用户名: 密码: 验证码:
促醒神经肽orexin系统的腺苷调节及其对皮层胞内钙的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Oreixns,即hypocretins,是1998年分别由两个研究组同时发现的一种神经肽,orexin神经元主要位于穹隆周围的外侧下丘脑区。Orexin系统包括来自同一前体物质的二个单体orexin A (hypocretin 1)和orexin B (hypocretin 2),主要是通过活化两个G蛋白偶联受体orexin受体1和orexin受体2发挥作用。大量研究已经表明,orexins在促觉醒中发挥着关键性作用,这种促觉醒作用主要是通过兴奋多个皮层下觉醒系统及大脑皮层实现的。电生理研究显示,orexin神经元的活动受许多神经递质、神经调质和代谢信号的影响。研究证实,这些神经递质、调质及代谢信号对orexin神经元活动的调节在睡眠觉醒周期的调控中具有关键性作用。
     其中,神经调质――腺苷,由机体组织代谢活动产生的一种小分子物质,是目前研究最多、最重要的睡眠稳态调控因子,既可以直接作用于突触后腺苷受体、又可以改变突触前兴奋性或抑制性突触传递活动,影响神经元放电活动。文献报道,orexin神经元表达A1受体,但腺苷不能直接通过激活突触后A1受体改变神经元膜电位水平,而是通过结合突触前A1受体减少兴奋性谷氨酸能突触传入,调节orexin神经元的放电活动。除了谷氨酸能突触传递外,orexin神经元还接受大量的抑制性GABA能突触传递,这些抑制性纤维传入主要来自睡眠中心腹外侧视前区和外侧下丘脑区的局部中间神经元。然而,腺苷是否能调节orexin神经元上抑制性突触传递活动,是否存在内源性腺苷的释放调节orexin神经元上的突触传递活动,目前仍不清楚。
     此外,本室的前期钙成像实验显示,orexin A可以使少量培养的皮层神经元的胞内游离钙增加。同时,在电生理实验中,我们还发现orexin A能增加急性分离的前额叶皮层深层神经元的放电频率,但是,orexin A是否能影响前额叶皮层深层神经元的胞内钙水平及其作用机制,还需进一步的研究。
     本研究旨在通过膜片钳技术,深入研究腺苷对orexin神经元外侧下丘脑神经元上的抑制性突触传递活动的影响。首先,以orexin-EGFP转基因小鼠中的外侧下丘脑orexin神经元为研究对象,采用穿孔膜片钳技术,观察腺苷对诱发的抑制性突触后电流的影响及其受体和突触前机制。并进一步观察了不同刺激频率下内源性腺苷的释放。同时,在钙成像实验中,采用钙荧光指示剂fluo-4/AM负载急性分离的前额叶皮层深层神经元,结合药理学方法,观察orexin A对急性分离的前额叶皮层神经元的胞内钙影响及其作用机制。
     1.腺苷抑制诱发的orexin神经元上的抑制性突触后电流
     穿孔膜片钳记录显示,胞外灌流液中加入腺苷(100μM),能显著降低orexin神经元上诱发的抑制性突触后电流(evoked inhibitory postsynaptic currents, evIPSCs)幅度降至给药前的51.4241% (n=14,P<0.05)。这种抑制效应具有剂量依赖性,50μM、10μM、1μM腺苷加入后,幅度为给药前的56.8569% (n=7,P<0.05)、75.1114% (n=9,P<0.05)、93.0183% (n=6,P>0.05)。
     2.突触前A1受体介导腺苷对抑制性突触后电流的影响
     胞外液中预先加入腺苷A1受体拮抗剂CPT(200nM),evEPSCs幅度无明显变化(98.408% of control;n=9,P>0.05),加入腺苷50μM后,电流幅度未发生显著改变。同样,预先加入腺苷A2受体拮抗剂DMPX(10μM)后,并不影响evEPSCs幅度(99.351 % of control;P>0.05,n=8),但加入50μM腺苷后,电流幅度降低(59.139 % of control;P<0.05)。提示A1受体介导腺苷的抑制效应。
     分析配对脉冲比(paired-pulse ratio, PPR),加入腺苷50μM后,比值从1.095891增加到1.75679 (n=9,P<0.05)。实验进一步显示,腺苷50μM显著降低微小抑制性突触后电流(mini inhibitory postsynaptic currents, mIPSC)的频率,而不影响幅度。此外,腺苷并不能改变外源性给GABAA受体激动剂muscimol(50μM)产生的抑制性电流的幅度。提示腺苷主要是通过激活位于突触前的A1受体降低抑制性突触传递。
     3.突触活动依赖性释放的内源性腺苷抑制orexin神经元突触后兴奋性电流
     腺苷50μM显著降低orexin神经元上诱发的兴奋性突触后电流(evoked excitatory postsynaptic currents, evEPSCs)幅度。而在较低刺激频率下(0.033Hz,1Hz),CPT(200nM)加入前后,evEPSCs幅度无任何改变(n=9,P>0.05)。提高刺激频率,2Hz、3Hz、5Hz时,evEPSCs的幅度随着刺激时间(持续600s)而逐渐降低,加入CPT后,这种幅度的降低趋势无显著变化。10Hz,CPT在刺激后期能部分阻断电流幅度的降低(n=10,P<0.05)。而受体2拮抗剂DMPX(10μM),不能阻断电流幅度的降低(n=8,P>0.05)。100Hz刺激1s,也能部分拮抗刺激引起的幅度降低(n=11,P<0.05)。
     4.突触活动依赖性释放的内源性腺苷抑制orexin神经元突触后抑制性电流在较低刺激频率下(0.033Hz,1Hz),CPT加入前后,evIPSCs幅度无任何改变。提高刺激频率,2Hz、3Hz、5Hz时,evIPSCs的幅度随着刺激时间(持续600s)而逐渐降低,加入CPT后,这种幅度的降低趋势无显著变化。10Hz,CPT在刺激后期能部分阻断电流幅度的降低(n=9,P<0.05)。100Hz刺激1s,CPT并不能影响刺激引起的幅度降低(n=6,P>0.05)。
     5.腺苷A1受体拮抗剂增强orexin神经元长时程增强的诱导
     穿孔膜片钳下,100Hz高频刺激和theta频率刺激诱导orexin神经元上的兴奋性突触后电流(EPSCs)活动出现长时程增加(long term potentiation, LTP)的可塑性,分别增加为119.836% (n=12)和128% (n=12)。高频刺激诱导时加入腺苷A1受体拮抗剂CPT,诱导后洗脱,记录到的EPSCs增加为诱导前的165.9375%(n=12,P<0.05).。提示内源性腺苷可能参与了orexin神经元上突触可塑性的形成。
     此外,我们还发现,ATP代谢中间产物ADP加至胞外灌流液中,能显著降低evEPSCs的幅度大小。
     6.PKC、PLC介导的L型钙通道引起的钙内流参与orexin A的升钙效应
     钙成像研究显示orexin A可引起20%(n=8,8/40,P<0.05)急性分离的前额叶皮层神经元胞内钙增加,且呈剂量依赖性。orexin受体1拮抗剂SB 334867存在情况下,orexin A不能引起胞内钙增加。分别预孵PLC、PKC抑制剂D609和BIS II 1h后,未观察到orexin A的升钙效应。胞外无钙情况下,orexin A不能引起胞内钙增加。预孵钙库抑制剂thapsigargin1h后,orexin A仍能引起胞内钙增加。加入L型钙通道阻断剂nifedipine后,orexin A未能引起钙增加。结果说明,orexn A主要是通过orexin受体1,激活PLC、PKC信号,引起L型钙通道开放,引起胞内钙增加。
     综上所述,本研究结果表明,腺苷可以突触活动依赖的通过突触前A1受体,抑制orexin神经元上的兴奋性和抑制性突触后活动;内源性腺苷还参与了orexin神经元兴奋性突触传递活动可塑性的形成。Orexin A可以结合orexin受体1,通过PLC、PKC胞内信号,开放L型钙通道,引起前额叶皮层神经元胞内钙增加。
Orexins localized specifically in neurons within the lateral hypothalamus and perifornical area are the novel neuropeptides discovered in 1998 by two groups respectively. Orexin system includes two separate peptides orexin A (hypocretin 1) and B (hypocretin 2) proteolytically derived from the same precursor protein. The actions of orexins are mainly transduced by orexin receptor 1 and orexin receptor 2 belonging to G-protein coupled receptors superfamily. Many studies have shown that these peptides are importantly implicated in the regulation and promotion of wakefulness. And this role may be mainly fulfilled by the excitatory actions of orexins on multiple subcortical arousal systems and cerebral cortex. As shown by recent electrophysiological studies, the activities of orexin neurons are influenced by several neurontransmitters and neuromodulators, as well as metabolic signals. It is implied that modulation of the activity of orexin neurons by these neurotransmitters or metabolic cues are critical for the regulation of sleep and wakefulness.
     Among these neuromodulators, adenosine, widely distributed in the mammalian central nervous system, has been proposed as an endogenous homeostatic sleep-promoting factor that accumulates during waking. A growing body of evidence has shown that adenosine may modulate excitatory glutamatergic synaptic transmission, inhibitory GABAergic synaptic transmission or both. An earlier study has demonstrated that adenosine exerts an inhibitory effect on glutamatergic transmission on orexin neurons, which is mediated by A1 receptors located on presynaptic terminals. It is well known that GABAergic synaptic transmission is the major inhibitory input to orexin neurons; however, whether adenosine modulates the inhibitory GABAergic transmission on orexin neurons as well has not been investigated. Specially, whether endogenous adenosine released in lateral hypothalamus is involved in the regulation of synaptic transmission on orexin neurons is still unclear.
     In addition, our previous study has shown that a few of cultured cortical cells tested show intracellular calcium elevation in response to orexin A, which depend on extracellular Ca2+ entry. Also, our electrophysiological results have illuminated that orexin A can excite the freshly dissociated neurons from layers V and VI of prefrontal cortex (PFC). It is intriguing to test whether neurons in PFC show the same intracellular calcium increase in response to orexin A.
     In the present study, we have focused on a possible role for adenosine in regulating inhibitory synaptic transmission on orexin neurons by performing perforated patch clamp recording in hypothalamic slices from orexin-EGFP transgenic mouse under voltage-clamp conditions. And we also examined the activity-dependent release of endogenous adenosine in regulating the activity of synaptic transmission as well. The effect and mechanisms underlying cytosolic Ca2+ changes induced by orexin A was investigated by using calcium imaging in acutely dissociated neurons from layers V and VI of PFC.
     1. Adenosine suppresses evoked inhibitory synaptic transmission on orexin neurons
     Perforated path clamp recordings of orexin neurons in hypothalamic slices from orexin-EGFP transgenic mice showed that evoked inhibitory postsynaptic currents (evIPSCs) was 51.4241% of control after superfusion with adenosine (100μM; n=14, P<0.05) and 87.1222% of control after its withdrawal. Moreover, adenosine reduced the evIPSCs amplitude in a concentration-dependent manner. The amplitude of evIPSCs was reduced, on average, to 93.0183% (n=6, P>0.05), 75.1114% (n=9, P<0.05) and 56.8569% (n=7, P<0.05) of control for 1, 10, 50μM adenosine, respectively.
     2. Presynaptic A1 adenosine receptor is responsible for the effect of adenosine on GABAergic synaptic transmission
     Application of A1 receptor antagonist CPT (200 nM) completely blocked the inhibitory effects of adenosine on evIPSCs (98.408% of control; n=9, P>0.05). During the course of the experiments it was noted that bath application of CPT alone did not affect evIPSC amplitude compared to control condition. Application of DMPX (10μM) did not alter the amplitude or the duration of evIPSCs (99.351 % of control; n=8, P>0.05), nor did it affect the inhibitory action of adenosine on the evIPSCs of orexin neurons (59.139 % of control; P<0.05). These results suggest that adenosine inhibits evoked inhibitory transmission in orexin neurons through activation of A1 receptors.
     In the presence of 50μM adenosine, the average of paired-pulse ratio (PPR) was increasing from 1.095891 to 1.75679 (n=9, P<0.05). Application of adenosine did affect the cumulative inter-event interval distribution of the mIPSC, producing a rightward shift of the curve. The cumulative amplitude distribution of the mIPSC was not affected after application of adenosine. These observations indicate that adenosine inhibits evIPSCs in orexin neurons by a predominantly presynaptic mechanism (n=10, P<0.05).
     3. Activity-dependent release of adenosine inhibits excitatory synaptic transmission on orexin neurons
     Bath application of adenosine (100μM) induced a decline in the amplitude of evEPSCs to 56.413% of controls (n=11, P<0.05). Glutamatergic synaptic transmission after the application of CPT (200 nM) did not differ from the control condition when the stimulation rate was 0.033Hz and 1 Hz (n=7, P>0.05). The depression of evEPSCs elicited at 2Hz~5Hz was not abolished (P>0.05) by CPT (200nM), whereas when the frequency of stimuli was raised to 10 Hz, the depression of evEPSCs began to be partially blocked by CPT after 360s of stimuli (n=10, P<0.05). Application of DMPX (10μM), a A2 receptor antagonist, did not block the depression induced by 10 Hz stimulation (n=8, P>0.05). In the presence of CPT (200 nM), the depression of evEPSCs induced by 100Hz for 1s was also significantly partially inhibited during the course of stimulation (n=11, P<0.05).
     4. Activity-dependent release of adenosine inhibits inhibitory synaptic transmission on orexin neurons
     No change of the amplitude of evIPSCs was observed after application of CPT (200 nM) (n=9, P>0.05) in 1Hz stimulation. In the presence of CPT, the depression of evIPSCs elicited at 2Hz~5Hz was not abolished. When the frequency of stimuli reached to 10 Hz, the depression was then partially inhibited by CPT (200 nM) (n=9, P<0.05), while superfusion of DMPX (10μM) did not block the depression (n=6, P>0.05). When the frequency of stimulation increased up to 100Hz for 1s, the depression of evIPSCs was not inhibited by the CPT (n=6, P>0.05).
     5. A1 receptor antagonist enhances the induction of long term potentiation on excitatory synaptic transmission of orexin neurons
     In the perforated path clamp recordings, high frequency stimulation (HFS) or theta burst stimulation (TBS) can induce the long term potentiation (LTP) of excitatory synaptic transmission in orexin neurons, and the amplitude after induction was 119.836% (n=12) and 128% (n=12) of control, respectively. While in the presence of CPT during the induction by HFS, the amplitude of currents will increase up to 165.9375% after induction (n=12, P<0.05). The results indicate that endogenous adenosine may be involved in the induction of LTP in orexin neurons.
     6. Extracellular calcium through L-type Ca2+ channels by activation of PLC-PKC pathway contribute to elevation of intracellular calcium of acutely dissociated neurons from PFC
     The calcium imaging studies demonstrated that intracellular calcium in about of 20% (n=8, 8 of 40) of dissociated acutely PFC neurons was increased in a dose-dependent manner in response to orexin A (1μM). The increase in peak of calcium fluorescence intensity induced by orexin A was abolished in the presence of orexin receptor 1 antagonist SB 334867. Preincubation of PLC inhibitor D609 or PKC inhibitor BIS II, no elevation of intracellular calcium was observed in the presence of orexin A. Also, in extracellular calcium free condition, orexin A failed to increase the intracellular calcium, but the elevation was still observed when pretreatment of thapsigargin, an inhibitor of calcium store, was applied. Furthermore, the elevation induced by orexin A was not examined in the presence of L-type calcium channels inhibitor nifedipine. These findings illuminate that orexin A-induced increase of intracellular calcium in PFC neurons is mainly from extracelluar calcium influx through L-type calcium channels by activation of orexin receptor 1 and PLC-PKC signaling pathway.
     In conclusion, these observations provide evidence that the inhibitory effects of adenosine on inhibitory synaptic transmission in orexin neurons are mediated by presynaptic A1 receptors in a dose-dependent manner. Under strong and sustained synaptic transmission activities, endogenous adenosine will be released to extracellular space in hypothalamus, modulating the activity of synaptic transmission as well as the synaptic plasticity. Moreover, the increase in intracellular calcium induced by orexin A in freshly dissociated PFC neurons may be attributed to the extracellullar calcium influx through L-type calcium channels mediated by activation of orexin receptor 1 and PLC-PKC signaling pathway.
引文
1. Saper CB, Cano G, Scammell TE. Homeostatic, circadian and emotional regulation of sleep. J Comp Neurol, 2005, 493: 92-98
    2. Sutcliffe JG, de Lecea L. The hypocretins: setting the arousal threshold. Nature reviews neuroscience, 2002, 3: 339-349
    3. Barbara EJ. Arousal systems. Frontiers in Bioscience, 2003, 8: 438-451
    4. de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA, 1998, 95(1):322-327
    5. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feedingbehavior. Cell, 1998, 92(4): 573-585
    6.宋承辉,胡志安. Orexins:觉醒通路中一种重要的下丘脑神经肽.第三军医大学学报, 2003,25(13): 1207-1209
    7. Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H, Mignot E, Nishino S. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci, 2001, 14:1075-1081
    8. Fuller PM, Gooley JJ, Saper CB. Neurobiologyof the sleep wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms, 206, 21: 482-493
    9. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE. Fos expression in orexin neurons varies with behavioral state. J Neurosci, 2001, 21: 1656-1662
    10. Espana RA, Planhn S, Berridge CW. Circadian-dependent and circadian-independent behavioral actions of hypocreti/orexin. Brain Res, 2002, 943: 224-236
    11. Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujion N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 2005, 297-308
    12. Yoahida K, McCormack S, A Espana R, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Com Neuro, 2006, 494: 845-861
    13. Cai XJ, Widdowson PS, Harrold J, Wilson S, Buckingham RE, Arch JR, Tadayyon M, Clapham JC, Wilding J, Williams G. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes, 1999, 48: 2132-2137
    14. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neuro, 2004, 73: 379-396
    15. Arrigoni E, Chamberlin NL, Saper CB, McCarley RW. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neurosci, 2006
    16. Coleman CG, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine a agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep. J Neurochem, 2006, 96: 1750-1759
    17. Latini S and Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem, 2001, 79: 463-484
    18. Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neurosci, 2000, 99: 507-517
    19. Blanco-Centurion C, Xu M, Murillo-Rodriguez E. Adenosine and sleep homeostasis in the basal forebrain. J Neurosci, 2006, 26:8092-8100
    20. Thakkar MM, Winston S, McCarley RW. Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res, 2002, 944: 190-194
    21. Kumar S, Rai S, Szymusiak R, McGinty D & N A. Effects of adenosine A1 receptor agonist into the perifornical lateral hypothalamic area on sleep. Neuroscience Meeting Planner, 2006, Atlanta, GA: Society for Neuroscience Program No. 458.12.2006
    22. Thakkar MM, Engemann SC, Walsh KM & Sahota PK. Adenosine and the homeostatic control of sleep: Effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience, 2008, 153: 875-880
    23. Cunha RA. Adenosien as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Inter, 2001, 38: 107-125
    24. Liu ZW & Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol, 2007, 97: 837-848
    25. Li Y, Gao XB, Sakurai T & van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron, 2002, 36: 1169-1181
    26. Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S & Yanagisawa M. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 2005, 46: 297-308
    27. Henny P & Jones BE. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J CompNeurol, 2006, 499: 645-661
    28. Xie X, Crowder TL, Yamanaka A, Morairty SR, Lewinter RD, Sakurai T & Kilduff TS. GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J Physiol, 2006, 574: 399-414
    29. Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R & McGinty D. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol, 2005, 563: 569-582
    30. Takahashi K, Lin SJ, Sakai K. Neuronal activity of orexin and non-orexin waking–active neurons during wake-sleep states in the mouse. Neuroscience, 2008, 153: 860-870
    31. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB & Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 1999, 98: 437-451
    32. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S & Mignot E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 1999, 98: 365-376
    33. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K & de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007, 450, 420-424
    34. vanov A & Aston-Jones G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport, 2000, 11: 1755-1758
    35. Burlet S, Tyler CJ & Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci, 2002, 22: 2862-2872
    36. Liu RJ, van den Pol AN & Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci, 2002, 22: 9453-9464
    37. Chen XW, Mu Y, Huang HP, Guo N, Zhang B, Fan SY, Xiong JX, Wang SR, Xiong W, Huang W, Liu T, Zheng LH, Zhang CX, Li LH, Yu ZP, Hu ZA & Zhou Z. Hypocretin-1 potentiates NMDA receptor-mediated somatodendritic secretion from locus ceruleusneurons. J Neurosci, 2008, 28: 3202-3208
    38. Eriksson KS, Sergeeva O, Brown RE & Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci, 2001, 21: 9273-9279
    39. Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE & Muhlethaler M. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience, 2001, 108: 177-181
    40. Lambe EK & Aghajanian GK. Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice. Neuron, 2003, 40: 139-150
    41. Song CH, Xia JX, Ye JN, Chen XW, Zhang CQ, Gao EQ & Hu ZA. Signaling pathways of hypocretin-1 actions on pyramidal neurons in the rat prefrontal cortex. Neuroreport, 2005, 16: 1529-1533
    42. Xia J, Chen X, Song C, Ye J, Yu Z & Hu Z. Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res, 2005, 82: 729-736
    43. Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K & van den Pol AN. Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal. J Neurosci, 2007, 27: 4870-4881
    44. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci, 2007, 8: 171-181
    45. Li Y & van den Pol AN. Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J Neurosci, 2008, 28: 2814-2819
    46. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M & Sakurai T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 2003, 38, 701-713
    47. Rainnie DG, Grunze HC, McCarley RW & Greene RW. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science, 1994, 263: 689-692
    48. Basheer R, Porkka-Heiskanen T, Strecker RE, Thakkar MM & McCarley RW. Adenosine as a biological signal mediating sleepiness following prolonged wakefulness. Biol Signals Recept, 2000, 9: 319-327
    49. Porkka-Heiskanen T, Strecker RE & McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience, 2000, 99: 507-517
    50. Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R & McGinty D. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol, 2005, 563: 569-582
    51. Oyamada Y, Ballantyne D, Muckenhoff K & Scheid P. Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol, 1998, 513 ( Pt 2): 381-398
    52. Wollmann G, Acuna-Goycolea C & van den Pol AN. Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors. J Neurophysiol, 2005, 94: 2195-2206
    53. Basheer R, Strecker RE, Thakkar MM & McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol, 2004, 73: 379-396
    54. Cunha RA, Vizi ES, Ribeiro JA & Sebastiao AM. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem, 1996, 67: 2180-2187
    55. Oliet SH & Poulain DA. Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones. J Physiol, 1999, 520 Pt 3: 815-825
    56. Malinow R and Tsie RW. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slice. Nature, 1990, 346: 177-180
    57. Rex CS, Kramar EA, Colgin LL, Lin B, Gall CM, Lynch G. Long-term potentiation is ipaired in middle-aged rats: regional specificity and reversal by adenosine receptor antagonist. J Neurosc, 2005, 2: 5956-5966
    58. Costenla AR, de Mendonca A, Ribeiro JA. Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. Brain Res, 1999, 851: 228-234
    59. Geoffrey B. Purinergic signaling. Brit J Pharm, 2006, 147: s172-s181
    60. Greene RW & Haas HL. The electrophysiology of adenosine in the mammalian central nervous system. Prog Neurobiol, 1991, 36: 329-341
    61. Brundege JM & Dunwiddie TV. Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol, 1997, 39: 353-391
    62. Lambert NA & Teyler TJ. Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus. Neurosci Lett, 1991, 122: 50-52
    63. Hasuo H, Shoji S, Gallagher JP & Akasu T. Adenosine inhibits the synaptic potentials in rat septal nucleus neurons mediated through pre- and postsynaptic A1-adenosine receptors. Neurosci Res, 1992, 13: 281-299
    64. Chen G & van den Pol AN. Adenosine modulation of calcium currents and presynaptic inhibition of GABA release in suprachiasmatic and arcuate nucleus neurons. J Neurophysiol, 1997, 77: 3035-3047
    65. Heinbockel T & Pape HC. Modulatory effects of adenosine on inhibitory postsynaptic potentials in the lateral amygdala of the rat. Br J Pharmacol, 1999, 128: 190-196
    66. Yum DS, Cho JH, Choi IS, Nakamura M, Lee JJ, Lee MG, Choi BJ, Choi JK & Jang IS. Adenosine A1 receptors inhibit GABAergic transmission in rat tuberomammillary nucleus neurons. J Neurochem, 2008, 106: 361-371
    67. Uchimura N & North RA. Baclofen and adenosine inhibit synaptic potentials mediated by gamma-aminobutyric acid and glutamate release in rat nucleus accumbens. J Pharmacol Exp Ther, 1991, 258: 663-668
    68. Kirk IP & Richardson PJ. Adenosine A2a receptor-mediated modulation of striatal [3H]GABA and [3H]acetylcholine release. J Neurochem, 1994, 62: 960-966
    69. Ulrich D & Huguenard JR. Purinergic inhibition of GABA and glutamate release in the thalamus: implications for thalamic network activity. Neuron, 1995, 15: 909-918
    70. Arrigoni E, Rainnie DG, McCarley RW & Greene RW. Adenosine-mediated presynaptic modulation of glutamatergic transmission in the laterodorsal tegmentum. J Neurosci, 2001, 21: 1076-1085
    71. Latini S & Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem, 2001, 79: 463-484
    72. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM & Duan S.ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron, 2003, 40: 971-982
    73. Dunwiddie TV & Diao L. Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther, 1994, 268: 537-545
    74. Calabresi P, Centonze D, Pisani A & Bernardi G. Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses. J Neurosci, 1997, 17: 4509-4516
    75. Harvey J & Lacey MG. A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci, 1997, 17: 5271-5280
    76. Centonze D, Saulle E, Pisani A, Bernardi G & Calabresi P. Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia. Brain, 2001, 124: 1855-1865
    77. Jo YH & Role LW. Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci, 2002, 22: 4794-4804
    78. Wall MJ & Dale N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol, 2007, 581: 553-565
    79. Acuna-Goycolea C, Li Y & Van Den Pol AN. Group III metabotropic glutamate receptors maintain tonic inhibition of excitatory synaptic input to hypocretin/orexin neurons. J Neurosci, 2004, 24: 3013-3022
    80. Mahan LC, McVittie LD, Smyk-Randall EM, Nakata H, Monsma FJ, Jr., Gerfen CR & Sibley DR. Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol, 1991, 40: 1-7
    81. Kessey K, Trommer BL, Overstreet LS, Ji T, Mogule DJ. A role for adenosine A2 receptors in the induction of long-term potentiation in the CA1 region of rat hippocampus. Brain Res, 1997, 756: 184-190
    82. Szymusiak R. Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep, 1995, 18: 478-500
    1. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM and Sutcliffe JG. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A, 1998, 95(1): 322-327
    2. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Willams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ and Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92 (4): 573-585
    3. Chen XW, Mu Y, Huang HP, Guo N, Zhang B, Fan SY, Xiong JX, Wang SR, Xiong W, Huang W, Liu T, Zheng LH, Zhang CX, Li LH, Yu ZP, Hu ZA, Zhou Z. Hypocretin-1 potentiates NMDA receptor-mediated somatodendritic secretion from locus ceruleus neurons. J Neurosci, 2008, 28: 3202-3208
    4. Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M. Orexins, orexigenic hypothalamic peptides, interact withautonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A, 1996, 96: 748-753
    5. Ferguson AV and Samson WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol, 2003, 24: 142-150
    6. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Tavlor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DN, Smith MI, Piper DC, Hunter AJ, Porter RA, Upton N. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A, 1999, 96: 10911-10916
    7. Mondal MS, Nakazato M, Matsukura S. Orexins (hypocretins): novel hypothalamic peptides with divergent functions. Biochem Cell, 2000, 78: 299-305
    8. Sutcliffe G and de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci, 2002, 3: 339-349
    9. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437: 1257-1263
    10. Bourgin P, Huitron-Resendiz S, Spier AD, Fabre V, Morte B, Criado JR, Sutcliffe JG, Henriksen SJ, de Lecea L. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci, 2000, 20: 7760-7765
    11. Ivanov A and Aston-Jones G. Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport, 2000, 11: 1755-1758
    12. Murai Y and Akaike T. Orexins cause depolarization via nonselective cationic and K+ channels in isolated locus coeruleus neurons. Neurosci Res, 2005, 51: 55-65
    13. Brown RE, Sergeeva O, Eriksson KS, Haas HL. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology, 2001, 40: 457-459
    14. Liu RJ, van den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci, 2002, 22: 9453-9464
    15. Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, Muhlethaler M. Orexins (hypocretins) directly excite tuberomammillary nucleus. Eur J Neurosci, 2001, 14: 1571-1575
    16. Eriksson KS, Sergeeva O, Bronw RE, Haas HL. Orexin/hypocretin excites thehistaminergic neurons of the tuberomammillary nucleus. J Neurosci, 2001, 21: 9273-9279
    17. Burlet S, Tyler CJ, Leonar CS. Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci, 2002, 22: 2862-2872
    18. Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M. Orexin/hypocretins excite basal forebrain cholinergic neurons. Neuroscience, 2001, 108: 177-181
    19. Lambe EK and Aghajanian GK. Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slices. Neuron, 2003, 40: 139-150
    20. Lambe EK, Olausson P, Horst NK, Taylor JR, Aghajanian GK. Hypocretin and nicotine excite the same thalamocortial synapses in prefrontal cortex: correlation with improved attention in rat. J Neurosci, 2005, 25: 5225-5229
    21. Song CH, Chen XW, Xia JX, Yu ZP, Hu ZA. Modulatory effects of hypocretin-1/orexin-A with glutamate and gamma-aminobutyric acid on freshly isolated pyramidal neurons from the rat prefrontal cortex. Neurosci Lett, 2006, 399: 101-105
    22. Song CH, Xia JX, Ye JN, Chen XW, Zhang CQ, Gao EQ, Hu ZA. Signaling pathways of hypocretin-1 actions on pyramidal neurons in the rat prefrontal cortex. Neuroreport, 2005, 16: 1529-1533
    23. Xia J, Chen X, Song C, Ye J, Yu Z, Hu Z. Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res, 2005, 82: 729-736
    24. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptides, hypocretin/orexin. J Neurosci, 1998, 18: 7962-7972
    25. Xia JX, Chen XW, Cheng SY, Hu ZA. Mechanisms of orexin A-evoked changes of intracellular calcium in primary cultured cortical neurons. Neuroreport, 2005, 16: 783-786
    26. Bayer L, Serafin M, Eggermann E, Saint-Mleux B, Machard D, Jones BE, MuhlethalerM. Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci, 2004, 24: 6760-6764
    27. Yamasaki H, LaBar KS, McCarthy G. Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci U S A, 2002, 99: 11447-11451
    28. Kohlmeier KA, Inoue T, Leonard CS. Hypocretin/orexin peptide signaling in the ascending arousal system: elevation of intracellular calcium in the mouse dorsal raphe and laterodorsal tegmentum. J Neurophysiol, 2004, 92: 221-235
    29. Kohlmeier KA, Watanabe S, Tyler CJ, Burlet S, Leonard CS. Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons. J Neurophysiol, 2008, in press
    30. Uramura K, Funahashi H, Muroya S, Shioda S, Takigawa M, Yada T. Orexin A activates phospholipase C- and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area. Neuroreport, 2001, 12: 1885-1889
    31. Larson KP, Peltonen HM, Bart G, Louhivuori LM, Penttonen A, Antikainen M, Kukkonen JP, Akerman KE. Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation. J Biol Chem, 2005, 280: 1771-1781
    32. Nasman J, Bart G, Larrson, K, Louhivuori L, Peltonen H, Akerman KE. The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells. J Neurosci, 2006, 26:10658-10666
    33. Kuehl-Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE, Partin KM. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci, 2002, 22: 2313-2322
    34. Munakata M, Akaike N. Theophylline affects three different potassium currents in dissociated rat cortial neurons. J Physiol, 1993, 471: 599-616
    35. Ishibashi M, Takano S, Yangagida H, Takatsuna M, Nakajima K, Oomura Y, Wayner MJ, Sasaki K. Effects of orexin/hypocretins on neuronal activity in the paraventricular nucleus of the thalamus in rats in vitro. Peptides, 2005, 26: 471-481
    36. Magga J, Bart G, Oker-Blom C, Kukkonen JP, Akerman KE, Nasman. Agonist potency differentiates G protein activation and Ca2+ signaling by the orexin receptor type 1. Biochem Pharmacol. 2006, 71: 827-836
    37. Ammoun S, Johansson L, Ekholm ME, Holmqvist T, Danis AS, Korhonen L, SergeevaOA, Haas HL, Akerman KE and Kukkonen JP. OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling. Mol Endocrinol, 2006, 20: 80-99
    38. Ekholm ME, Johansson L, Kukkonen JP. IP3-independent signalling of OX1 orexin/hypocretin receptors to Ca2+ influx and ERK, Biochem. Biophys Res Commun, 2007, 353: 475-480
    39. Holmqvist T, Akerman KE, Kukkonen JP. Orexin signaling in recombinant neuron-like cells. FEBS Lett, 2002, 526: 11-14
    40. Johansson L, Ekholm ME, Kukkonen JP. Multiple phospholipase activation by OX(1) orexin/hypocretin receptors. Cell Mol Life Sci, 2008, 65: 1948-1956
    41. Johansson L, Ekholm ME, Kukkonen JP. Regulation of OX1 orexin/hypocretin receptor-coupling to phospholipase C by Ca2+ influx. Br J Pharmacol, 2007, 150: 97-104
    42. Lund PE, Shariatmadari R, Uustare A, Detheux M, Parmentier M, Kukkonen JP, Akerman KE. The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C, J Biol Chem, 2000, 275: 30806-30812
    43. Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, Shibahara M. Kuramochi M, Takigawa M, Yanagisawa M, Sakurai T, Shioda S, Yada T. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci, 2004, 19: 1524-1534
    44. Narita M, Nagumo Y, Miyatake M, Ikegami D, Kurahashi K, Suzuki T. Implication of protein kinase C in the orexin-induced elevation of extracellular dopamine levels and its rewarding effect. Eur J Neurosci, 2007, 25: 1537-1545
    45. Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis CE, Middlemiss DN, Brown F. Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol, 1999, 128: 1-3
    46. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, Sakurai T, Goto K. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, whileorexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci, 2003, 92: 259-266
    47. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol, 2001, 435: 6-25
    48. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett, 1998, 438: 71-75
    49. Smart D, Sabido-David C, Brough SJ, Jewitt F, Johns A, Porter RA, Jerman JC. SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol, 2001, 132: 1179-1182
    50. Kukkonen JP and Akerman KE. Orexin receptors couple to Ca2+ channels different from store-operated Ca2+ channels. Neuroreport, 2001, 12: 2017-2020
    51. Ammoun S, Holmqvist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, Akerman KE, Kukkonen JP. Distinct recognition of OX1 and OX2 receptors by orexin peptides. J Pharmacol Exp Ther, 2003, 305: 507-514
    52. Chen C and Xu R. The in vitro regulation of growth hormone secretion by orexins. Endocrine, 2003, 22: 57-66
    53. Xu R, Roh SG, Gong C, Hernandez M, Ueta Y, Chen C. Orexin-B augments voltage-gated L-type Ca2+ current via protein kinase C-mediated signalling pathway in ovine somatotropes. Neuroendocrinology, 2003, 77: 141-152
    54. Xu R, Wang Q, Yan M, Hernandez M, Gong C, Boon WC, Murata Y, Ueta Y, Chen C. Orexin-A augments voltage-gated Ca2+ currents and synergistically increases growth hormone (GH) secretion with GH-releasing hormone in primary cultured ovine somatotropes. Endocrinology, 2002, 143: 4609-4619
    55. Burdakov D, Liss B, Ashcroft FM. Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium--calcium exchanger. J Neurosci, 2003, 23: 4951-4957
    56. Wu M, Zaborszky L, Hajszan T, van den Pol AN, Alreja M. Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci, 2004, 24: 3527-3536
    57. Wu M, Zhang Z, Leranth C, Xu C, van den Pol AN, Alreja M. Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousalvia a mechanism of hippocampal disinhibition. J Neurosci, 2002, 22: 7754-7765
    58. Brown AM, Schwindt PC, Crill WE. Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons. J Neurophysiol, 1993, 70: 1530-1543
    59. Lorenzon NM and Foehring RC. Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. II. Postnatal development. J Neurophysiol, 1995, 73: 1443-1451
    60. Ye JH and Akaike N. Calcium currents in pyramidal neurons acutely dissociated from the rat frontal cortex: a study by the nystatin perforated patch technique. Brain Res, 1993, 606: 111-117
    61. Larsson KP, Akerman KE, Magga J, Uotila S, Kukkonen JP, Nasman J, Herzig KH. The STC-1 cells express functional orexin-A receptors coupled to CCK release. Biochem Biophys Res Commun, 2003, 309: 209-216
    1. Stone TW. Purines: Pharmacology and Physiological roles. 1985, MacMillan, London
    2. Meghji P. Adenosien production and metabolism. In: Stone T. Adenosine in the nervous system. Academic Press, London, 25-42
    3. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Inter, 2001, 38: 107-125
    4. Daval JL, Nicolas F. Non-selective effects of adenosine A1 receptor ligands on energy metabolism and macromolecular biosynthesis in cultured central neurons. Biochem Pharmacol, 1998, 5: 141-149
    5. Zhu PJ, Krnjevic K. Adenosine release mediates cyanide-induced suppression of CA1 neuronal activity. J Neurosc, 1997, 17: 2355-2364
    6. Ribeiro JA, Sebastiao AM, de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implication. Prog Neuro, 2003, 68: 377-392
    7. Masion SA, Mesches MH, Bickford PC, Dunwiddie TV. Acute peroxide treatment of rat hippocampal slices induces adenosine-mediated inhibition of excitatory transmission in area CA1. Neurosci Lett, 1999, 274: 91-94
    8. Juranyi Z, Sperlagh B, Vizi ES. Involvement of P2 purinoceptors and the nitric oxide pathway in [3H] purine outflow evoked by short-trem hypoxia and hypoglycemia in rat hippocampal slices. Brain Res, 1999, 823: 183-190
    9. Cunha RA and Ribeiro JA. Age-dependent modification of adenosine modulation by arachidonic acid in the rat hippocampus. Soc Neurosci Abst, 1998, 24: 2055
    10. Jacobson KA, Von Lubitz DKJE, Daly JW, Fredholm BB. Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci, 1996, 17: 108-113
    11. Bischofberger N, Jacobson KA, von Lubitz DKJE. Adenosine A1 receptor agonists as clinically viable agents for treatment of ischemic brain damage, Ann NY Acad Sci, 1997, 825: 23-29
    12. Kaminogo M, Suyama K, Ichikura A, Onizuka M, Shibata S. Anoxic depolarization determines ischemic brain injury. Neuro Res, 1998, 20: 343-348
    13. Fraser H, Lopaschuck GD, Clanachan AS. Alteration of glycogen and glucose metabolism in ischaemic and post-ischaemic working rat hearts by adenosine A1 receptor stimulation. Br J Pharmacol, 1999, 128:197-205
    14. Haberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U. In vivo effects of adenosine A1 receptor agonist and antagonists on neuronal and astrocytic intermediary metabolism studied with ex vivo 13C NMR spectroscopy. J Neurochem, 2000, 74:327-333
    15. von Lubitz DKJE. Adenosine and cerebral ischemia: therapeutic future or death of a brave concept? Eur J Pharmacol, 1999, 365: 9-25
    16. Jordan JE, Zhan ZQ, Sato H, Taft S, Vinten-Johansen J. Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation, and coronary endothelial adherence. J Pharmacol, Exp Ther, 1997, 280: 301-309
    17. Feoktistove I, Biaggioni I. Adenosine A2b receptors. Pharmacol Rev, 1997, 49: 381-402
    18. Oskusa MD, Linden J, MacDonald T, Huang L. Selective A2a adenosine receptor activation reduces ischemia-reperfussion injury in rat kidney. Am J Physiol, 1999, 277: F404-F412
    19. Ross SD, Tribble CG, Linden J, Gangemi JJ, Lanpher BC, Wang AY, Kron IL. Selective adenosine A2a activation reduces lung reperfussion injury following transplantation. J Heart Lung Transplant, 1999, 18: 994-1002
    20. Thourani VH, Nakamura M, Ronson RS, Jordan JE, Zhao ZQ, Levy JH, Szlam F, Guyton RA, Vinten-Johansen J. Adenosine A3-receptor stimulation attenuates postischemic dysfunction through KATP channels. Am J Physiol, 1999, 277: H228-H235
    21. Mitchell JB, Lupica CR, Dunwiddie TV. Activity-dependent release of endogenous adenosine modulates synaptic response in the rat hippocampus. J Neurosci, 1993, 13: 3439-3447
    22. Barrie AP, Nicholls DG. Adenosien A1 receptor inhibition of glutamate exocytosis and protein kinase C-mediated decoupling. J Neurochem, 1993, 60: 1081-1086
    23. Ambrosio AF, Malva JO, Carvalho AP, Carvalho AM. Inhibition of N-, P/Q- and othertypes of Ca2+ channels in rat hippocampal nerve terminals by adenosine A1 receptor. Eur J Pharmacol, 1997, 340: 301-310
    24. Thompson SM, Capogna M, Scanziani M. Presynaptic inhibition in the hippocampus. Trends Neurosci, 1993, 16: 222-227
    25. Cascalheira JF, Sebastiao AM. Adenosine A1 receptor activation inhibits basal accumulation of inositol phosphates in rat hippocampus. Pharamacol Toxicol, 1998, 82: 189-192
    26. Capogna M, Gahwiler BH, Thompson SM. Presynaptic inhibiton of calcium-dependent and calcium-independent release elicited with ionomycin, gadolinium, andα-latrotoxin in the hippocampus. J Neurophysiol, 1996, 75: 2017-2028
    27. Ribeiro JA. Purinergic inhibition of neurotransmitter release in the central nervous system. Pharmacol Toxicol, 1995, 77: 299-305
    28. Sebastiao AM, Ribeiro JA. Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol, 1996, 48: 167-189
    29. Cunha RA, Constantino MD, Ribeiro JA. G-protein coupling of CGS 21680 binding sites in the rat hippocampus and cortex is different from that of adenosine A1 and striatal A2a receptors. Naunyn Schmiedeberg’s Arch Pharmacol, 1999, 359: 295-302
    30. Cunha RA, Brendel P, Zimmermann H, Ribeiro JA. Immunologically distinct isoforms of ecto-5’-nucleotidase in nerve terminals of different areas of the rat hippocampus. J Neurochem, 2000, 74: 334-338
    31. Gubitz AK, Widdowson L, Kurokawa M, Kirkpatrick KA, Richardson PJ. Dual signaling by the adenosine A2a receptor involves activation of both N- and P-type calcium channels by different G proteins and protein kinases in the same nerve terminals. J Neurochem, 1996, 67: 374-381
    32. Cunha RA, Ribeiro JA. Adenosien A2a receptor facilitation of synaptic transmission in the CA1 area of the rat hippocampus requires protein kinase C but not protein kinase A activation. Neurosci Lett, 2000.
    33. Goncalves J, Queiroz G. Facilitatory and inhibitory modulation by endogenous adenosine of noradrenaline release in the epididymal portion of rat vas deferens. Naunyan-Schmiedeberg’s Arch Pharmacol, 1993, 348: 367-371
    34. Heinbockel T, Pape HC. Modulatory effects of adenosine on inhibitory post-synapticpotentials in the lateral amygdale of the rat. Br J Pharmacol, 1999, 128: 190-196
    35. Oliet SH, Poulain DA. Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurons. J Physiol, 1999, 520: 815-825
    36. Bagley EE, Vaughan CW, Christie MJ. Inhibition by adenosine receptor agonists of synaptic transmission in rat periaqueductal gray neurons. J Physiol, 1999, 516: 219-225
    37. Chen G and van den Pol AN. Adenosine modulation of calcium currents and presynaptic inhibition of GABA release in suprachiasmatic and arcuate nucleus neurons. J Neurophysiol, 1997, 77: 3035-3047
    38. Phillis JW. Inhibitory action of CGS 21680 on cerebral cortical neurons is antagonized by bicuculline and picrotxoin–is GABA involved? Brain Res, 1998, 807: 193-198
    39. Correia-de-Sa P, Ribeiro J. Adenosine uptake and deamination regulate tonic A2a-receptor facilitation of evoked [3H]-Ach release from the motor nerve terminals. Neuroscience, 1996, 73:85-92
    40. Correia-de-Sa P, Timoteo MA, Ribeiro JA. Presynaptic A1 inhibitory/A2a facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J Neurophysiol, 1996, 76: 3910-3919
    41. White TD, MacDonald WF. Neural release of ATP and adenosine. Ann N Y Acad Sci, 1990, 603: 287-299
    42. Cunha RA, Vizi ES, Sebastiao AM, Ribeiro JA. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high-but not low-frequency stimulation of rat hippocampal slices. J Neurochem, 1996, 67: 2180-2187
    43. Dunwiddie TV, Diao L, Proctor WR. Adenosine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci, 1997, 17: 7673-7682
    44. Sneddon P, Westfall TD, Todorov LD, Mihaylova-Todorova S, Westfall DP, Kennedy C. Modulation of purinergic neurotransmission. Prog Brain Res, 1999, 120: 11-20
    45. Fujii S, Kuroda Y, Ito K, Kaneko K, Kato H. Effects of adenosine receptors on the synaptic and EPSP-spike components of long-trem potentation and depotentiation in the guinea-pig hippocampus. J Physiol, 1999, 521: 451-466
    46. Kopf SR, Melani A, Pedata F, Pepeu G. Adenosine and memory storage: effect of A1and A2 receptor antagonists. Psychopharmacol, 1999, 146: 214-219
    47. Crosson CE, Gray T. Response to prejunuctional adenosine receptors is dependent on stimulus frequency. Curr Eye Res, 1997, 16: 359-364
    48. Jin S, Fredholm BB. Adenosine A2a receptor stimulation increase release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedeberg’s Arch Pharmacol, 1997, 355: 48-56
    49. Hettinger BD, Leid M, Murray TF. Cyclopentyladenosine-induced homologous down-regulation of A1 adenosien receptors (A1 AR) in intact neurons is accompanied by receptor sequestration but not a reduction in A1 AR mRNA expression of G proteinα-subunit content. J Neurochem, 1998, 71: 221-230
    50. Ciruela F, Saura C, Canela EI, Mallol J, Lluis C, Franco R. Ligand-induced phosphorylation, clusting, desensitization of A1 adenosine receptors. Mol Pharmacol, 1997, 52: 788-797
    51. Zhang C, Schmidt JT. Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission. J Neurophysiol, 1999, 82: 2947-2955
    52. Dixon AK, Widdowson L, Richardson PJ. Desensitisation of the adenosine A1 receptor by the A2a receptor in the rat striatum. J Neurochem, 1997, 69: 315-321
    53. Lopes LV, Cunha RA, Ribeiro JA. Crosstalk between A1/A2a adenosine receptors in the hippocampus and cortex of young and old rats. J Neurophysiol, 1999, 82: 3196-3203
    54. Cunha RA, Almeida T, Constantino MD, Ribeiro JA. Aging modifies adenosine modulation of [3H] acetylcholine release from the rat hippocampus. Drug Dev Res, 1998, 43: 52
    55. Pereira MF, Cunha RA, Ribeiro JA. Tonic adenosine neuromodulation is unaltered in motor nerve endings of aged rats. Neurochem Int, 2000, 36: 563-566
    56. Bonan CD, Dias MM, Battastini AM, Dias RD, Sarkis JJ. Inhibitory avoidance learning inhibits ectonucleotidases activities in hippocampal synaptosomes of adult rats. Neurochem Res, 1998, 23: 977-982
    57. Schoen SW, Eber U, Loscher W. 5’-Nucleotidase activity of mossy fibers in the dentate gyrus of normal and epileptic rats. Neuroscience, 1999, 93: 519-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700