用户名: 密码: 验证码:
AFB1诱发大鼠肝癌形成过程中差异表达基因筛选及Cullin7的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(hepatocellular carcinoma,HCC,以下简称肝癌)是最常见的恶性肿瘤之一,是一种早期诊断困难、高度恶性、预后凶险的肿瘤。肝癌的形成是一个多因素、多步骤、多基因参与的过程,传统的单因素、单基因相关性分析难以全面准确反映肝癌复杂的病理机制,近年来随着功能基因组学及蛋白质组学的迅猛发展,不断地推动了肝癌发生机制、诊断和治疗等方面的研究进展。
     本研究用AFB1(Aflatoxin B1,AFB1)诱发大鼠肝癌形成,以γ-谷氨酰转肽酶(γ-glutamyl transpeptidase,γ-GT)染色阳性的肝细胞增生灶(γ-GT阳性灶)为标志获取肝癌前病变的组织标本,运用基因芯片技术对大鼠肝癌组织、肝癌前病变组织和正常肝组织的全基因组表达谱进行差异分析,筛选出一批差异基因。本研究对筛选出来的差异表达基因CUL7(cullin7)进行表达水平改变的验证,再应用RNA干扰(RNA interfering,RNAi)技术对CUL7进行肿瘤相关生物学功能分析和机制探讨,以及应用实时定量PCR和免疫组化技术观察和分析CUL7在较大样本量的人肝癌组织中的表达及其临床意义。研究结果表明,CUL7在肝癌的发生发展过程中可能影响细胞的增殖、凋亡能力和细胞周期的调控,它编码的蛋白是E3泛素-蛋白连接酶复合物的组件,参与泛素依赖的蛋白质降解,CUL7在肝癌组织中高表达。这些结果提示CUL7可能是个潜在的肝癌诊断和预后评估的分子标志物。
     研究分以下四部分进行。
     第一部分AFB1诱发大鼠肝癌发生过程中差异表达基因研究
     目的:通过建立AFB1诱发大鼠肝癌实验模型,应用基因芯片技术观察大鼠肝癌发生发展不同阶段的肝组织中基因表达谱的改变,从中筛选出在肝癌发生过程中起重要作用的基因。
     方法:4周龄的雄性近交系Wistar大鼠随机分为实验组和对照组,实验组动物经腹腔注射AFB1诱发肝癌,对照组不予AFB1处理。分别于实验第14W、28W、42W、55W对全部动物进行肝活检,第64W处死全部动物。通过γ-GT组织化学染色并结合HE染色识别和获取肝癌前病变组织、肝癌组织和正常对照肝组织。三种组织标本各取3例,分别提取肝组织总RNA,然后按组织类别将3份总RNA等量混合,获得癌前、肝癌和正常三种组织RNA。经基因芯片技术筛选出癌前、肝癌和正常三种组织差异性表达基因。最后通过Gene Ontology、KEGG和NCBI等数据库分析差异表达基因分子功能、生物过程、细胞组分以及生物学通路。
     结果:动物实验于64周结束,结果显示实验组共有19只动物发生肝癌,肝癌发生的最早时间为实验第51周;对照组无1例发生肝癌。γ-GT组织化学染色显示随着AFB1诱癌时间延长,γ-GT阳性灶数量增多、面积增大,癌前组织中γ-GT阳性灶总面积与肝组织切片面积比达35%~47%;肝癌组织γ-GT染色全为阳性;正常肝组织内无γ-GT阳性灶。应用基因芯片技术筛选出组间表达水平差异基因(以表达差异≥2.0或≤0.5倍为限),其中肝癌组织与正常组织相比,有3753个上调表达基因,有3042个下调表达基因;肝癌组织与癌前组织相比,有4885个上调表达基因,有3477个下调表达基因,癌前组织与正常组织相比,有1027个上调表达基因,有1117个下调表达基因。在正常肝组织、癌前病变肝组织、肝癌组织表达依次上调的基因30个,在正常肝组织、癌前病变肝组织、肝癌组织表达依次下调的基因85个。
     经生物信息学分析,这些差异表达基因与细胞的增生、分化,细胞周期,细胞凋亡和细胞的信号传导密切相关。结论:通过γ-GT组织化学染色和HE染色相结合的方法有助于识别和获取大鼠肝癌前病变组织、肝癌组织及正常肝组织;大鼠肝癌发生发展不同阶段的基因表达谱存在明显差别;肝癌的发生发展可能与多种基因表达水平的改变有关。
     第二部分差异表达基因CUL7在大鼠和人肝癌组织中的表达验证
     目的:对筛选出来的感兴趣基因CUL7进行差异表达的验证。
     方法:应用RT-PCR和Western blot方法检测CUL7在大鼠和人肝癌组织中的mRNA和蛋白质水平水平的表达情况。
     结果:①CUL7 mRNA表达水平和蛋白表达水平在大鼠正常肝、肝癌前病变、肝癌组织中依次上调;②CUL7蛋白表达水平在人正常肝、癌旁肝及肝癌组织中也依次上调。
     结论: CUL7表达变化趋势与基因芯片筛选结果基本一致,在mRNA和蛋白质两个水平上,CUL7不仅在大鼠正常肝、肝癌前病变、肝癌组织中表达依次上调,并且在人正常肝、肝癌旁组织、肝癌组织中的表达水平也显著依次升高,提示CUL7可能参与人类肝癌的发生发展过程。
     第三部分肝癌差异表达基因CUL7的功能研究
     目的:为了进一步探讨CUL7在肝癌发生发展中的作用,本部分应用RNAi技术和肿瘤相关生物学功能鉴定方法,研究CUL7表达沉默对人肝癌细胞系SMMC-7721相关功能的影响。
     方法:将化学合成的CUL7小干扰RNA( siRNA)瞬时转染SMMC-7721细胞后,用Real-Time PCR和Western blot检测证实SMMC-7721细胞中CUL7的mRNA和蛋白表达均明显受到抑制。设置CUL7 siRNA转染组(RNAi组)、转染无效用dsRNA组(阴性对照组,Mock)和未转染组(空白对照组,Con),观察三组细胞的凋亡、生长、粘附、运动和侵袭等肿瘤相关生物学功能的变化。
     结果:流式细胞仪分析结果显示,凋亡细胞比例在RNAi组、Mock组、Con组分别为67.45±5.83%、13.74±4.25%、16.69±3.18%。MTT实验结果显示,RNAi组的OD490值在24h、48h、72h分别为0.941±0.04 , 0.924±0.13, 0.783±0.12。体外运动试验结果显示,穿过微孔滤膜到达下室面的细胞数在RNAi组、Mock组和Con组分别为26.35±1.55、68.33±3.55和65.77±3.18个, RNAi组与其余两组比较有显著差异(p<0.05)。体外侵袭试验结果显示,穿过Matrigel和微孔滤膜到达下室面的细胞数在RNAi组、Mock组和Con组分别为14.38±2.37、45.38±4.16、48.67±2.51个, RNAi组与其余两组比较有显著差异(p<0.05)。
     结论: CUL7可能通过促进细胞增殖、抑制细胞凋亡,从而导致肝细胞的恶性转化。
     第四部分CUL7在较大样本人肝癌组织中的表达及临床意义的研究
     目的:分析人肝癌组织中CUL7的表达与患者的临床病理特征的关系。
     方法:利用Real-Time PCR和免疫组化技术检测CUL7 mRNA和蛋白水平在62例人肝癌及其相应癌旁组织、12例正常人肝组织中的表达情况。
     结果: CUL7 mRNA和CUL7蛋白表达水平在人肝癌中的表达明显高于癌旁及正常肝组织(均P <0.05),差异有统计学意义;而在正常组织的表达,与癌旁相比差别无统计学意义(P >0.05)。CUL7在肝癌组织的表达水平与该组织的Edmondson病理分级、复发和远处转移相关,(p<0.05)。
     结论:CUL7 mRNA和CUL7蛋白表达水平在人肝癌中的表达明显高于癌旁及正常肝组织,差异有统计学意义;而在正常肝组织的表达,与癌旁相比差别无统计学意义,提示CUL7在肝癌的诊断和预后评估等方面具有潜在的临床应用价值。
Hepatocellular carcinoma (HCC) is one of the most common malignancies with difficulty in early diagnosis and extremely poor prognosis. As the formation of HCC is a multi-factor, multi-step and multi-gene process, the study on HCC with the methods that only focus on single factor or single gene can not accurately reflect the complexity of its pathological mechanism.In recent years, with the rapid development of the functional genomics and the proteomics,the research of HCC in pathogenesis , diagnosis and treatment have been greatly promoted.
     This study applied gene array technology to compare the differentially expressed genes among the normal tissue, preneoplastic tissue and HCC tissue during rat hepatocarcinogenesis induced by Aflatoxin B1 (AFB1). The preneoplastic tissue was distinguished byγ-glutamyl transpeptidase (γ-GT) staining which marks the foci of liver cell proliferation positive. Among the candidates, the changes of Cullin7 expression were confirmed by Western blot and RT-PCR. The biological functions and mechanism of Cullin7 were further studied with RNA interference (RNAi) technique. Its expression in a larger scale of human HCC samples and the clinical significance were studied by RT-PCR and immunohistochemical techniques.The results indicated that Cullin7 probably affects cell proliferation and apoptosis by regulating the cell cycle, and thereby plays a role in the occurrence and development of HCC.Cullin7 codes the component of the E3 sumo-protein ligase,which involves in sumo depended protein degradation.The up-expression of Cullin7 in HCC indicates that Cullin7 could be a molecular marker for the early diagnosis and the prognosis analysis of HCC.
     The entire study includes three parts.
     Part One Study on differentially expressed genes in the rat hepatocarcinogenesis induced by AFB1
     Objective: Part one applied gene array technology to compare the differentially expressed genes among the normal tissue, preneoplastic tissue and HCC tissue during rat hepatocarcinogenesis induced by Aflatoxin B1 (AFB1).
     Methods: Male Wistar rats, 4 weeks old, were divided into AFB1 group and control group. Rats in AFB1 group were injected AFB1 in order to induce HCC, and the rats in control group were raised normally. The animal experiment lasted 64 weeks, during which all the animals from each group were biopsied periodically for collecting liver tissues samples(14W、28W、42W、55W、64W). The samples were stained withγ-GT and HE to distinguish the normal, preneoplastic and HCC tissue.3 samples were picked randomly from each kind of above tissues for extracting the total RNA.Gene array technology was applied to screen the differenetially expressed genes.The molecular function,biological process,cell component,and the biological pathways were analyzed by the Gene Ontology,KEGG and NCBI database.
     Results: The animal experiment was end in 64 weeks. A total of 19 rats in AFB1 group developed HCC until the end of animal experiment. The earliest HCC occurred at the 51st week in the animals in AFB1 group, while none in control group. With the extension of time by AFB1-induced HCC, the number and size ofγ-GT foci in the liver of animals in AFB1 group increased, and the totalγ-GT positive area reached 29%~43% of the whole liver tissue area. HCC tissues wereγ-GT positive entirely. There was noγ-GT focus in control group.The results of gene array (limit differenece times≥2.0 or≤0.5)showed that 3753 genes expressed upwards while 3042 genes downwards in the HCC and normal group, 4885 genes expressed upwards while 3447 genes downwards in the HCC and preneoplastic group, 1027 genes expressed upwards while 1117 genes downwards in the normal and preneoplastic group. Though the bioinformatics, the conclusion suggested that such genes were relate to the cell proliferation and apoptosis or the signal pathway.
     Conclusion: The results showed the methods thatγ-GT staining combined with HE were able to distinguish the normal, preneoplastic and HCC tissue.The significant difference of gene expression existed in the developing stage of HCC. The happening and development of HCC may be related to the change of gene expression.
     Part two Validation on differential expression of Cullin7 in rat and human HCC
     Objective: To verify the candidate Cullin7 expression in rat and human HCC.
     Methods: The changes of Cullin7 expression were confirmed by Western blot and RT-PCR.
     Results:①mRNA and protein expression of Cullin7 increased in the rat normal, preneoplastic and HCC tissue.②Cullin7 protein expression also turned up in the human normal, preneoplastic and HCC tissue. Conclusion: Above results from mRNA and protein levels were consistent with the gene microarray, which indicates Cullin7 may be involved in the development and progression of human HCC.
     Part three Biological function and mechanism study of Cullin7 in hepatocarcinogenesis
     Objective: To explore the role of Cullin7 in hepatocarcinogenesis, further study on its biological function and mechanism was carried on by RNAi technique on the HCC cell line of SMMC-7721.
     Methods: Chemically synthesized small interfering RNA (siRNA) targeted on Cullin7 were transfected into SMMC-7721 cells. mRNA and protein levels of the Cullin7 in HCC cell lines SMMC-7721 were examinated by RT- PCR and Western blot.Establishing the RNAi,negtive and control group,the function and mechanism study were designed to analyze the change of apoptosis, proliferation, adhesion, and invasion of the above three cell groups.
     Results: Flow cytometry analysis showed that the proportion of apoptotic cells in the RNAi , Mock and Con group were 67.45±5.83%, 13.74±4.25%, 16.69±3.18% respectively. MTT results showed that the value of OD490 RNAi group in 24h, 48h, and 72h were 0.941±0.04, 0.924±0.13, 0.783±0.12 respectively. Movement test in vitro shows that the porous cells in the RNAi, negtive and control group were 26.35±1.55, 68.33±3.55 and 65.77±3.18. Cell invasion assay showed the average invading cell numbers perfield in the group RNAi, mock and control were 14.38±2.37、45.38±4.16、and 48.67±2.51 respectively. There was siginificant difference between RNAi and the other two groups.
     Conclusion: By promoting cell proliferation, inhibiting cell apoptosis, Cullin7 may be lead to the transformation from normal cells to the malignant.
     Part four The expression and clinical significance of Cullin7 in a larger scale of human HCC samples
     Objective: To analyze the clinical relationship between Cullin7 expression and human hepatocellular carcinoma .
     Methods: To explore the clinical significance of Cullin7 expression in HCC and evaluate the potential value of Cullin7 as a new molecular marker for diagnosis early HCC, the Cullin7 protein expression level was examinated in 62 cases of human HCC and the adjacent liver tissues, as well as in 12 cases of normal human liver tissue, by Real-Time PCR and immunohistochemical techniques.
     Results: The results showed the expression level of Cullin7 was up-regulated in all kinds of tissues. There was siginificant difference between human HCC and the adjacent liver tissues (p<0.05), and no siginificant difference between the adjacent liver tissues and normal liver tissues. The Cullin7 level had significant correlation with Edmondson stage, recurrence and metastasisof the HCC cases.(p<0.05).
     Conclusions: Cullin7 expression turned up in the HCC tissue,which indicates that Cullin7 could be a molecular marker for the diagnosis and the prognosis analysis of HCC.
引文
1. Tang ZY, Ye SL, Liu YK, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol, 2004, 130(4): 187-196.
    2. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2): 74-108.
    3. Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000. Int J Cancer, 2001, 94(2): 153-156.
    4. Wright LM, Kreikemeier JT, Fimmel CJ. A concise review of serum markers for hepatocellular cancer. Cancer Detect Prev, 2007, 31(1): 35-44.
    5.张思维,李连弟,鲁凤珠,等.中国1990~1992年原发性肝癌死亡调查分析.中华肿瘤杂志, 1999(04): 5-9.
    6.李伟道.原发性肝癌诊断、分型、分期标准的探讨.中华肝脏病杂志, 1997, 5(3): 129-130
    7. Lai CL, Lau JY, Wu PC, et al. Subclinical hepatocellular carcinoma in Hong Kong Chinese. Onconlogy, 1992, 49(5): 347-353.
    8.周峥珍,章宗籍,钱忠义,等. DEN诱发大鼠肝癌模型的实验病理研究.昆明医学院学报,2005,26(3):15-19.
    9. Lakhtakia R, Kumar V, Reddi H, et al. Hepatocellular carcinoma in a hepatitis B 'x' transgenic mouse model: A sequential pathological evaluation.J Gastroenterol Hepatol, 2003, 18(1): 80-91.
    10. Wang Y, Cui F, Lv Y, et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology, 2004 , 39(2): 318-324.
    11. Tang ZY, Sun FX, Tian J, et al. Metastatic human hepatocellular carcinoma models in nude mice and cell line with metastatic potential. World J Gastroenterol, 2001, 7(5): 597-601.
    12.郑建明,陶文照,郑唯强,等.人肝癌裸鼠皮下-原位移植瘤模型的建立.第二军医大学学报,2000,21(5):456-458.
    13.苏建家,李瑗,班克臣,等.树鼩实验性肝癌发生过程p53基因的变化.中华肝脏病杂志, 2003, 11(3): 159-161.
    14. Li Y, Su JJ, Qi LL, et al. Synergistic effect of hepatitis B Virus and aflatoxin B1 in hepatocarcinogenesis in tree shrews. Ann Acad Med Singapore, 1999, 28(1): 67-71.
    15.林丛,焦解歌,许淑嫒,等.黄曲霉毒素B1长期微量饲喂大鼠诱致肝癌的观察.中华病理学杂志,1988 ,17 (3) :198~200.
    16.蒋金星,郭铃新,虞有智,等.黄曲霉毒素B1诱发大鼠肝癌的实验病理研究.北京医科大学学报,1992 ,24(3) :199~201.
    17. Yao DF, Dong ZZ, Yao DB, et al. Abnormal expression of hepatoma-derived gamma-glutamyltransferase subtyping and its early alteration for carcinogenesis of hepatocytes. Hepatobiliary Pancreat Dis Int, 2004, 3(4): 564-570.
    18. Li Y, Yan RQ, Qin GZ, et al. Reliability of a short-term test for hepatocarcinogenesis induced by aflatoxin B1. IARC Sci Publ, 1991 (105): 431-433.
    19.唐小岚,段小娴,苏建家,等.金花茶和银杏叶对2-乙基亚硝胺致大鼠肝癌前病变抑制作用的初步研究.实用癌症杂志, 2007(3): 224-227.
    20.刘启福,罗丹,苏建家,等.实验性大鼠肝癌变过程中p16和Rb基因表达的动态观察.临床与实验病理学杂志, 1999(3): 41-43.
    21. David JD,Michael B,Chen YD,et al. Expression profiling using DNA microarrays. Nat Genet,1999,21(Supplement):10.
    22. Mackay A,Jones C,Dexter T,et al. cDNA microarray analysis of genes associated with ERBB2(HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene,2003,22(17):2680-2688.
    23. Taniwki M,Daigo Y,Ishikawan N,et al. Gene expression profiles of small-cell lung cancers:molecular signatures of lung cancer. Int J Oncol,2006,29 (3):567-575.
    24. Welsh JB,Zarrinkar PP,Sapinoso LM,et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA,2001,98(3):1176-1181.
    25. Young AN,Amin MB,Moreno CS,et al. Expression profiling of renal epithelial neoplasms:a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol,2001,158(5):1639-1651.
    26. Hedgde P,Qir,Gaspard R,et al. Identification of tumor markers in models of human colorectal cancer using a 19,2002-element complementary DNA microarray[J]. Cancer Res,2001,61(21):7792-7797.
    27. Iacobuzio-Donahie CA,Mait RA,Shen-Ong GL,et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol,2002,160(4):1239-1249.
    28. Xiao SY,Wang HL,HART J,et al. cDNA arrays and immunohistochemistry identification of CD10/CALLA expression in hepatocellular carcinoma. AmJ Pathol,2001,159(4):1415-1421.
    29. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669):806-811.
    30. Sen G L, Blau H M. A brief history of RNAi: the silence of the genes. FASEB J, 2006, 20(9):1293-1299.
    31. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004, 431(7005): 200-205.
    32. Shah O. J., Wang Z., Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004, 14(18): 1650-1656.
    33. Harrington L. S., Findlay G. M., Gray A., et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004, 166(2): 213-223.
    34. Kim S. S., Shago M., Kaustov L., et al. CUL7 is a novel antiapoptotic oncogene. Cancer Res. 2007, 67(20): 9616-9622.
    1. Yoshiji H, Yoshii J, Ikenaka Y, et al. Inhibition of renin-angiotensin system attenuates liver enzyme-altered preneoplastic lesions and fibrosis development in rats[J]. Journal of hepatology. 2002, 37(1): 22-30.
    2. Rizvi T. A., Mathur M., Nayak N. C. Effect of protein calorie malnutrition and cell replication on aflatoxin B1-induced hepatocarcinogenesis in rats[J]. J Natl Cancer Inst. 1987, 79(4): 817-830.
    3. Roebuck B. D., Liu Y. L., Rogers A. E., et al. Protection against aflatoxin B1-induced hepatocarcinogenesis in F344 rats by 5-(2-pyrazinyl)-
    4-methyl-1,2-dithiole-3-thione (oltipraz): predictive role for short-term molecular dosimetry[J]. Cancer Res. 1991, 51(20): 5501-5506.
    4. Mathur M., Rizvi T. A., Nayak N. C. Aflatoxin B1 induced hepatocarcinogenesis in neonatal rats[J]. Indian J Exp Biol. 1992, 30(3): 165-168.
    5. Ha T. G., Jang J. J., Kim S. G., et al. 2-(Allylthio)pyrazine inhibition of aflatoxin B1-induced hepatocarcinogenesis in rats[J]. Chem Biol Interact. 1999, 121(2): 209-222.
    6. Liu J., Yang C. F., Wasser S., et al. Protection of salvia miltiorrhiza against aflatoxin-B1-induced hepatocarcinogenesis in Fischer 344 rats dual mechanisms involved[J]. Life Sci. 2001, 69(3): 309-326.
    7. Lee J. S., Thorgeirsson S. S. Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer[J]. Hepatology. 2002, 35(5): 1134-1143.
    8. Shirota Y., Kaneko S., Honda M., et al. Identification of differentially expressed genes in hepatocellular carcinoma with cDNA microarrays[J].Hepatology. 2001, 33(4): 832-840.
    9. Ogawa K, Solt DB, Farber E. Phenotypic diversity as an early property of putative preneoplastic hepatocyte populations in liver carcinogenesis[J]. Cancer Research. 1980, 40(3): 725.
    10.严瑞琪,陈志英,覃国忠,等.当归等三种中药及联苯双酯对黄曲霉毒素B1致大鼠肝癌作用的影响[J]. 1986, 5(2): 141-144.
    11.苏建家,陈志英,覃国忠,等.叔丁基对羟基茴香醚对黄曲霉毒素诱癌的影响(Ⅱ)肝癌及其他肿瘤形成的观察[J].广西医学院学报. 1983, 1: 10-15.
    12.欧超,李瑗,苏建家.金蒲抑瘤片对黄曲霉毒素B1诱发实验性大鼠肝癌作用的影响[J].世界元素医学. 2002, 9(2): 53-58.
    13.李瑗,严瑞琪,覃国忠,等. AFB_1致肝癌作用短期体内实验模型的长期观察及绿茶和BHA对AFB_1诱发大鼠肝癌的影响[J].肿瘤防治研究. 1990, (04): 204-207.
    14.陈志英,严瑞琪,覃国忠,等.茶叶等六种可食植物对黄曲霉毒素B1致大鼠肝癌作用的影响[J].中华肿瘤杂志. 1987, 9(2): 109-112.
    15.曹骥,李瑗,张丽生,等.茶多酚在树鼩肝癌形成中的化学预防作用[J].肿瘤. 2005, 25(2): 118-121.
    16. Fiala S., Fiala E. S. Activation by chemical carcinogens of gamma-glutamyl transpeptidase in rat and mouse liver[J]. J Natl Cancer Inst. 1973, 51(1): 151-158.
    17. Farber E. The sequential analysis of liver cancer induction[J]. Biochim Biophys Acta. 1980, 605(2): 149-166.
    18. Farber E., Cameron R. The sequential analysis of cancer development[J]. Adv Cancer Res. 1980, 31: 125-226.
    19. Odajima T., Solt D. B., Solt L. C. Persistence of gamma-glutamyltranspeptidase-positive foci during hamster buccal pouch carcinogenesis[J]. Cancer Res. 1984, 44(5): 2062-2067.
    20. Welford S. M., Gregg J., Chen E., et al. Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization[J]. Nucleic Acids Res. 1998, 26(12): 3059-3065.
    21. Afshari C. A., Nuwaysir E. F., Barrett J. C. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation[J]. Cancer Res. 1999, 59(19): 4759-4760.
    22. Moch H., Schraml P., Bubendorf L., et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma[J]. Am J Pathol. 1999, 154(4): 981-986.
    23. Achary M. P., Jaggernauth W., Gross E., et al. Cell lines from the same cervical carcinoma but with different radiosensitivities exhibit different cDNA microarray patterns of gene expression[J]. Cytogenet Cell Genet. 2000, 91(1-4): 39-43.
    24. Kelly D. L., Rizzino A. DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells[J]. Mol Reprod Dev. 2000, 56(2): 113-123.
    25. Voehringer D. W., Hirschberg D. L., Xiao J., et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis[J]. Proc Natl Acad Sci U S A. 2000, 97(6): 2680-2685.
    26. Engellau J., Akerman M., Anderson H., et al. Tissue microarray technique in soft tissue sarcoma: immunohistochemical Ki-67 expression in malignant fibrous histiocytoma[J]. Appl Immunohistochem Mol Morphol. 2001, 9(4):358-363.
    27. Chung G. G., Kielhorn E. P., Rimm D. L. Subjective differences in outcome are seen as a function of the immunohistochemical method used on a colorectal cancer tissue microarray[J]. Clin Colorectal Cancer. 2002, 1(4): 237-242.
    28. Makretsov N., Gilks C. B., Coldman A. J., et al. Tissue microarray analysis of neuroendocrine differentiation and its prognostic significance in breast cancer[J]. Hum Pathol. 2003, 34(10): 1001-1008.
    29. Grutzmann R., Saeger H. D., Luttges J., et al. Microarray-based gene expression profiling in pancreatic ductal carcinoma: status quo and perspectives[J]. Int J Colorectal Dis. 2004, 19(5): 401-413.
    30. Hidalgo A., Baudis M., Petersen I., et al. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma[J]. BMC Cancer. 2005, 5: 77.
    31. Chao A., Wang T. H., Lee Y. S., et al. Molecular characterization of adenocarcinoma and squamous carcinoma of the uterine cervix using microarray analysis of gene expression[J]. Int J Cancer. 2006, 119(1): 91-98.
    32. Corn P. G., El-Deiry W. S. Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage[J]. Cancer Biol Ther. 2007, 6(12): 1858-1866.
    33. Gyorffy B., Dietel M., Fekete T., et al. A snapshot of microarray-generated gene expression signatures associated with ovarian carcinoma[J]. Int J Gynecol Cancer. 2008, 18(6): 1215-1233.
    34. Ito T., Ishii G., Nagai K., et al. Low podoplanin expression of tumor cells predicts poor prognosis in pathological stage IB squamous cell carcinoma of the lung, tissue microarray analysis of 136 patients using 24 antibodies[J].Lung Cancer. 2009, 63(3): 418-424.
    35. Harvey S. A., Guerriero E., Charukamnoetkanok N., et al. Responses of cultured human keratocytes and myofibroblasts to ethyl pyruvate: microarray analysis of gene expression[J]. Invest Ophthalmol Vis Sci. 2010.
    1. Arai T., Kasper J. S., Skaar J. R., et al. Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis[J]. Proc Natl Acad Sci U S A. 2003, 100(17): 9855-9860.
    2. Kim S. S., Shago M., Kaustov L., et al. CUL7 is a novel antiapoptotic oncogene[J]. Cancer Res. 2007, 67(20): 9616-9622.
    3. Yoo S. M., Choi J. H., Lee S. Y., et al. Applications of DNA microarray in disease diagnostics[J]. J Microbiol Biotechnol. 2009, 19(7): 635-646.
    4. Suarez E., Burguete A., McLachlan G. J. Microarray data analysis for differential expression: a tutorial[J]. P R Health Sci J. 2009, 28(2): 89-104.
    5. Li X., Quigg R. J. An integrated strategy for the optimization of microarray data interpretation[J]. Gene Expr. 2005, 12(4-6): 223-230.
    6. Kaustov L., Lukin J., Lemak A., et al. The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53[J]. J Biol Chem. 2007, 282(15): 11300-11307.
    7. Dias D. C., Dolios G., Wang R., et al. CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex[J]. Proc Natl Acad Sci U S A. 2002, 99(26): 16601-16606.
    8. Andrews P., He Y. J., Xiong Y. Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function[J]. Oncogene. 2006, 25(33): 4534-4548.
    9. Nakajima H., Nakajima H. O., Tsai S. C., et al. Expression of mutant p193 and p53 permits cardiomyocyte cell cycle reentry after myocardial infarction in transgenic mice[J]. Circ Res. 2004, 94(12): 1606-1614.
    10. Kasper J. S., Arai T., DeCaprio J. A. A novel p53-binding domain in CUL7[J]. Biochem Biophys Res Commun. 2006, 348(1): 132-138.
    11. Jung P., Verdoodt B., Bailey A., et al. Induction of cullin 7 by DNA damage attenuates p53 function[J]. Proc Natl Acad Sci U S A. 2007, 104(27): 11388-11393.
    12. Okabe H., Lee S. H., Phuchareon J., et al. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation[J]. PLoS One. 2006, 1: e128.
    13. Xu X., Sarikas A., Dias-Santagata D. C., et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation[J]. Mol Cell. 2008, 30(4): 403-414.
    14. Moghaddam S. J., Haghighi E. N., Samiee S., et al. Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in hepatocellular carcinoma in Iran[J]. World J Gastroenterol. 2007, 13(4): 588-593.
    15. Fu Z. J., Ma Z. Y., Wang Q. R., et al. Overexpression of CyclinD1 and underexpression of p16 correlate with lymph node metastases in laryngeal squamous cell carcinoma in Chinese patients[J]. Clin Exp Metastasis. 2008, 25(8): 887-892.
    16. Koseoglu R. D., Sezer E., Eyibilen A., et al. Expressions of p53, cyclinD1 and histopathological features in basal cell carcinomas[J]. J Cutan Pathol. 2009, 36(9): 958-965.
    1. Jung P., Verdoodt B., Bailey A., et al. Induction of cullin 7 by DNA damage attenuates p53 function[J]. Proc Natl Acad Sci U S A. 2007, 104(27): 11388-11393.
    2. Kim S. S., Shago M., Kaustov L., et al. CUL7 is a novel antiapoptotic oncogene[J]. Cancer Res. 2007, 67(20): 9616-9622.
    3. Vastenhouw N. L., Brunschwig K., Okihara K. L., et al. Gene expression: long-term gene silencing by RNAi[J]. Nature. 2006, 442(7105): 882.
    4. Novina C. D., Sharp P. A. The RNAi revolution[J]. Nature. 2004, 430(6996): 161-164.
    5. Berns K., Hijmans E. M., Mullenders J., et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway[J]. Nature. 2004, 428(6981): 431-437.
    6. Karlas A., Machuy N., Shin Y., et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication[J]. Nature. 2010, 463(7282): 818-822.
    7. Kohrman D. C., Imperiale M. J. Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein[J]. J Virol. 1992, 66(3): 1752-1760.
    8. Tsai SC, Pasumarthi K, Pajak L, et al. Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm[J]. Journal of Biological Chemistry. 2000, 275(5): 3239.
    9. Grossberger R., Gieffers C., Zachariae W., et al. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promotingcomplex[J]. J Biol Chem. 1999, 274(20): 14500-14507.
    10. Kaustov L., Lukin J., Lemak A., et al. The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53[J]. J Biol Chem. 2007, 282(15): 11300-11307.
    11. Dias D. C., Dolios G., Wang R., et al. CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex[J]. Proc Natl Acad Sci U S A. 2002, 99(26): 16601-16606.
    12. Arai T., Kasper J. S., Skaar J. R., et al. Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis[J]. Proc Natl Acad Sci U S A. 2003, 100(17): 9855-9860.
    13. Tsutsumi T., Kuwabara H., Arai T., et al. Disruption of the Fbxw8 gene results in pre- and postnatal growth retardation in mice[J]. Mol Cell Biol. 2008, 28(2): 743-751.
    14. Cheng J., DeCaprio J. A., Fluck M. M., et al. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens[J]. Semin Cancer Biol. 2009, 19(4): 218-228.
    15. Xu X., Sarikas A., Dias-Santagata D. C., et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation[J]. Mol Cell. 2008, 30(4): 403-414.
    16. Andrews P., He Y. J., Xiong Y. Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function[J]. Oncogene. 2006, 25(33): 4534-4548.
    17. Fire A., Xu S., Montgomery M. K., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature. 1998, 391(6669): 806-811.
    18. Baulcombe D. C. Short silencing RNA: the dark matter of genetics?[J]. Cold Spring Harb Symp Quant Biol. 2006, 71: 13-20.
    19. Tijsterman M., Ketting R. F., Plasterk R. H. The genetics of RNA silencing[J]. Annu Rev Genet. 2002, 36: 489-519.
    20. Waterhouse P. M. Defense and counterdefense in the plant world[J]. Nat Genet. 2006, 38(2): 138-139.
    21. Sen G. L., Blau H. M. A brief history of RNAi: the silence of the genes[J]. FASEB J. 2006, 20(9): 1293-1299.
    22. Davenport R. J. Gene silencing. A faster way to shut down genes[J]. Science. 2001, 292(5521): 1469-1471.
    23. Caplen N. J., Parrish S., Imani F., et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems[J]. Proc Natl Acad Sci U S A. 2001, 98(17): 9742-9747.
    24. Okabe H., Lee S. H., Phuchareon J., et al. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation[J]. PLoS One. 2006, 1: e128.
    25. Tsai S. C., Pasumarthi K. B., Pajak L., et al. Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm[J]. J Biol Chem. 2000, 275(5): 3239-3246.
    26. Lin C. P., Liu J. D., Chow J. M., et al. Small-molecule c-Myc inhibitor, 10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells[J]. Anticancer Drugs. 2007, 18(2): 161-170.
    1. Zhou L., Liu J., Luo F. Serum tumor markers for detection of hepatocellular carcinoma[J]. World J Gastroenterol. 2006, 12(8): 1175-1181.
    2. Peng S. Y., Lai P. L., Pan H. W., et al. Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis[J]. Oncol Rep. 2008, 19(4): 1045-1053.
    3. Montaser L. M., Abbas O. M., Saltah A. M., et al. Circulating AFP mRNA as a Possible Indicator of Hematogenous Spread of HCC Cells: A Possible Association with HBV Infection[J]. J Egypt Natl Canc Inst. 2007, 19(1): 48-60.
    4. Yao D. F., Dong Z. Z., Yao M. Specific molecular markers in hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int. 2007, 6(3): 241-247.
    5. Morimoto O., Nagano H., Miyamoto A., et al. Association between recurrence of hepatocellular carcinoma and alpha-fetoprotein messenger RNA levels in peripheral blood[J]. Surg Today. 2005, 35(12): 1033-1041.
    6. Yao F., Guo J. M., Xu C. F., et al. Detecting AFP mRNA in peripheral blood of the patients with hepatocellular carcinoma, liver cirrhosis and hepatitis[J]. Clin Chim Acta. 2005, 361(1-2): 119-127.
    7. Lu Z. L., Luo D. Z., Wen J. M. Expression and significance of tumor-related genes in HCC[J]. World J Gastroenterol. 2005, 11(25): 3850-3854.
    8. Marubashi S., Dono K., Sugita Y., et al. Alpha-fetoprotein mRNA detection in peripheral blood for prediction of hepatocellular carcinoma recurrence after liver transplantation[J]. Transplant Proc. 2006, 38(10): 3640-3642.
    9. Ogawa C., Kudo M., Minami Y., et al. Tumor markers after radiofrequencyablation therapy for hepatocellular carcinoma[J]. Hepatogastroenterology. 2008, 55(85): 1454-1457.
    10. Kinoshita Y., Tajiri T., Souzaki R., et al. Diagnostic value of lectin reactive alpha-fetoprotein for neoinfantile hepatic tumors and malignant germ cell tumors: preliminary study[J]. J Pediatr Hematol Oncol. 2008, 30(6): 447-450.
    11. Tateishi R., Yoshida H., Matsuyama Y., et al. Diagnostic accuracy of tumor markers for hepatocellular carcinoma: a systematic review[J]. Hepatol Int. 2008, 2(1): 17-30.
    12. Zinkin N. T., Grall F., Bhaskar K., et al. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease[J]. Clin Cancer Res. 2008, 14(2): 470-477.
    13. Miyoshi E., Moriwaki K., Nakagawa T. Biological function of fucosylation in cancer biology[J]. J Biochem. 2008, 143(6): 725-729.
    14. Matsunaga Y., Koda M., Murawaki Y. Expression of matrix metalloproiteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in hepatocellular carcinoma tissue, compared with the surrounding non-tumor tissue[J]. Res Commun Mol Pathol Pharmacol. 2004, 115-116: 143-150.
    15. Wu X., Fan J., Wang X., et al. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion[J]. Biochem Biophys Res Commun. 2007, 355(4): 866-871.
    16. Guo R. P., Zhong C., Shi M., et al. Clinical value of apoptosis and angiogenesis factors in estimating the prognosis of hepatocellular carcinoma[J]. J Cancer Res Clin Oncol. 2006, 132(9): 547-555.
    17. Murugan R. S., Vinothini G., Hara Y., et al. Black tea polyphenols target matrix metalloproteinases, RECK, proangiogenic molecules and histonedeacetylase in a rat hepatocarcinogenesis model[J]. Anticancer Res. 2009, 29(6): 2301-2305.
    18.Zhuang P. Y., Zhang J. B., Zhang W., et al. Long-term interferon-alpha treatment suppresses tumor growth but promotes metastasis capacity in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol. 2010.
    19. Sun H., Liu G. T. Inhibitory effect of anti-hepatitis drug bicyclol on invasion of human hepatocellular carcinoma MHCC97-H cells with high metastasis potential and its relative mechanisms[J]. J Asian Nat Prod Res. 2009, 11(6): 576-583.
    20. Chae S., Jun H. O., Lee E. G., et al. Osteopontin splice variants differentially modulate the migratory activity of hepatocellular carcinoma cell lines[J]. Int J Oncol. 2009, 35(6): 1409-1416.
    21. Wu T. T., Hsieh Y. H., Hsieh Y. S., et al. Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma[J]. J Cell Biochem. 2008, 103(1): 9-20.
    22. Sun H., Liu G. T. [Inhibitory effect of dimethyl dicarboxylate biphenyl on invasion of human hepatocellular carcinoma cell line MHCC97-H with high metastasis potential and its mechanisms][J]. Ai Zheng. 2006, 25(12): 1464-1469.
    23. Salvi A., Arici B., Alghisi A., et al. RNA interference against urokinase in hepatocellular carcinoma xenografts in nude mice[J]. Tumour Biol. 2007, 28(1): 16-26.
    1. Kohrman D. C., Imperiale M. J. Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein[J]. J Virol. 1992, 66(3): 1752-1760.
    2. Tsai SC, Pasumarthi K, Pajak L, et al. Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm[J]. Journal of Biological Chemistry. 2000, 275(5): 3239.
    3. Grossberger R., Gieffers C., Zachariae W., et al. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex[J]. J Biol Chem. 1999, 274(20): 14500-14507.
    4. Kaustov L., Lukin J., Lemak A., et al. The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53[J]. J Biol Chem. 2007, 282(15): 11300-11307.
    5. Dias D. C., Dolios G., Wang R., et al. CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex[J]. Proc Natl Acad Sci U S A. 2002, 99(26): 16601-16606.
    6. Arai T., Kasper J. S., Skaar J. R., et al. Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis[J]. Proc Natl Acad Sci U S A. 2003, 100(17): 9855-9860.
    7. Tsutsumi T., Kuwabara H., Arai T., et al. Disruption of the Fbxw8 gene results in pre- and postnatal growth retardation in mice[J]. Mol Cell Biol. 2008, 28(2): 743-751.
    8. Okabe H., Lee S. H., Phuchareon J., et al. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation[J]. PLoS One. 2006, 1: e128.
    9. Xu X., Sarikas A., Dias-Santagata D. C., et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation[J]. Mol Cell. 2008, 30(4): 403-414.
    10. Alao J. P. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention[J]. Mol Cancer. 2007, 6: 24.
    11. Lin D. I., Barbash O., Kumar K. G., et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex[J]. Mol Cell. 2006, 24(3): 355-366.
    12. White M. F. IRS proteins and the common path to diabetes[J]. Am J PhysiolEndocrinol Metab. 2002, 283(3): E413-422.
    13. Haruta T, Uno T, Kawahara J, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1[J]. Molecular Endocrinology. 2000, 14(6): 783.
    14. Mieulet V., Lamb R. F. Shooting the messenger: CULLIN' insulin signaling with Fbw8[J]. Dev Cell. 2008, 14(6): 816-817.
    15. Jung P., Verdoodt B., Bailey A., et al. Induction of cullin 7 by DNA damage attenuates p53 function[J]. Proc Natl Acad Sci U S A. 2007, 104(27): 11388-11393.
    16. Andrews P., He Y. J., Xiong Y. Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function[J]. Oncogene. 2006, 25(33): 4534-4548.
    17. Skaar J. R., Arai T., DeCaprio J. A. Dimerization of CUL7 and PARC is not required for all CUL7 functions and mouse development[J]. Mol Cell Biol. 2005, 25(13): 5579-5589.
    18. Tsai S. C., Pasumarthi K. B., Pajak L., et al. Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm[J]. J Biol Chem. 2000, 275(5): 3239-3246.
    19. Dowell J. D., Tsai S. C., Dias-Santagata D. C., et al. Expression of a mutant p193/CUL7 molecule confers resistance to MG132- and etoposide-induced apoptosis independent of p53 or Parc binding[J]. Biochim Biophys Acta. 2007, 1773(3): 358-366.
    20. Kim S. S., Shago M., Kaustov L., et al. CUL7 is a novel antiapoptotic oncogene[J]. Cancer Res. 2007, 67(20): 9616-9622.
    21. Hahn W. C., Dessain S. K., Brooks M. W., et al. Enumeration of the simianvirus 40 early region elements necessary for human cell transformation[J]. Mol Cell Biol. 2002, 22(7): 2111-2123.
    22. Kasper J. S., Kuwabara H., Arai T., et al. Simian virus 40 large T antigen's association with the CUL7 SCF complex contributes to cellular transformation[J]. J Virol. 2005, 79(18): 11685-11692.
    23. Pasumarthi K, Tsai SC, Field LJ. Coexpression of mutant p53 and p193 renders embryonic stem cell-derived cardiomyocytes responsive to the growth-promoting activities of adenoviral E1A[J]. Circulation research. 2001, 88(10): 1004.
    24. Huber C., Dias-Santagata D., Glaser A., et al. Identification of mutations in CUL7 in 3-M syndrome[J]. Nat Genet. 2005, 37(10): 1119-1124.
    25. Maksimova N., Hara K., Miyashia A., et al. Clinical, molecular and histopathological features of short stature syndrome with novel CUL7 mutation in Yakuts: new population isolate in Asia[J]. J Med Genet. 2007, 44(12): 772-778.
    26. Li B, Ruiz JC, Chun KT. CUL-4A is critical for early embryonic development[J]. Molecular and cellular biology. 2002, 22(14): 4997.
    27. Singer J. D., Gurian-West M., Clurman B., et al. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells[J]. Genes Dev. 1999, 13(18): 2375-2387.
    28. Wang Y., Penfold S., Tang X., et al. Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E[J]. Curr Biol. 1999, 9(20): 1191-1194.
    29. Dealy M. J., Nguyen K. V., Lo J., et al. Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E[J]. Nat Genet. 1999, 23(2): 245-248.
    30. Tsunematsu R., Nishiyama M., Kotoshiba S., et al. Fbxw8 is essential for Cul1-Cul7 complex formation and for placental development[J]. Mol Cell Biol. 2006, 26(16): 6157-6169.
    31. Walenkamp M. J., Karperien M., Pereira A. M., et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation[J]. J Clin Endocrinol Metab. 2005, 90(5): 2855-2864.
    32. Abuzzahab M. J., Schneider A., Goddard A., et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation[J]. N Engl J Med. 2003, 349(23): 2211-2222.
    33. Kawashima Y, Kanzaki S, Yang F, et al. Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation[J]. Journal of Clinical Endocrinology & Metabolism. 2005, 90(8): 4679.
    34. Walenkamp M. J., van der Kamp H. J., Pereira A. M., et al. A variable degree of intrauterine and postnatal growth retardation in a family with a missense mutation in the insulin-like growth factor I receptor[J]. J Clin Endocrinol Metab. 2006, 91(8): 3062-3070.
    35. Cianfarani S., Geremia C., Puglianiello A., et al. Late effects of disturbed IGF signaling in congenital diseases[J]. Endocr Dev. 2007, 11: 16-27.
    36. Powell-Braxton L, Hollingshead P, Warburton C, et al. IGF-I is required for normal embryonic growth in mice[J]. Genes & development. 1993, 7(12): 2609-2617.
    37. Baker J., Liu J. P., Robertson E. J., et al. Role of insulin-like growth factors in embryonic and postnatal growth[J]. Cell. 1993, 75(1): 73-82.
    38. Liu J. P., Baker J., Perkins A. S., et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor(Igf1r)[J]. Cell. 1993, 75(1): 59-72.
    39. Araki E., Lipes M. A., Patti M. E., et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene[J]. Nature. 1994, 372(6502): 186-190.
    40. Tamemoto H., Kadowaki T., Tobe K., et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1[J]. Nature. 1994, 372(6502): 182-186.
    41. Cho H., Thorvaldsen J. L., Chu Q., et al. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice[J]. J Biol Chem. 2001, 276(42): 38349-38352.
    42. Di Micco R., Fumagalli M., d'Adda di Fagagna F. Breaking news: high-speed race ends in arrest--how oncogenes induce senescence[J]. Trends Cell Biol. 2007, 17(11): 529-536.
    43. Mooi W. J., Peeper D. S. Oncogene-induced cell senescence--halting on the road to cancer[J]. N Engl J Med. 2006, 355(10): 1037-1046.
    44. Yaswen P., Campisi J. Oncogene-induced senescence pathways weave an intricate tapestry[J]. Cell. 2007, 128(2): 233-234.
    45. Chin L., Merlino G., DePinho R. A. Malignant melanoma: modern black plague and genetic black box[J]. Genes Dev. 1998, 12(22): 3467-3481.
    46. Bennett D. C. Human melanocyte senescence and melanoma susceptibility genes[J]. Oncogene. 2003, 22(20): 3063-3069.
    47. Pollock P. M., Harper U. L., Hansen K. S., et al. High frequency of BRAF mutations in nevi[J]. Nat Genet. 2003, 33(1): 19-20.
    48. Michaloglou C., Vredeveld L. C, Soengas M. S., et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi[J]. Nature. 2005, 436(7051): 720-724.
    49. Serrano M., Lin A. W., McCurrach M. E., et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a[J]. Cell. 1997, 88(5): 593-602.
    50. Acosta J. C., O'Loghlen A., Banito A., et al. Chemokine signaling via the CXCR2 receptor reinforces senescence[J]. Cell. 2008, 133(6): 1006-1018.
    51. Chen Z., Trotman L. C., Shaffer D., et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis[J]. Nature. 2005, 436(7051): 725-730.
    52. Miyauchi H., Minamino T., Tateno K., et al. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway[J]. EMBO J. 2004, 23(1): 212-220.
    53. Bentires-Alj M., Kontaridis M. I., Neel B. G. Stops along the RAS pathway in human genetic disease[J]. Nat Med. 2006, 12(3): 283-285.
    54. Hanada K., Hickson I. D. Molecular genetics of RecQ helicase disorders[J]. Cell Mol Life Sci. 2007, 64(17): 2306-2322.
    55. Firth S. M., Baxter R. C. Cellular actions of the insulin-like growth factor binding proteins[J]. Endocr Rev. 2002, 23(6): 824-854.
    56. Rajkumar K, Barron D, Lewitt MS, et al. Growth retardation and hyperglycemia in insulin-like growth factor binding protein-1 transgenic mice[J]. Endocrinology. 1995, 136(9): 4029.
    57. Hoeflich A, Wu M, Mohan S, et al. Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain[J]. Endocrinology. 1999, 140(12): 5488.
    58. Watson CS, Bialek P, Anzo M, et al. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction[J]. Endocrinology. 2006, 147(3): 1175.
    59. Klauwer D., Blum W. F., Hanitsch S., et al. IGF-I, IGF-II, free IGF-I and IGFBP-1, -2 and -3 levels in venous cord blood: relationship to birthweight, length and gestational age in healthy newborns[J]. Acta Paediatr. 1997, 86(8): 826-833.
    60. Frost R. A., Nystrom G. J., Lang C. H. Stimulation of insulin-like growth factor binding protein-1 synthesis by interleukin-1beta: requirement of the mitogen-activated protein kinase pathway[J]. Endocrinology. 2000, 141(9): 3156-3164.
    61. Martin J. L., Baxter R. C. Expression of insulin-like growth factor binding protein-2 by MCF-7 breast cancer cells is regulated through the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway[J]. Endocrinology. 2007, 148(5): 2532-2541.
    62. Mehrian-Shai R, Chen CD, Shi T, et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer[J]. Proceedings of the National Academy of Sciences. 2007, 104(13): 5563.
    63. Cetin I., Foidart J. M., Miozzo M., et al. Fetal growth restriction: a workshop report[J]. Placenta. 2004, 25(8-9): 753-757.
    64. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease[J]. Nature genetics. 2004, 37(1): 19-24.
    65. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity[J]. Nature. 2004, 431(7005): 200-205.
    66. Shah O. J., Wang Z., Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies[J]. Curr Biol. 2004, 14(18): 1650-1656.
    67. Harrington L. S., Findlay G. M., Gray A., et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins[J]. J Cell Biol. 2004, 166(2): 213-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700