用户名: 密码: 验证码:
天山中部天然云杉森林生态系统水文效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以天山森林生态系统定位研究站为依托,以天山中部250hm2流域范围内天然云杉森林生态系统为研究对象,分别对月水文过程(包括:降雨量、林冠截留、地表径流、地下径流、土壤蒸发、树木蒸腾、蓄水功能)和降雨转化过程中各环节(包括大气降雨、穿透雨、地表径流、地下渗水)的水质变化规律及其生态效应,进行系统、全面、客观的研究,结果表明:
     (1)降雨在森林生态系统各层次的分配规律为:树木蒸腾>土壤蓄水>林冠截留>土壤蒸发>地表径流>地下径流,分别占月总降雨量的43.93%、27.73%、16.86%、7.68%、2.75%和1.05%;该月净增蓄水量为49344.35m3。
     (2)林内降雨分配受降雨强度的影响最大,其次是降雨量,土壤含水量最小;土壤蒸发主要受气象因子的影响,林龄越大,受气象因子的影响力越小;树木的日蒸腾量与边材面积呈乘幂相关关系;气象因子对树木蒸腾的影响大小规律为:气温>空气湿度>太阳辐射;由不同层次水量与外界影响因子构建的多元回归模型,预测精度较高,模型代表性较强。
     (3)立足于SCS模型、高桥浩一郎陆面蒸散公式、两参数月水量平衡模型和SWAT模型的基础上,初步构建了天山云杉森林生态系统的月水量平衡模型。
     (4)大气降雨透过林冠层后,穿透雨的pH值和溶解氧含量降低,COD、BOD、氨氮、总磷、钾、氯化物、硫酸盐、硝酸盐、碳酸盐、钙离子、镁离子浓度均呈上升趋势;穿透雨转化为地表径流,溶解氧进一步降低,氨氮浓度降低,COD、BOD、总磷、钾、氯化物、碳酸盐、钙、镁、总硬度的含量升高;经过土壤层后,各项水质指标的变化表现为:溶解氧上升,COD、BOD、氨氮、总磷、钾浓度降低,而碳酸盐、氯化物、硫酸盐、硝酸盐、总硬度等指标监测值有所增加。
     (5)天山云杉林生态系统对降雨的水质影响,随郁闭度和林龄增加而增强。在林龄相同的条件下,不同郁闭度森林对水质的影响大小为:0.2<0.4<0.6<0.8;在郁闭度为0.8的条件下,不同林龄的水质影响效应则为:幼龄林<中龄林<近熟林<成熟林。
     (6)利用主成分(PAC)方法对各集水区域水质指标进行定量化综合影响效应评价,以及对部分污染指标进行净化功能评价,结果表明:①在降雨过程中,地被层对水质的影响最大,林冠层最小,土壤层介于林冠层和地被层之间。②大气降雨进入森林生态系统后,水质不断发生恶化,而且郁闭度越高,林龄越大,水质越差。水质等级的排序为:总地下渗水>大气降雨>穿透雨>地表径流。
     (7)通过构建多元线性回归模型、灰色系统模型和神经网络模型对不同层次间的水质进行了模拟和验证,结果表明:三种模型均有较强的代表性,可用于天山森林生态系统不同层次的水质预测上来。对比而言,多元回归模型由于样本信息较少的原因,尚待做进一步检验;而GM(1,1)模型完全适合利用大气降雨的水质预测穿透雨和地表径流的水质;BP神经网络模型在预测总地下渗水方面,具有更方便、快捷的特点。
     (8)天然云杉森林生态系统月产生的生态价值总计为41.40万元。其中,月净水源涵养量的经济价值为3.30万元;月水质净化效益为37.78万元;森林生态系统对降雨过程中营养物质的滞留价值为3240.59元。
In this study, the 250hm2 natural Picea schrenkiana var.tianschanica natural forest was taken as the object at Tianshan Forest Ecosystem Research Station in the middle Tianshan mountains. The hydrological transformation process were investigated on rain fall, canopy interception, surface runoff and underground runoff, soil evapotranspiration, tree transpiration, water conservation. The water quality changes during rainfall transformation process were investigated on rain fall, through fall, surface runoff and underground seepage water. The water samples were analyzed chemically to determine the effects of different ecosystem components on water quality. The economic value of water conservation function in different aspect was assessed objective, the water quality purification function and the nutrients conversion by "the substitution project & shadow price method". The results showed that:
     (1) The orderliness of rainfall distribution different levels in forest was:trees transpiration> soil water storage> canopy interception> soil evapotranspiration> surface runoff> underground runoff, the percents one by one was:43.93%,27.73%,16.86%,7.68%,2.75% and 1.05% of the rainfall; The month net water conversion source is 49344.35 m3.
     (2) During rain fall process in forest, the affection on water distribution of external factors investigated on rainfall intensity> rainfall amount> soil moisture content; The soil evapotranspiration was influenced meteorological factors. The influence turn to smaller with the forest-age increasing; the tree transpiration one day and the alburnum area presented Power correlation relationship; the sequence of the influence on trees transpiration was:the temperature> the air humidity> the solar radiation; the multi-factors regression models which constructed by the different level water volume and the external factors have higher precision and stronger representation.
     (3) Bases on simulated of SCS model, Tsuzikawa Takahashi formula, two parameter month water balance model and SWAT model, a month water balance model about Tianshan spruce forest ecosystem was created.
     (4) When the rainfall entered into forest canopy, the nutrient content in water was significantly increased as pH, DO decreased and COD, BOD, NH4N, TP, K, Cl, SO42-, NO3-, CO32-, Ca2-, as well as increased; Quality of the surface water which transformed from throughfall was mainly affected by surface vegetation, litter and soil. The concentration of DO in water further declined, along with COD, BOD, TP, K, Cl-, CO32-, NO3-, Ca2-, Mg2- and CaCO3 content increased. Meanwhile the ammonia nitrogen concentration remarkably decreased; after the soil layer, the changing of different indictor content performance:DO raised; COD, BOD, NH4N, TP, K reduced; Cl-, CO32-, NO3-, Ca2-, Mg2- and CaCO3 increased.
     (5) The influence of the Tianshan spruce forest ecosystem on water quality of rainfall was enhanced as the canopy density and forest age increased. In same forest age, the sequence of this influence on water quality was canopy density of 0.2<0.4<0.6<0.8. under the canopy density was same 0.8, the sequence of forest influence on water quality was young forest     (6) By principal component analysis (PAC) method carried the quantitative synthesis influence effect appraisal on water quality in different catchment area target and estimated of purify function on the part of contamination indexes. The results indicated:①the water quality was biggest influence by the surface layer, forest canopy was smallest. The influence of soil layer was interspace of surface and canopy; ②when the rain water enters the forest ecosystem, the water quality worsening increasingly. And the shade density was higher, the age of forest was bigger, the water quality is worse. The sequence of water quality rank was:underground seepage water> the rainfall> through fall> the surface runoff.
     (7) A series of models about water quality changes among different layers were established, including multi-element linear regression model, the gray system model and neural network model. The results of simulation and verification showed:the three kinds of models had stronger representation and can use well forecasting water quality in the Tianshan forest ecosystem. By comparison, the multi-element regression model awaited to do further examination for the few sample information reasons; But GM(1,1) model suited perfectly to forecast the water quality of through fall and surface runoff from rainfall water quality; The BP neural network model had convenient, fast characteristics and can use to forecast the water quality of underground seepage,
     (8) The total economic value of the ecology hydrology which natural spruce forest ecosystem month produced is RMB 41.40×104. including:the month net water conservation function was RMB 3.30×104; The month water quality purification benefit was RMB 37.78×104; The value was RMB 3240.59 which forest ecosystem hold up nutrients of the rainfall.
引文
[1]Bonell M. Progress in the understanding of runoff generation dynamics in forests [J].J Hydrol,1993,150:217-275.
    [2]Bonell M.Selected challenges in runoff'generation research in forests from the hill slope to head water drainage basin scale[J].J Ameri Water Resour Assoc,1998,34 (4):765-785.
    [3]McCulloch J G, Robinson M.History of forest hydrology [J].J Hydrol,1993,150:189-216.
    [4]Whitehead P G, Robinson M.Experimental basin studies——An international and historical perspective of forest impacts[J]J Hydrol,1993,145:217-330.
    [5]张卓文,廖纯燕,邓先珍.森林水文学研究现状及发展趋势[J].湖北林业科技,2004(3):34-37.
    [6]郭明春,王彦辉,于彭涛.森林水文学研究综述[J].世界林业研究,2005,18(3):6-11.
    [7]Whitehead P G, Calder M.Special issue——the Balquhidder catchment and process studies——Forward[J] J Hydrol,1993,145:215-216.
    [8]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报,2003,23(3):580-587.
    [9]林文镇.强化森林涵养水源功能之做法与制度[J].台湾林业,1982,8(9):1-3.
    [10]陈信雄,李锦育.森林对水资源涵养效益评估之研究[J].中华林学季刊,1986,19(4):11-20.
    [11]李谷景.水源涵养林的规划布局及其组织经营[J].吉林林业科技,1987(3):19-21.
    [12]川口武雄.森林的水土保持机能(Ⅰ,Ⅱ,Ⅲ)[M].方华荣译.水利科学,1988,185:54-72.
    [13]李先琨,吕仕洪,黄玉清,等.漓江流域红壤侵蚀区植被演替与复合农林试验[J].生态环境,2007,16(1):140-148.
    [14]彭明俊,郎南军,温绍龙,等.金沙江流域不同林分类型的土壤特性及其水源涵养功能研究[J].水土保持学报,2005,19(6):106-109.
    [15]王勤,张宗应,徐小牛.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3):59-63.
    [16]刘畅,满秀玲,刘文勇,等.东北东部山地主要林分类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(6): 31-33.
    [17]程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用[J].北京林业大学学报,2003,25(2):8-13.
    [18]刘培娟,杨吉华,李申安.三里庄水库上游水源涵养林不同林分枯落物水容量研究[J].水土保持研究,2007,14(1):239-243.
    [19]韩春华,赵雨森,杨俊,等.阿什河上游几种林分水源涵养能力比较[J].东北林业大学学报,2008,36(6):16-20.
    [20]黄进,杨会,张金池.桐庐生态公益林主要林分类型的土壤水文效应[J].生态环境学报2009,18(3):1094-1099.
    [21]Tobon Marin C, Bouten W, Sevink J.Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia[J]. Journal of Hydrology,2000,237:40-57.
    [22]Sun G, McNulty S G, Amatya D M, et al.Shepard, H.Riekerk. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US [J].Journal of Hydrology,2002.263:92-104.
    [23]Ward, RC, Robinson, M.Principles of Hydrology[M].New York:McGraw-Hill,2000:365.
    [24]Brown V A, McDonnell J J, Burns D A, et al.The role of event water, a rapid shallow flow component, and catchment size in summer storm flow[J].Journal of Hydrology,1999,217 (3-4):171-190.
    [25]Yuki Hayashi, Kosugi Ken'ichirou, Takahisa Mizuyama.Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development[J]. Journal of Hydrology,2006,331:85-102.
    [26]孟广涛,郎南军,方向京,等.滇中华山松人工林的水文特征及水量平衡[J].林业科学研究,2001,14(1):78-84.
    [27]Chiwa M, Crossley A, Shepperd L J, et al.Through fall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments[J].Environmental Pollution,2004.127: 57-64.
    [28]Astrom M.Alatonen E K, Koivusaari J.Impact of ditching in a small forested catchment on concentrations of suspended mateiral, organic carbon, hydrogenions and metals in stream water[J].Aquatic Geochemistry,2001, 57:57-73.
    [29]Aust W M, Blinn C R.Foerstry best management practices for timber harvesting and site preparation in the eastern united states:an overview of water quality and productivity research during the past 20 years(1982-2002) [J].Water, Air, and Soil Pollution,2004,4:5-36.
    [30]张胜利,李光录.秦岭火地塘森林生态系统不同层次的水质效应[J].生态学报,2007,27(5):1838-1844.
    [31]闫文德,田大伦.会同第二代杉木林集水区水质生态效应[J].中南林学院学报,2003,23(2):6-10.
    [32]赵雨森,辛颖,曾凡锁.阿什河源头水源涵养林在水分传输过程中对水质的影响[J].林业科学,2008,44(6):5-9.
    [33]欧阳学军,周国逸,黄忠良,等.鼎湖山森林地表水水质状况分析[J].生态学报,2002,22(9):1373-1379.
    [34]Thornthwaite C W. An approach toward a rational classification of climate [J].Geographical Review,1948,38 (1): 55-94.
    [35]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007:47-53.
    [36]王国庆,张建云,荆新爱,等.AWBM模型及其在半干旱流域的应用研究[J].水文,2005,5(5):7-11.
    [37]Chiew F H S, Peel M C, Western A W.Application and testing of the simple rainfall-runoff model SIMHYD[A].Mathematical Models of Water shed Hydrology[C]. Colorado:Water Resources Publication,2002.
    [38]郭生练.气候变化对东江流域水文的影响[A].中国博士后首届学术大会论文集[C].北京:国防工业出版社,1992.
    [39]熊立华,郭生练,王渺林.两参数月水量平衡模型的研制及应用[J].水科学进展,1996.7(增刊):80-86.
    [40]Xiong L H, Guo S L.A two parameter monthly water balance model and its application[J].Journal of Hydrology, 1999,216:111-123.
    [41]Guo S L, Xiong L H, Yin A W.A macro-scale and semi-distributed hydrological model and climate change impact study in China [J].Journal for Hydrology,2002,268 (1):1-15.
    [42]胡安焱,郭生练,熊立华,等.三参数月水量平衡模型及其应用[J].水电能源科学,2008,26(4):8-12.
    [43]Leyton.Rainfall interception in forest and moorland.Forest Hydrology [M].Oxford:Pergamon Press,1965:163-178.
    [44]Rutter A J.A predietive model of rainfall interception in forests,1:Derivation of the Model from observations in a Plantation of corsican Pine[J].Agric, Meterorol,1971,9:367-384.
    [45]Gash J H C.Analytical model of rainfall interception by forests[J].Quart J R Met Soc.1979,105:43-53.
    [46]Massman W J.A soil-plant-water model with a case study in a forested catehment[J].Ecological Modeling.1985,27 (3):75-86.
    [47]曹群根.毛竹林冠层对降水的截留作用[J].福建林学院学报,1991,(1):37-43.
    [48]张金池,卢义山,康立新.苏北堤防护林冠层截留降水特性研究[J].南京林业大学学报,1996,20(1):17-21.
    [49]Federer C A, Lash D, Brook:a hydrologic simulation model for eastern forested[J].Water Resources Research Center, University of New Hampshire, Durham, NH, Research Report,1978,19:84.
    [50]Vorosmart C J, Federer C A, Schloss A L.Potential evaporation functions compared on US watersheds:possible implications for global-scale water balance and terrestrial ecosystem[J].Journal of Hydrology,1998,207:147-169.
    [51]汤富平,李满春,秦奋.基于CA的小流域分布式降雨径流模拟[J].水科学进展,2010,21(2):173-178.
    [52]范世香,程银才,高雁,李晓晏.考虑森林植被影响的小流域降雨径流模型[J].生态学报,2008,28(5):2372-2390.
    [53]宛筝,李哗,汪晓露,等.多元线性回归与灰色联合模型在湖泊水质预测中的应用[J].江苏环境科技,2006,19(2):59-61.
    [54]焦瑞峰,吴吴,师洋.基于灰色关联分析的蒙特卡罗法建立水库出库水质预测模型[J].环境工程,2006,24(4):63-65.
    [55]吴涛,颜辉武,唐桂刚.三峡库区水质数据时间序列分析预测研究[J].武汉大学学报:信息科学版,2006,31(6):500-507.
    [56]陈丁江,吕军,沈晔娜,等.非点源污染河流水质的人工神经网络模拟[J].水利学报,2007,38(12):1519-1526.
    [57]姜文来.水资源价值论[M].北京:科学出版社,1998:109.
    [58]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值得初步研究[J].生态学报,1999,19(5):607-613.
    [59]李红云,杨吉华,夏江宝,等.济南市南部山区森林涵养水源功能的价值评价[J].水土保持学报,2004,18(1):89-92.
    [60]姜文来.森林涵养水源的价值核算研究[J].水土保持学报,2003,17(2):33-36.
    [61]艾夕辉,许建初,高富,等.西庄河流域森林生态系统涵养水源的价值[J].山地学报,2005,23(1):21-26.
    [62]姜海燕,王秋兵,关胜南.辽东地区森林保护土壤的生态效益价值估算[J].辽宁林业,2003,6:16-18,44.
    [63]曾庆波.海南岛尖峰岭热带林生态系统的水分循环研究[J].周晓峰.中国森林生态系统定位研究.哈尔滨[M]:东北林业大学出版社,1994:225.
    [64]刘煊章,郭天榜,周志华.杉木林生态系统净化水质功能的研究[J].林业科学,1995,31(3):193-199.
    [65]张春玲,阮本清.水源保护林效益评价与补偿机制[J].水资源保护,2004,(2):27-30.
    [66]郭浩,王兵,马向前,等.中国油松林生态服务功能评估[J].中国科学C辑:生命科学.2008,38(6):565-572.
    [67]王丙超,刘萍,张毓涛,等.天山中段天山云杉林林冠降雨截留特征研究[J].新疆农业大学学报,2008,31(2):76-80.
    [68]闫俊华.森林水文学研究进展[J].热带亚热带植物学报.1999,7(4):347-356.
    [69]张友焱,周泽福,党忠,等.利用TDP茎流计研究沙地樟子松的树干液流[J].水土保持研究,2006,13(4)78-80.
    [70]张爱国,张平仓.区域水土流失土壤因子研究[M].北京:地质出版社,2003:83-85.
    [71]陈丽华,余新晓.森林流域蒸发散的计算[J].水土保持学报,1992,6(3):87-90.
    [72]谭冠日.陆面蒸发公式的检验[J].气象学报.1984,42(2):231-237.
    [73]高桥浩一郎.从月平均气温、月降水量来推算蒸散发量的公式[J].天气,1979,26(12):29-32.
    [74]林大仪.土壤学[M].北京:中国林业出版社,2002:57-67,355-357.
    [75]Teskey R O.Water use by Pinus radiata trees in a plantation [J].Tree Physiol,1996,16:273-279.
    [76]Granier A, Hue R.Transpiration of natural rain forest and its dependence on climatic factors[J].Agric For Meteorol, 1996,78:19-29.
    [77]司建华,冯起,张小由,等.热脉冲技术测定树干液流研究进展[J].冰川冻土,2007,29(3):475-481.
    [78]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [79]张彪,李文华,谢高地.森林生态系统的水源涵养功能及其计量方法[J].生态学杂志,2009,28(3):529-534
    [80]Thornthwaite C W.Mather J R.the water balance [J].Climatol Publ.Climatol.Drexel Inst.Technol,1955,8(1):1-104.
    [81]Palmer W C.Meteorologic Drought [M].U S Weather Bureau Research Paper,1965.
    [82]Thomas H A.Improved methods for national water assessment, Report, Contract WR15249270 [A].U.S.Water Resour.Counc, Washington, D.C,1981.
    [83]Alley W M.On the treatment of evapotranspiration, soil moisture accounting and aquifer recharge in monthly water balance models [J].Water Resources Research,1984,20 (8):1137-1149.
    [84]Vandewiele G L, Xu C Y, NiLARWin.Methodology and comparative study of monthly water balance models in Belgium, China and Burma [J] Journal of Hydrology,1992,134 (4):315-347.
    [85]乐通潮,张万昌.双参数月水量平衡模型在汉江流域上游的应用[J].资源科学,2004,26(6):97-103.
    [86]Ponce V M, Hawkins R H. Runoff curve number:Has it reached maturity? [J].Hydrologic Engrg.ASCE,1996,1 (1):11-19.
    [87]刘家福,蒋卫国,占文凤,等.SCS模型及其研究进展[J].水土保持研究.2010,17(2):120-125.
    [88]穆宏强.SCS模型在石桥埔流域的应用研究[J].水利学报,1992(10):79-83,89.
    [89]张秀英,孟飞,丁宁.SCS模型在干旱半干旱区小流域径流估算中的应用[J].水土保持研究,2003,10(4):172-174,249.
    [90]高扬,朱波,缪驰远,等.SCS模型在紫色土坡地降雨径流量估算中的运用[J].中国农学通报,2006,22(11):396-400.
    [91]陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,27(4):559-565.
    [92]Soil Conservation Service.National Engineering Handbook [M].Section 4:Hydrology.USDA, Springfield, VA, 1993.
    [93]刘贤赵,康绍忠.不同光照条件下作物蒸腾量计算的研究[J].水利学报,2001,(6):45-50.
    [94]余新晓,程根伟,赵玉涛,等.长江上游暗针叶林生态系统蒸散计算[J].水土保持学报,2002,16(5):15-16.
    [95]Jensen M E, Burman R D, Allen R G.Evapotranspiration and Irrigation Water Requirements[R].ASCE Manuals and Reports on Engineering Practice,1990,70:332.
    [96]Neitsch S L, Arnold J G.Soil and Water Assessment Tool Theoretical Documentation. http://www.ber.talnns.edu/swat/downloads/dco/swat2000 theory.pdf.
    [97]蔡玉林,李飞,李家永,等.红壤丘陵区人工林降水化学研究[J].自然资源学报,2003,18(1):99-104.
    [98]Vorobeichik E L, Pishchulin P G.Effect of individual trees on the pH and the content of heavy metals in forest litters upon industrial contamination[J]. Eurasian Soil Science,2009,8:927-939.
    [99]Chiwa M, Crossley A, Sheppard L J.Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments [J].Environmental Pollution,2004,127:57-64.
    [100]蒋有绪.中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社,1996:348-354.
    [101]《环境影响评价与管理实务大全》编委会编著.环境影响评价与管理实务大全[M].北京:中国水利水电出版社,2008:207-214.
    [102]Lukina N V, Nikonov V V, Gorbacheva T T.Natural water quality formation in forest-covered divide areas in northern Taiga[J].Water Resources,2001,28 (4):438-450.
    [103]伊元荣,海米提·依米提,王涛,等.主成分分析法在城市河流水质评价中的应用[J].干旱区研究,2008,25(4):497-501.
    [104]孟祥宇,徐得潜.流域水质评价模糊综合评判模型及其应用[J].环境保护科学,2009,35(2):92-94.
    [105]徐建华.现代地理学中的数学方法(第2版)[M].北京:高等教育出版社,2002:37-93.
    [106]刘德林,刘贤赵.主成分分析在河流水质综合评价中的应用[J].水土保持研究,2006,13(3):124-128.
    [107]赵军庆,张彦.主成分分析与聚类分析在白洋淀水质评价中的应用[J].环境科学与技术,2009,32(6C):425-428.
    [108]张胜利.秦岭南坡中山地带森林生态系统对径流和水质的影响研究[D].杨凌:西北农林科技大学,2005.
    [109]夏军.灰色系统水文学--理论、方法及应用[M].武汉:华中科技大学出版社.2000:16,33.
    [110]刘思峰.灰色理论的产生与发展[J].南京航空航天大学学报,2004,36(2):267-272.
    [111]谢乃明,刘思峰.强化缓冲算子的性质与若干实用强化算子的构造[J].理论新探.2006,4:9-10.
    [112]Liu S F, Li Y.Grev information:Theory and practical applications [M].London:Springer-Verlag,2006:20-25.
    [113]Liu S F.The three axioms of buffer operator and their application [J].The Journal of Grey System,1991,3 (1): 39-48.
    [114]刘思峰.冲击扰动系统预测陷阱与缓冲算子[J].华中理工大学学报,1997,25(1):25-27.
    [115]刘思峰.缓冲算子及其应用[J].灰色系统理论与实践,1992,2(1):45-50.
    [116]崔杰,党耀国.一类新的SBO及其在GM(1,1)中的应用研究[J].管理工程学报.2009,23(4):153-156.
    [117]党耀国,刘思峰,米传民.强化缓冲算子性质的研究[J].控制与决策.2007,22(7):730-735.
    [118]黄廷林,卢金锁,韩宏大,等.2004.地表水源水质预测方法研究[J].西安建筑科技大学学报(自然科学版)36(2): 134-137.
    [119]邹志红,王学良.BP模型在河流水质预测中的误差分析[J].环境科学学报,2007,27(6):1038-1042.
    [120]郭宗楼.径向基函数阿络模型在水质评价中的应用[J].浙江大学学报(农业与生命科学版),2001,27(3):335-338.
    [121]蔡煜东,汪列,姚林声.水质富营养化的人工神经阿络决策模型[J].中国环境科学,1995,15(2):123-127.
    [122]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010:100.
    [123]尚松浩,毛晓敏,雷志栋.土壤水分动态模拟模型及其应用[M].北京:科学出版社,2009:21-23.
    [124]毛春梅,袁汝华.水资源价值量核算方法研究[J].水科学进展,1998,(12):24-27.
    [125]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993:139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700