用户名: 密码: 验证码:
不适定问题高效算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反问题在数学上往往是不适定的,对于数据很小的扰动将使解产生巨大的变化,因此利用数值求解非常困难。通常利用正则化算法可以得到稳定的数值解。从算法上讲,处理不适定问题的正则化算法可以分为确定性方法以及随机方法。确定性方法理论相对完整,随机方法着重讨论数据以及模型的不确定性对问题的影响。本文试图针对抛物型方程热源识别问题以及Robin系数识别问题设计高效算法,特别对解的不确定性进行量化。全文分为三个部分,分别研究求解不适定问题的确定性方法和随机方法以及处理随机偏微分方程的基于ι1优化的随机配点方法。
     第一部分讨论基本解方法结合确定性止则化理论处理热源项分别为时间相关及空间相关的热源识别问题。基本解方法是一种真正的无网格方法,其基本思想是将问题的解写成微分算子基本解线性组合形式,避免了对区域的离散。为了能够直接利用基本解方法,首先通过变换将原问题转化成齐次多边值问题,通过该变换可以看出热源项仅为时间相关以及空间相关的热源问题的不适定程度与数值微分相当。由于所得到的线性方程组是严重病态的,本文采用离散Tikhonov正则化方法并利用GCV策略选取正则化参数对病态方程组进行处理。
     第二部分考虑贝叶斯推断方法在不适定问题中的应用。首先考虑在不同先验分布假设下,贝叶斯方法和经典正则化方法的关系,以及贝叶斯方法在选取正则化参数上的灵活性。然后给出不同的抽样方法对后验状态空间进行求解,并讨论抽样方法在贝叶斯方法解决不适定问题中的优缺点,以及可能采取的解决办法。接着,分析利用分层贝叶斯模型得到的增广Tikhonov方法处理一般线性问题的框架。最后将所讨论的方法具体应用到Robin系数识别以及热源识别问题中。
     第三部分提出结合压缩感知理论的随机配点方法。首先考虑贝叶斯随机替代模型与随机偏微分方程的关系。然后细致研究基于ι1,优化的随机配点方法,并给出该算法的收敛性结果。数值结果说明利用基于ι1优化的随机配点方法可以大大降低计算成本,为设计快速贝叶斯方法提供了新思路。
Inverse problems are often ill-posed in the sense that the solution may not exist and be unique, and more importantly, it fails to depend continuously on the data such that a small perturbation in the data may case an enormous de-viation of the solution. However, in practical applications, the data are always noisy and uncertain due to corruption by inherent measurement errors. Mean-while, the forward model may be imperfect and imprecise due to the presence of unmodeled physics. Therefore, the numerical solution of inverse problems is very challenging. Regularization methods are the standard approach for inverse problems. Algorithmically speaking, existing techniques roughly divide into two categories:deterministic and stochastic. There exist numerous mathematically elegant theoretical results and computationally efficient numerical algorithms for deterministic inverse techniques. However, they yield only a point estimate of the solution, without quantifying the associated uncertainties or rigorously considering the stochastic nature of data noise. Stochastic approaches are necessary for inverse problems under model uncertainties and for probabilistic calibration. This thesis attempts to design efficient numerical methods for the inverse heat source problems and the inverse Robin problems associated with the parabolic problem. It consist of three parts:Part 1 considers deterministic methods for the inverse heat source problem; Part 2 discusses Bayesian inference approach for inverse problems and Part 3 studies the stochastic collocation method via l1 minimization for stochastic partial differential equations.
     Part 1 discussed the use of the methods of fundamental solution (MFS) for reconstructing the unknown heat source in parabolic problems. The main idea of MFS is to approximate the unknown solution by a linear combination of fun-damental solutions whose singularities are located outsider the solution domain. Since the matrix arising from the MFS discretization is severely ill-conditioned, a regularization solution is obtained by employing the Tikhonov regularization, while the regularization parameter is determined by the GCV criterion. For nu- merical verification, several examples for solving inverse heat source problems with smooth and non-smooth geometries in two-and three dimensional space are given.
     Part 2 studies the Bayesian inference approach for uncertainly quantification of inverse Robin problems associated with the parabolic equation. With assump-tion on the prior belief about the form of the parameter and an assignment of normal error in sensor measurements, we derive the solution to the statistical in-verse problem analytically. A hierarchical Bayesian model is adopted for selecting the regularization parameter. The posterior probability density depends implicitly on the parameter through the forward model, and is exploring using the Markov chain Monte Carlo for obtaining relevant statistics. Then an augmented Tikhonov regularization(a-TR) method that could determine the regularization parameter and noise level is using to reconstruct the unknown heat source. Numerical results for several benchmark test problems are indicate that the Bayesian inference ap-proach and a-TR method are accurate and flexible methods for inverse problems.
     Part 3 consider a novel approach for quantifying the parametric uncertainty associated with a stochastic problem output. The new approach differs from the standard stochastic collocation methods in that it is based on ideas directly linked to the recently developed compressed sensing theory. We provide theoretical anal-ysis on the validity of the approach. Numerical tests are provided to examine the performance of the method and validate the theoretical finding. This opens an avenue for constructing stochastic surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial dif-ferential equations.
引文
[1]F. Abramovich and B. W. Silverman. Wavelet decomposition approaches to sta-tistical inverse problems. Biometrika,85(1):115-129,1998.
    [2]N. Agarwal and N. R. Aluru. A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties. J. Comput. Phys.,228(20):7662-7688, 2009.
    [3]C. J. S. Alves, J. B. Abdallah. and M. Jaoua. Recovery of cracks using a point-source reciprocity gap function. Inverse Probl. Sci. Eng.,12(5):519-534,2004.
    [4]S. Andrieux and A. Ben Abda. Identification of planar cracks by complete overde-termined data:inversion formulae. Inverse Problems,12(5):553-563,1996.
    [5]I. Babuska, U. Banerjee, and J. E. Osborn. Meshless and generalized finite ele-ment methods:a survey of some major results. In Meshfree methods for partial differential equations (Bonn, 2001), volume 26 of Lect. Notes Comput. Sci. Eng., pages 1-20. Springer, Berlin,2003.
    [6]I. Babuska. F. Nobile. and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal,45(3):1005-1034 (electronic),2007.
    [7]I. Babuska, R. Tempone, and G. E. Zouraris. Galerkin finite element approxima-tions of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42(2):800-825,2004.
    [8]A. B. Bakushinskii. Remarks on the choice of regularization parameter from qua-sioptimality and relation tests. Zh. Vychisl. Mat. i Mat. Fiz.,24(8):1258-1259, 1984.
    [9]V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpo-lation on sparse grids. Adv. Comput. Math.,12(4):273-288,2000. Multivariate polynomial interpolation.
    [10]F. Bauer, T. Hohage, and A. Munk. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal., 47(3):1827-1846,2009.
    [11]N. Bissantz, T. Hohage, and A. Munk. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Problems, 20(6):1773-1789,2004.
    [12]N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart. Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal,45(6):2610-2636,2007.
    [13]T. T. Cai, L. Wang, and G. Xu. New bounds for restricted isometry constants. Information Theory, IEEE Transactions on,56(9):4388-4394,2010.
    [14]E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math..59(8):1207-1223,2006.
    [15]E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory,51(12):4203-4215,2005.
    [16]E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory,52(12):5406-5425, 2006.
    [17]J. R. Cannon and S. Perez Esteva. Uniqueness and stability of 3D heat sources. Inverse Problems,7(1):57-62,1991.
    [18]B. P. Carlin and T. A. Louis. Bayesian methods for data, analysis. Texts in Statistical Science Series. CRC Press, Boca Raton, FL, third edition,2009.
    [19]S. Chaabane, J. Ferchichi, and K. Kunisch. Differentiability properties of the L1-tracking functional and application to the Robin inverse problem. Inverse Problems,20(4):1083-1097,2004.
    [20]S. S. Chen. D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.,20(1):33-61,1998.
    [21]M. Choulli and M. Yamamoto. Conditional stability in determining a heat source. J. Inverse Ill-Posed Probl.,12(3):233-243,2004.
    [22]J. A. Christen and C. Fox. Markov chain Monte Carlo using an approximation. J. Comput. Graph. Statist.,14(4):795-810,2005.
    [23]I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57(11):1413-1457,2004.
    [24]D. L. Donoho. Statistical estimation and optimal recovery. Ann. Statist., 22(1):238-270,1994.
    [25]D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory,52(4):1289-1306,2006.
    [26]D. L. Donoho and J. Tanner. Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. USA,102(27):9446-9451 (electronic),2005.
    [27]A. Doostan and H. Owhadi. A non-adapted sparse approximation of pdes with stochastic inputs. J. Comput. Phys.,2011. accepted.
    [28]A. El Badia and T. Ha-Duong. On an inverse source problem for the heat equa-tion. Application to a pollution detection problem. J. Inverse Ill-Posed Probl., 10(6):585-599,2002.
    [29]H. W. Engl. M. Hanke, and A. Neubauer. Regularization of inverse problems. Kluwer Academic Publishers Group, Dordrecht,1996.
    [30]H. W. Engl. K. Kunisch, and A. Neubauer. Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems,5(4):523-540, 1989.
    [31]S. N. Evans and P. B. Stark. Inverse problems as statistics. Inverse Problems, 18(4):R55-R97,2002.
    [32]G. Fairweather and A. Karageorghis. The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math.,9(1-2).69-95,1998.
    [33]W. Fang and M. Lu. A fast collocation method for an inverse boundary value problem. Internat. J. Numer. Methods Engrg.,59(12):1563-1585,2004.
    [34]A. Farcas and D. Lesnic. The boundary-element method for the determination of a heat source dependent on one variable. J. Engrg. Math.,54(4):375-388,2006.
    [35]J. Foo and G. E. Karniadakis. Multi-element probabilistic collocation method in high dimensions. J. Comput. Phys.,229(5):1536-1557,2010.
    [36]C. Fox and G. Nicholls. Statistical estimation of the parameters of a PDE. Can. Appl. Math. Q.,10(2):277-306,2002.
    [37]J. E. Gentle. Elements of computational statistics. Statistics and Computing. Springer-Verlag, New York,2002.
    [38]A. Genz. A package for testing multiple integration subroutines. In P Keast and G Fairweather, editors, Numerical integration, pages 337-340. Reidel, Dordrecht, 1987.
    [39]R. G. Ghanem and P. D. Spanos. Stochastic finite elements:a spectral approach. Springer-Verlag, New York,1991.
    [40]W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov chain Monte Carlo in practice. Interdisciplinary Statistics. Chapman & Hall, London,1996.
    [41]M. A. Golberg and C. S. Chen. The method of fundamental solutions for poten-tial, Helmholtz and diffusion problems. In Boundary integral methods:numer-ical and mathematical aspects, volume 1 of Comput. Eng.. pages 103-176. WIT Press/Comput. Mech. Publ., Boston, MA,1999.
    [42]A. Goldenshluger and S. V. Pereverzev. On adaptive inverse estimation of linear functionale in Hilbert scales. Bernoulli.,9(5):783-807,2003.
    [43]G. H. Golub. M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics,21(2):215-223,1979.
    [44]J. Hadamard. Lectures on Cauchy's problem in linear partial differential equations. Dover Publications, New York,1953.
    [45]M. Hanke. Limitations of the L-curve method in ill-posed problems. BIT, 36(2):287-301,1996.
    [46]P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev.,34(4):561-580,1992.
    [47]P. C. Hansen. Rank-deficient and discrete ill-posed problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,1998.
    [48]A. Hofinger and H. K. Pikkarainen. Convergence rate for the Bayesian approach to linear inverse problems. Inverse Problems,23(6):2469-2484,2007.
    [49]T. Hohage and M. Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging, 2(2):271-290,2008.
    [50]Y. C. Hon and M. Li. A computational method for inverse free boundary deter-mination problem. Internat. J. Numer. Methods Engrg.,73(9):1291-1309,2008.
    [51]Y. C. Hon, M. Li, and Y. A. Melnikov. Inverse source identification by Green's function. Eng. Anal. Bound. Elem.,34(4):352-358,2010.
    [52]Y. C. Hon and T. Wei. A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem.,28(5):489-495,2004.
    [53]Y. C. Hon and T. Wei. The method of fundamental solution for solving multidi-mensional inverse heat conduction problems. CMES Comput. Model. Eng. Sci., 7(2):119-132,2005.
    [54]Y. C. Hon and T. Wei. Solving Cauchy problems of elliptic equations by the method of fundamental solutions. In Boundary elements ⅩⅩⅦ, volume 39 of WIT Trans. Model. Simul., pages 57-65. WIT Press, Southampton,2005.
    [55]Y. C. Hon and Z. Wu. A numerical computation for inversenext term boundary determination previous termproblem. Eng. Anal. Bound. Elem.,24(7-8):599-606, 2000.
    [56]M. Ikehata. An inverse source problem for the heat equation and the enclosure method. Inverse Problems,23(1):183-202,2007.
    [57]G. Inglese. An inverse problem in corrosion detection. Inverse Problems, 13(4):977-994,1997.
    [58]V. Isakov. Inverse source problems, volume 34 of Mathematical Surveys and Mono-graphs. American Mathematical Society, Providence, RI,1990.
    [59]V. Isakov. Inverse problems for partial differential equations, volume 127 of Applied Mathematical Sciences. Springer, New York, second edition,2006.
    [60]B. Jin. A meshless method for the Laplace and biharmonic equations subjected to noisy boundary data. CMES Comput. Model. Eng. Sci.,6(3):253-261,2004.
    [61]B. Jin. Conjugate gradient method for the Robin inverse problem associated with the Laplace equation. Internat. J. Numer. Methods Engrg.,71(4):433-453,2007.
    [62]B. Jin. Fast Bayesian approach for parameter estimation. Internat. J. Numer. Methods Engrg.,76(2):230-252,2008.
    [63]B. Jin. Some efficient numerical methods for inverse problems. PhD thesis, The Chinese University of Hong Kong,2008.
    [64]B. Jin and L. Marin. The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Internat. J. Numer. Methods Engrg.,69(8):1570-1589,2007.
    [65]B. Jin and Y. Zheng. Boundary knot method for some inverse problems associated with the Helmholtz equation. Internat. J. Nurner. Methods Engrg.,62(12):1636-1651,2005.
    [66]B. Jin and Y. Zheng. A meshless method for some inverse problems associated with the Helmholtz equation. Comput. Methods Appl. Mech. Engrg.,195(19-22):2270-2288,2006.
    [67]B. Jin and J. Zou. A Bayesian inference approach to the ill-posed Cauchy problem of steady-state heat conduction. Internat. J. Numer. Methods Engrg..76(4):521-544,2008.
    [68]B. Jin and J. Zou. Inversion of Robin coefficient by a spectral stochastic finite element approach. J. Comput. Phys.,227(6):3282-3306.2008.
    [69]B. Jin and J. Zou. Augmented Tikhonov regularization. Inverse Problems, 25(2):025001,25,2009.
    [70]B. T. Johansson and D. Lesnic. Determination of a spacewise dependent heat source. J. Comput. Appl. Math.,209(1):66-80,2007.
    [71]B. T. Johansson and D. Lesnic. A variational method for identifying a spacewise-dependent heat source. IMA J. Appl. Math.,72(6):748-760.2007.
    [72]B. T. Johansson and D. Lesnic. A procedure for determining a spacewise dependent heat source and the initial temperature. Appl. Anal.,87(3):265-276,2008.
    [73]J. Kaipio and E. Somersalo. Statistical and computational inverse problems, vol-ume 160 of Applied Mathematical Sciences. Springer-Verlag, New York,2005.
    [74]J. Kaipio and E. Somersalo. Statistical inverse problems:discretization, model reduction and inverse crimes. J. Comput. Appl. Math.,198(2):493-504,2007.
    [75]G. E. Karniadakis and S. J. Sherwin. Spectral/hp element methods for CFD. Nu-merical Mathematics and Scientific Computation. Oxford University Press, New York,1999.
    [76]A. Kirsch. An introduction to the mathematical theory of inverse problems. Springer-Verlag, New York,1996.
    [77]V. D. Kupradze and M. A. Aleksidze. The method of functional equations for the approximate solution of certain boundary value problems.
    [78]C. L. Lawson and R. J. Hanson. Solving least squares problems. Prentice-Hall Inc.. Englewood Cliffs, N.J.,1974. Prentice-Hall Series in Automatic Computation.
    [79]G. S. Li. Data compatibility and conditional stability for an inverse source problem in the heat equation. Appl. Math. Comput.,173(1):566-581,2006.
    [80]J. Li. Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems. Comm. Numer. Methods Engrg.,21(4):169-182.2005.
    [81]M. Li, T. Jiang, and Y. C. Hon. A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem. Eng. Anal. Bound. Elem., 34(9):785-792,2010.
    [82]P. J. Li. An invere random source scattering problem in inhomogeneous media. Inverse Problems.27:035004,2011.
    [83]F. R. Lin and W. F. Fang. A linear integral equation approach to the Robin inverse problem. Inverse Problems,21(5):1757-1772.2005.
    [84]L. Ling and T. Takeuchi. Point sources identification problems for heat equations. Commun. Comput. Phys.,5(5):897-913,2009.
    [85]L. Ling, M. Yamamoto, Y. C. Hon, and T. Takeuchi. Identification of source locations in two-dimensional heat equations. Inverse Problems,22(4):1289-1305, 2006.
    [86]G. R. Liu. Mesh free methods. CRC Press, Boca Raton, FL,2003. Moving beyond the finite element method.
    [87]J. S. Liu. Monte Carlo strategies in scientific computing. Springer Series in Statis-tics. Springer, New York.2008.
    [88]M. Loeve. Probability theory. I. Springer-Verlag, New York, fourth edition,1977. Graduate Texts in Mathematics, Vol.45.
    [89]X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys.,228(8):3084-3113,2009.
    [90]X. Ma and N. Zabaras. An efficient Bayesian inference approach to inverse prob-lems based on an adaptive sparse grid collocation method. Inverse Problems, 25(3):035013,27,2009.
    [91]X. Ma and N. Zabaras. An adaptive high-dimensional stochastic model repre-sentation technique for the solution of stochastic partial differential equations. J. Comput. Phys.,229(10):3884-3915,2010.
    [92]N. Magnoli and G. A. Viano. The source identification problem in electromagnetic theory. J. Math. Phys.,38(5):2366-2388,1997.
    [93]B. A. Mair and F. H. Ruymgaart. Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math.,56(5):1424-1444,1996.
    [94]A. Malinverno and V. A. Briggs. Expanded uncertainty quantification in inverse problems:Hierarchical bayes and empirical bayes. Geophysics,69(4):1005-1016, 2004.
    [95]L. Marin and D. Lesnic. The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations. Comput. (?) Structures,83(4-5):267-278,2005.
    [96]Y. M. Marzouk and H. N. Najm. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys., 228(6):1862-1902,2009.
    [97]Y. M. Marzouk, H. N. Najm. and L. A. Rahn. Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys.,224(2):560-586, 2007.
    [98]Y. M. Marzouk and D. Xiu. A stochastic collocation approach to Bayesian infer-ence in inverse problems. Commun. Comput. Phys.,6(4):826-847,2009.
    [99]L. Mathelin and K. A. Gallivan. A compressed sensing approach for partial dif-ferential equations with random input data. submitted,2011.
    [100]R. Mathon and R. L. Johnston. The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal.,14(4):638-650, 1977.
    [101]A. Mohammad-Djafari. A full Bayesian approach for inverse problems. ArXiv Physics e-prints, November 2001.
    [102]A. Mohammad-Djafari. Bayesian inference for inverse problems. In Bayesian inference and maximum entropy methods in science and engineering (Baltimore, MD,2001), volume 617 of AIP Conf. Proc., pages 477-496. Amer. Inst. Phys., Melville, NY,2002.
    [103]V. A. Morozov. Methods for solving incorrectly posed problems. Springer-Verlag, New York,1984. Translated from the Russian by A. B. Aries. Translation edited by Z. Nashed.
    [104]K. Mosegaard and M. Sambridge. Monte Carlo analysis of inverse problems. In-verse Problems,18(3):R29-R54,2002.
    [105]V. A. B. Narayanan and N. Zabaras. Stochastic inverse heat conduction using a spectral approach. Internat. J. Numer. Methods Engrg.,60(9):1569-1593,2004.
    [106]A. Neubauer. An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates. SIAM J. Numer. Anal., 25(6):1313-1326,1988.
    [107]A. Neubauer and H. K. Pikkarainen. Convergence results for the Bayesian inversion theory. J. Inverse Ill-Posed Probl., 16(6):601-613,2008.
    [108]F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal,46(5):2309-2345,2008.
    [109]D. W. Nychka and D. D. Cox. Convergence rates for regularized solutions of integral equations from discrete noisy data. Ann. Statist.. 17(2):556-572.1989.
    [110]B.Oksendal. Stochastic differential equations. Universitext. Fifth edition.
    [111]T. T. M. Onyango, D. B. Ingham, and D. Lesnic. Reconstruction of heat transfer coefficients using the boundary element method. Comput. Math. Appl.,56(1):114-126,2008.
    [112]T. T. M. Onyango, D. B. Ingham, and D. Lesnic. Restoring boundary conditions in heat conduction. J. Engrg. Math.,62(1):85-101,2008.
    [113]F. O'Sullivan. A statistical perspective on ill-posed inverse problems. Statist. Sci., 1(4):502-527,1986.
    [114]H. Rauhut. Compressive sensing and structured random matrices. In Massimo Fornasier, editor, Theoretical Foundations and Numerical Methods for Sparse Re-covery, pages 1-92. Berlin, New York (DE GRUYTER),2010.
    [115]H. Rauhut and R. Ward. Sparse legendre expansions via l1-minimization. Sub-mitted,2010.
    [116]D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc.,90(432):1257-1270,1995.
    [117]S. Saitoh, V. K. Tuan, and M. Yamamoto. Reverse convolution inequalities and applications to inverse heat source problems. JIPAM. J. Inequal. Pure Appl. Math.,3(5):Article 80,11 pp. (electronic),2002.
    [118]J. Sladeka, V. Sladeka, and Y. C. Hon. Inverse heat conduction problems by meshless local petrov-galerkin method. Eng. Anal. Bound. Elem.,30(8):650-661, 2006.
    [119]M. Slodicka, D. Lesnic, and T. T. M. Onyango. Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem. Inverse Probl. Sci. Eng..18(1):65-81,2010.
    [120]M. Slodicka and R. Van Keer. Recovery of the convective transfer coefficient in parabolic problems from a nonstandard boundary condition. In Recent advances in applied and theoretical mathematics, Math. Comput. Sci. Eng., pages 209-213. World Sci. Eng. Soc. Press. Athens.2000.
    [121]M. Slodicka and R. Van Keer. Determination of a Robin coefficient in semilin-ear parabolic problems by means of boundary measurements. Inverse Problems, 18(1):139-152,2002.
    [122]S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl.,12:273-288,1963.
    [123]A. M. Stuart. Inverse problems:a Bayesian perspective. Acta Numer.,19:451-559, 2010.
    [124]G. Szego. Orthogonal polynomials. American Mathematical Society Colloquium Publications, Vol.23. Revised ed. American Mathematical Society, Providence, R.I.,1959.
    [125]A. Tarantola. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,2005.
    [126]A. N. Tikhonov. On the solution of ill-posed problems and the method of regu-larization. Dokl. Akad. Nauk SSSR,151:501-504,1963.
    [127]C. R. Vogel. Non-convergence of the L-curve regularization parameter selection method. Inverse Problems.,12(4):535-547,1996.
    [128]X. Wan and G. E. Karniadakis. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys.,209(2):617-642,2005.
    [129]X. Wan and G. E. Karniadakis. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput.,28(3):901-928 (electronic), 2006.
    [130]J. Wang and N. Zabaras. Hierarchical Bayesian models for inverse problems in heat conduction. Inverse Problems.21(1):183-206,2005.
    [131]R. Ward. Compressed sensing with cross validation. IEEE Trans. Inform. Theory, 55(12):5773-5782,2009.
    [132]T. Wei, Y. C. Hon. and L. Ling. Method of fundamental solutions with regular-ization techniques for Cauchy problems of elliptic operators. Eng. Anal. Bound. Elem.,31(4):373-385,2007.
    [133]T. Wei and Y. S. Li. An inverse boundary problem for one-dimensional heat equation with a multilayer domain. Eng. Anal. Bound. Elem..33(2):225-232, 2009.
    [134]T. Wei and M. Yamamoto. Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation. Inverse Probl. Sci. Eng..17(4):551-567, 2009.
    [135]T. Wei and D. Y. Zhou. Convergence analysis for the Cauchy problem of Laplace's equation by a regularized method of fundamental solutions. Adv. Comput. Math., 33(4):491-510,2010.
    [136]D. Xiu. Efficient collocational approach for parametric uncertainty analysis. Com-mun. Comput. Phys.,2(2):293-309,2007.
    [137]D. Xiu. Fast numerical methods for stochastic computations:a review. Commun. Comput. Phys.,5(2-4):242-272,2009.
    [138]D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equa-tions with random inputs. SIAM J. Sci. Comput.,27(3):1118-1139 (electronic), 2005.
    [139]D. Xiu and G. E. Karniadakis. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Engrg., 191(43):4927-4948,2002.
    [140]D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput.,24(2):619-644 (electronic),2002.
    [141]D. Xiu and G. E. Karniadakis. Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys.,187(1):137-167,2003.
    [142]L. Yan, C. L. Fu, and F. F. Dou. A computational method for identify-ing a spacewise-dependent heat source. Int. J. Numer. Methods Biomed. Eng., 26(5):597-608,2010.
    [143]L. Yan. C. L. Fu, and F. L. Yang. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem.,32(3):216-222,2008.
    [144]L. Yan. F. L. Yang, and C. L. Fu. A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems. J. Comput. Appl. Math., 231(2):840-850,2009.
    [145]L. Yan. F. L. Yang, and C. L. Fu. A meshless method for solving an inverse .spacewise-dependent heat source problem. J. Comput. Phys.,228(1):123-136, 2009.
    [146]L. Yan. F. L. Yang, and C. L. Fu. A new numerical method for the inverse source problem from a Bayesian perspective. Internat. J. Numer. Methods Engrg., 85(11):1460-1474,2011.
    [147]F. L. Yang, L. Ling, and T. Wei. An adaptive greedy technique for inverse bound-ary determination problem. J. Comput. Phys.,229(22):8484-8496,2010.
    [148]F. L. Yang, L. Yan, and T. Wei. The identification of a Robin coefficient by a conjugate gradient method. Internat. J. Numer. Methods Engrg.,78(7):800-816, 2009.
    [149]F. L. Yang, L. Yan, and T. Wei. Reconstruction of part of a boundary for the Laplace equation by using a regularized method of fundamental solutions. Inverse Probl. Sci. Eng.,17(8):1113-1128,2009.
    [150]F. L. Yang, L. Yan, and T. Wei. Reconstruction of the corrosion boundary for the Laplace equation by using a boundary collocation method. Math. Comput. Simulation,79(7):2148-2156,2009.
    [151]Z. Yi and D. A. Murio. Identification of source terms in 2-D IHCP. Comput. Math. Appl.,47(10-11):1517-1533,2004.
    [152]Z. Yi and D. A. Murio. Source term identification in 1-D IHCP. Comput. Math. Appl.,47(12):1921-1933,2004.
    [153]N. Zabaras and B. Ganapathysubramanian. A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach. J. Comput. Phys.,227(9):4697-4735,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700