shivalingappa L., Karasawa J., et al. Low-temperature formation of photocatalytic Pt-anatase film by magnetron sputtering [J] J. Mater. Sci., 1996, 34: 6201-6026.
    [77]Ohtani B., Iwai K., Nishimoto S., et al. Role of Platinum Deposits on Titanium(IV) Oxide Particles: Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions [J] J. Phys. Chem. B, 1997, 101(17): 3349-3359.
    [78]Tanaka K., Capule M. F. V., Hisanaga T. Effect of crystallinity of TiO_2 on its photocatalytic action [J] Chem. Phys. Lett., 1991, 187(1-2): 73-76.
    [79]Fu X., Zeltner W. A., Anderson M. A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts [J] Appl. Catal. B: Environ., 1995, 6: 209-224.
    [80]Zhang Y., Crittenden J. C., David W., et al. Fixed-bedphotocatalysts for solar decontaminantion of water [J] Environ. Sci. Technol., 1994, 28: 435-442.
    [81]Sun B., Alexandre V. Role of platinum deposited on TiO_2 in phenol photocatalytic oxidation [J] Langmuir, 2003, 19(8): 3151-3156.
    [82]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M]北京:化学工业出版社, 2002, 12.
    [83]Sun B., Alexandre V. Role of platinum deposited on TiO_2 in phenol photocatalytic oxidation [J] Langmuir, 2003, 19(8): 3151-3156.
    [84]Liu C., Bao Z. N., Yang Z. H., et al. Photocatalytic performance of TiO_2 modified by doped transition metal ions [J] J. Catal., 2001, 22(2): 215-218.
    [85]Xu Y M, Langfor C H. Variation of Langmuir adsorption constant determined forTiO_2-photocatalyzed degradation of aceto-phenone under different light intensity [J]. J Photochem Photobilo A: Chem, 2000, 133(1-2):67-61.
    [86]Meng Y B, Huang X, Wu Y X, et al. Kinetic study and modeling on photocatalytic degradation of para-chlorobenzoate at different light intensities [J]. Environ Pollut, 2002, 117(2):307-313.
    [87]Peill N J, Hoffmann M R. Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis [J]. Environ Sci Technol, 1998, 32(2):298-304.
    [88]杨莉萍,刘震炎,施建伟等.光催化降解室内气相甲醛的光强研究[J]太阳能学报2007, 28(7):689-694.
    [89]章骅,周述琼,但德忠.室内污染技术研究进展[J]中国测试技术2005, 31(6): 130-134.
    [90]李文彩,鹿院卫,常梦媛等.反应物流速和湿度对室内污染物甲醛的光催化氧化影响的实验研究[J]太阳能学报2007, 28(1): 43-46.
    [91]丁震,冯小刚,陈晓东等.金属泡沫镍负载纳米TiO_2光催化降解甲醛和VOCs [J]环境科学, 2006, 27(9): 1814-1819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700