用户名: 密码: 验证码:
野生大豆保护遗传学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护遗传学(Conservation Genetics)就是运用遗传学的原理和研究手段,以生物多样性尤其是遗传多样性的研究和保护为研究核心内容的一门新兴学科(Woodruff,1989;1990)。长期以来遗传多样性检测和估算的方法、空间遗传结构与交配系统的关系等基础理论都是保护遗传学研究一直关注的重要问题。本研究以野生大豆这种典型的一年生自交植物为材料,采用不同的研究策略对上述问题开展了三个方面的研究。
     (1)利用AFLP、ISSR和SSR三种不同的分子标记分析上海江湾机场的野生大豆自然种群的遗传多样性水平。通过计算机模拟分析,随机抽取不同样本量的抽样群体,判断可以代表种群总体遗传多样性水平的样本大小,对不同分子标记分析结果进行比较,并对各个遗传多样性参数进行评估。
     (2)利用17对SSR引物,对上海江湾的两个种群(JW-1和JW-2),北京种群(BJ)和山东垦利种群(KL)共四个种群的1369份样本进行遗传多样性的分析,比较了单个多样性参数与单参数指数系列对这四个种群遗传多样性衡量的差异,并将获得的遗传多样性资料与采样点的地理空间位置结合起来,分析这四个种群的空间遗传结构,包括种群间的遗传分化和用空间自相关分析获得的种群内的遗传斑块结构。
     (3)利用5对多态性高的SSR引物对这四个种群中36个家系的1605个子代进行多位点异交率的分析,以获得野生大豆交配系统的基本资料。
     基于上述研究,将获得的这四个野生大豆种群的遗传多样性水平、空间遗传结构以及交配系统等情况结合起来进行分析,为制定合理的野生大豆保护策略提供依据。
     本研究得到如下结果:
     (1)样本量达到30个个体以上才能达到种群总体90%以上的遗传变异,对于小样本种群可以使用无偏估计进行统计校正;
     (2)共显性分子标记和显性标记对种群遗传多样性分析的方式不同,分析所得到的各种遗传多样性参数取值范围也不同。在不同分子标记分析的结果之间缺乏可比性;
     (3)单个多样性参数不能全面地反映遗传多样性中等位基因频率分布的情况,将用于分析群落物种多样性的单参数指数系列用于研究物种及其种群遗传多样性的衡量和比较具有可行性,可以清晰地反映种群中各个等位基因频率的分布情况;
     (4)四个野生大豆种群间存在一定的遗传的分化(F_(st)=0.204);种群内均存在显著空间的遗传斑块(Sp统计值的变异范围在0.036~0.128之间,平均值为0.073)。野生大豆种群内空间遗传斑块的强度和遗传斑块的大小可能受种群的环境异质性以及种群所受干扰程度的影响;
     (5)四个野生大豆种群均存在一定的异交,但各个种群的总异交率水平没有显著差异(平均总异交率为14.9%)。进一步剖分交配系统(分为自交、双亲近交和随机异交)发现不同的种群双亲近交率存在较大差别。其中,垦利种群的双亲近交率最高,占总异交率的63%;而JW-1种群的双亲近交率最低,占总异交率的6.7%。说明剖分各种交配方式的比例可以为进一步探讨交配系统的差异提供依据。
     (6)结合所研究的四个野生大豆种群的空间遗传结构与其交配系统发现,种群内空间遗传斑块结构对双亲近交所占的比例有较大的影响。遗传斑块越大,斑块结构越强,邻近个体之间的亲缘关系越近,邻近个体发生双亲近交的概率越大;相反亦然。
     综合野生大豆遗传多样性水平、遗传结构与交配系统的研究进行分析,在制定野生大豆保护策略特别是原位保护策略时,保持种群生境一定程度的自然扰动可以打破种群内空间遗传结构或是减弱空间遗传结构,这将提高有效异交(effective outcrossing)的频率,增加种群内杂合子的频率,从而维持种群内较高的遗传多样性水平,保持野生大豆的进化潜力。
Conservation genetics is a new subject studying the conservation strategy that makes the nearly extinct or endangered species recover based on the profound knowledge of the genetic background of the species. The estimation of genetic diversity and the relationships between the spatial genetic structure and the mating system are important problems for long term consideration of most conservation geneticists. The wild soybean (Glycine soja), the predominantly self-pollinated species was used as materials to study and explore the problems. At the same time, the knowledge of the genetic background of the wild soybean is the prerequisite for the effective strategic conservation. The following studies had been carried out.
     (1) Using three molecular markers (AFLP, ISSR and SSR) to analyze genetic diversity of the wild soybean population in Shanghai Jiangwan district, different molecular markers were compared, and through computer randomly selected subsets with different sample size (5~90 individuals), the proper sample size was evaluated.
     (2) Genetic diversity of four wild soybean populations (JW-1, JW-2, BJ, and KL), were studying applying 17 SSR primers. Single genetic diversity index and the One-Parameter Index Families were calculated to exploring the effective methodologies that can be used to compare genetic diversity of different populations. Based on the spatial location of each individual, the spatial genetic structure of the four populations was analyzed, including the genetic differentiation and the fine-scale spatial genetic structure (FSGS).
     (3) Basing on 1605 progeny gotten from 36 families, the mating system of the four populations (JW-1, JW-2, BJ, and KL) were estimated by 5 SSR primers. Then according to the knowledge of genetic diversity, spatial genetic structure, and mating system of the four wild soybean populations, the conservation strategy was proposed.
     The following items were the main results:
     (1) More than 30 individuals were needed to reach 90% of the total genetic diversity of a population. For the small sample size, the unbiased estimation can be used to correct the statistical error.
     (2) Codominant molecular markers and the dominant molecular markers had different implication in explaining the genetic diversity and their genetic diversity indices range were different. So it was unreasonable to compare the results gotten by different molecular markers.
     (3) The single genetic diversity index can not reflect the allele frequency distributions, but one-parameter index family was a good substitution to evaluate genetic diversity.
     (4) There was a certain level of genetic differentiation among different wild soybean populations (F_(st) = 0.204), and there existed a considerable fine-scale spatial genetic structure (FSGS) within each of the four wild soybean populations; the mean Sp value was 0.073, ranging from 0.036 to 0.128, which implying the variation of the FSGS might be caused by the habitat heterogeneity and different levels of disturbances.
     (5) There were outcrossing events occurred in all the wild soybean populations and the mean outcrossing rate was 14.9%. Although the total outcrossing rate of these four wild soybean populations didn't have considerable disparity, the detail compositions of the outcrossing rates were divergent ( the KL population had the highest biparent inbreeding 63% and the JW-2 had the lowest only 6.7%).
     (6) Combining the results of the spatial genetic structure and the mating system, the conclusion can be drawn that the strength and the size of the FSGS had a deep effects on the mating system. The strong FSGS and large genetic patches may induced high level of biparental inbreeding, which reduced effective outcrossing rate.
     In general, a certain degree of disturbances to the natural habitats might be benefited for a plant population to maintain genetic variability and evolutionary potential, which has an important implication in strategic conservation of plant populations.
引文
[1]陈家宽,杨继.植物进化生物学[M].武汉:武汉大学出版社,1994,第二章:48-94.
    [2]何田华,杨继.植物居群遗传变异的空间自相关分析[J].植物学通报,1999,16(6):636-641.
    [3]金燕,卢宝荣.遗传多样性的取样策略[J].生物多样性,2003,11(2):155-161.
    [4]李昂,葛颂.植物保护遗传学研究进展[J].生物多样性,2002,10(1):61-71.
    [5]李福山.大豆起源及其演化研究[J].大豆科学,1994,13(1):61-66.
    [6]李军,陶芸,郑师章等.同工酶水平上野生大豆种群内分化的研究[J].植物学报,1995,37(9):669-676.
    [7]李军,钱波,郑师章等.野生大豆种子库中同工酶水平的遗传多样性的初步研究[J].应用生态学报,1998,9(2):145-149.
    [8]李军,郑师章.野生大豆种子雨的研究[J].应用生态学报,1997,8(4):372-376.
    [9]刘灿然,马克平.多样性排序:方法与实例[J].植物生态学报,2002,26(1):63-67.
    [10]马克平.生物群落多样性的侧度方法:Iα多样性的测度方法(上)[J].生物多样性,1994(2):162-168.
    [11]潘兆婺,丁雷,王敏等.野生大豆的利用及在五河县的资源保护问题[J].安徽农学通报,2000(6):26-27.
    [12]袁力行,傅骏骅,Warburton M等.利用RFLP,SSR,AFLP,RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报,2000,27(8):725-733.
    [13]张大勇,姜新华.植物交配系统的进化、资源分配对策与遗传多样性[J].植物生态学报,2001,25(2):130-143.
    [14]赵洪锟,王玉民,李启云等.中国不同纬度野生大豆和栽培大豆SSR分析[J].大豆科学,2001,20(3):172-176.
    [15]赵丽梅,孙寰,马春森等.大豆昆虫传粉初探[J].大豆科学,1999,18 (1):73-76.
    [16]周晓馥,庄炳昌,王玉民等.利用RAPD技术进行野生大豆种群内分化的研究[J],松辽学刊(自然科学版),2004,(4):1-4.
    [17]庄炳昌.中国野生大豆生物学研究[M].北京:科学出版社,1999,第一章:1-6.
    [18]Avise JC,Hamrick JL.Conservation Genetics,Case Histories from Nature [M].New York:Chapman & Hall,1996:1-32.
    [19]Barrett SCH,Eckert CG.Variation and evolution of mating systems in seed plants.In:Kawano S.(eds.) Biological Approaches and Evolutionary Trends in Plants[M].London:Academic Press,1990:229-254.
    [20]Brown AHD,Allard RW.Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms[J].Genetics,1970,66:133-145.
    [21]Brown AHD.Genetic characterization of plant mating system.In:Brown AHD,et al.(eds.) Plant Population Genatics,Breeding,and Genetic Resources[M].Sunderland:Sinauer Associate.Inc.1990:43-63.
    [22]Buza L,Young A,Thrall P.Genetic erosion,inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta[J].Biological Conservation,2000,93:177-186.
    [23]Case MA,Mlodozeniec HT,Wallace LE,et al.Conservation genetics and taxonomic status of the rare Kentucky Lady's slipper:Cypripedium kentuckiense(Orchidaceae)[J].American Journal of Botany,1998,85:1779-1786.
    [24]Cheng Z,Lu B-R,Sameshima K,et al.Identification and genetic relationships of kenaf(Hibiscus cannabinus L.)[J].Genetic Resources and Crop Evolution,2004,51:393-401.
    [25]Clegg MT.Measuring plant mating system[J].Bioscience,1980,30(12):814-818.
    [26]Collevatti RG.,Grattapaglia D,Hay JD.High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense,an endangered tropical tree species[J]. Heredity,2001,86:60-67.
    [27]Crowe LK.The evolution of outbreeding in plants I.The angiosperous[J].Heredity,1964,17:435-456.
    [28]Ellstrand NC,Foster KW.Impact of population structure on the apparent outcrossing rate of grain sorghum(Sorghum bicolor)[J].Theoretical and Applied Genetics,1983,66:323-327.
    [29]Ennos RA.Inferences about spatial processes in plant populations from the analysis of molecular markers.In:Silvertown J,Antonovics J(eds.)Integrating Ecology and Evolution in a Spatial Context[M].Cambridge:Blackwell Science,2001:45-71.
    [30]Ennos RA,Clegg MT.Effect of population substructuring on estimates of outcrossing rate in plant populations[J].Heredity,1982,48:283-292.
    [31]Epperson BK.Recent advances in correlation analysis of spatial patterns of genetic variation[J].Evolutionary Biology,1993,27:95-155.
    [32]Epperson BK.Spatial genetic structure and non-equilibrium demographics within plant populations[J].Plant Species Biology,2000,15:269-279.
    [33]Escudero A,Iriondo JM,Torres ME.Spatial analysis of genetic diversity as a toll for plant conservation[J].Biology Conservation,2003,113:351-365.
    [34]Frankham R.Effective population size/adult population size ratios in wildlife:a review[J].Genetic Research Cambridge,1995,6:95-107.
    [35]Frankham R.Conservation genetics[J].Annual Review of Genetics,1995,29:305-327.
    [36]Fujita R,Ohara M,Okazaki K,et al.The extent of natural cross-pollination in wild soybean(Glycine soja)[J].Journal of Heredity,1997,88:124-128.
    [37]Fyfe JL,Bailey NTJ.Plant breeding studies in leguminous forage crops.1.Natural cross-breeding in winter beans[J].Journal of Agricultrual Sciences,1951,41:371-378.
    [38]Gapare WJ,Aitken SN.Strong spatial genetic structure in peripheral but not core populations of Sitka spruce[Picea sitchensis(Bong.) Carr.][J].Molecular Ecology,2005,14:2659-2667.
    [39]Grant V.The Evolutionary Process.A Critical Study of Evolutionary Theory. (2~(nd) ed.) [M]. New York: Columbia University Press, 1991: 235-260.
    [40] Goulao L, Oliveira CM. Molecular characterization of cultivars of apple (Malus × domestica Borkh.) using microsatellite (SSR and ISSR) markers [J]. Euphytica, 2001, 122:81-89.
    [41] Hamrick JL. Plant population genetics and evolution [J]. American Journal of Botany, 1982,69: 1685-1693.
    [42] Hamrick JL, Godt MJW. Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS. (eds.) Plant Population Genetics, Breeding, and Genetic Resources [M]. Sunderland: Sinauer, 1990: 43-63.
    [43] Hardy OJ, Vekemans X. SPAGEDI: a versatile computer program to analyses spatial genetic structure at the individual or population levels [J]. Molecular Ecology Notes, 2002, 2: 618-620.
    [44] Hardy OJ, Maggia L, Bandou E, et al. Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species[J]. Molecular Ecology, 2006, 15:559-571.
    [45] Heywood JS. Spatial analysis of genetic variation in plants populations [J]. Annual Review of Ecology and Systematics, 1991, 22: 335-355.
    [46] Hill MO. Diversity and evenness: a unifying notion and its consequences [J]. Ecology, 1973,54:427-432.
    [47] Holsinger KE. Inbreeding depression doesn't matter: the genetic basis of mating system evolution [J]. Evolution, 1988, 42: 1235-1244.
    [48] Holsinger KE. The scope and the limits of conservation genetics [J]. Evolution, 1996,50:2558-2561.
    [49] Holtsford TP, Ellstrand NC. Inbreeding effects in Clarkia tembloriensis (Onagraceae) populations with different natural outcrossing rates [J]. Evolution, 1990, 44: 2031-2046.
    [50] Hood ME, Antonovics J. Intratetrad mating, heterozygosity, and the maintenance of deleterious alleles in Microbotryum violaceum (Ustilago violacea) [J]. Heredity, 2000, 85: 231-241.
    [51] Hubalek Z. Measure of species diversity in ecology: an evaluation [J]. Folia Zoologica, 2000, 49: 241-260.
    [52] Huenneke LF. Ecological implications of genetic variation in plant populations. In: Falk DA, Holsinger KE. (eds.) Genetics and Conservation of Rare Plants [M]. New York: Oxford University Press, 1991: 31-44.
    [53] Hulbert SH. The non-concept of species diversity: a critique and alternative parameters [J]. Ecology, 1971, 52: 577-586.
    [54] Husband BC, Barrett SCH. Effective population size and genetic drift in tristylous Eichornia paniculata (Pontediraceae) [J]. Evolution, 1992, 46: 1875-1890.
    [55] Jacquemyn H, Brys R. Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia [J]. Molecular Ecology, 2005, 14:4479-4488.
    [56] Jin Y, He TH, Lu B-R. Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation [J]. New Phytologist, 2003, 159:513-519.
    [57] Jin Y, He TH, Lu BR. Genetic spatial clustering: significant implications for conservation of wild soybean (Glycine soja: Fabaceae) [J]. Genetica, 2006, 128:41-49.
    [58] Jones FA, Hamrick JL, Peterson CJ, et al. Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra [J]. Molecular Ecology, 2006, 15: 851-861.
    
     [59] Kalinowshi ST. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs [J]. Conservation Genetics, 2004, 5: 539-543.
    
    [60] Karp A, Seberg O, Buiatti M. Molecular techniques in the assessment of botanical diversity [J]. Annals of Botany, 1996, 78: 143-149.
    [61] Keylock CJ. Simpson diversity and the Shannon/ Wiener index as special cases of a generalized entropy[J]. Oikos, 2005, 109: 203-207.
    [62] Kiang YT, Chiang YC, Kaizuma N. Genetic diversity in natural populations of wild soybean in Iwate Prefecture, Japan [J]. The Journal of Heredity, 1992, 83: 325-329.
    [63] Kuroda Y, Kaga A, Tomooka N, et al. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation [J]. Molecular Ecology, 2006, 15:959-974.
    [64] Lackey JA. Systematic significance of the Epihilum in Phaseoleae (Fabaceae, Faboideae)[J]. Botanical Gazette, 1981, 142: 160-164.
    [65] Lande R, Schemske DW. The evolution of self-fertilization and inbreeding depression in plants. I . Genetic models [J]. Evolution, 1985, 39: 24-40.
    [66] Land R, Devrie PJ, Walla TR. When species accumulation curves intersect: implications for ranking diversity using small samples [J]. Oikos, 2000, 89: 601-605.
    [67] Leberg PL. Estimating alletic richness: Effects of sample size and bottlenecks [J]. Molecular Ecology, 2002, 11: 2445-2449.
    [68] Loiselle BA, Sork VL, Nason J, et al. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae) [J]. American Journal of Botany, 1995,82: 1420-1425.
    [69] Loveless MD, Hamrick JL. Ecological determinants of genetic structure in plant populations [J]. Annual Review of Ecology and Systematics, 1984, 15: 65-95.
    [70] Lu BR. Conserving biodiversity of soybean gene pool in the biotechnology era [J]. Plant Species Biology, 2004, 19:115-125
    
    [71] Mantel NA. The detection of disease clustering and a generalized regression approach. Cancer Research, 1967, 27: 209-220.
    [72] McGregor CE, Lamber CA, Grey ling MM, et al. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) [J]. Euphytica, 2000, 113: 135-144.
    [73] Meffe G.K, Carroll CR. Principles of Conservation Biology [M]. Sunderland, Massachusetts: Sinauer Associates, Inc.. 1994: 1-23.
    [74] Millar CI, Libby WJ. Strategies for conserving clinal, ecotypic and disjunct population diversity in widespread species. In: Falk DA, Holsinger KE. (eds.) Genetics and Conservation of Rare Plants [M]. New York: Oxford University Press, 1991: 149-170.
    [75] Milligan JB, Leebens-Mack, Strand AE. Conservation genetics: beyond the maintenance [J]. Molecular Ecology, 1994, 3: 423-435.
    [76] Murray MG., Thompson WF. Rapid isolator of high molecular weight plant DNA [J]. Nucleic Acids Research, 1980, 8: 4321-4325.
    [77] Nakayama Y, Yamaguchi H. Natural hybridization in wild soybean (Glycine max ssp.soja) by pollen flow cultivated soybean (Glycine max ssp. max) in a designed population [J]. Weed Biology and Management, 2002, 2: 25-30.
    [78] Nei M. Analysis of gene diversity in subdivided populations [J]. Proceedings of National Academy of Sciences of the USA, 1973, 70 (12): 3321-3323.
    [79] Nei M. F-statistics and analysis of gene diversity in subdivided populations [J]. Annals of Human Genetics, 1977, 41: 225- 233.
    [80] Ohara M, Shimamoto Y. Importance of genetic characterization and conservation of plant genetic resources: The breeding system and genetic diversity of wild soybean (Glycine soja) [J]. Plant Species Biology, 2002, 17: 51-58.
    [81] Oka HI. Genetic control of regenerating success in seminatural conditions observed among lines derived from a cultivated x wild soybean hybrid [J]. Journal of Applied Ecology, 1983, 20: 937-949.
    [82] Otero-Arnaiz A, Casas A, Hamrick JL. Direct and indirect estimates of geneflow among wild and managed populations of Polaskia chichipe, an endemic columnar cactus in Central Merico [J]. Molecular Ecology, 2005, 14: 4313-4322.
    [83] Pannell JR, Barrett SCH. Baker's law revisited: Reproductive assurance in a metapopulation [J]. Evolution, 1998, 52: 657-668.
    [84] Patil GP, Taillie C. Diversity as a concept and its measurement. Journal of the American Statistical Assosiation, 1982, 77: 548-567.
    [85] Patzak J. Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.) [J]. Euphytica, 2001, 121: 9-18.
    [86] Peakall R, Smouse PE. Genetic Analysis in Excel. Population genetic software for teaching and research. Australia. 2005.
    [87] Raddi S, Siimer S. Genetic diversity in natural Cupreesus sempervirens L. populations in Turkey[J].Biochemical Systematics and Ecology,1999,27:799-814.
    [88]Raijmann LEL,Leeuwen NCV,Kersten R,et al.Genetic variation and outcrossing rate in relation to population size in Gentiana pneumonanthe L.[J].Conservation Biology,1994,8(4):1014-1026.
    [89]Ray J,Kilen TO,Abel CA,et al.Soybean natural cross-pollination rates under field conditions[J].Environment Biosafety Research,2003,2:133-138.
    [90]Renyi A.Probability Theory[M].Amsterdam:North Holland Publishing Company,1970.
    [91]Ricotta C,Avena GC.On the information-theoretical meaning of Hill's parametric evenness[J].Acta Biotheoretica,2002,50:63-71.
    [92]Rieger R,Michaelis A,Geen MM.Glossary of Genetics[M].Fifth edition.German:Springer-Verlag,,1991:209-210.
    [93]Ritland K.The effective proportion of self-fertilization with consanguineous mating in inbred populations[J].Genetics,1984,106:139-152.
    [94]Ritland K.Extensions of models for the estimation of mating system using n independent loci[J].Heredity,2002,88:221-228.
    [95]Robledo-Arnuncio JJ,Alia R,Gil L.Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer,Pinus sylvestris [J].Molecular Ecology,2004,13:2567-2577.
    [96]Rohlf FJ.NTSYS-pc.Numerical Taxonomy and Multivariate Analysis System:v.2.1 Exeter Software,2001.
    [97]Ross MD.Inheritance of self-incompatibility in Plantago lanceolata[J].Heredity,1973,30:169-176.
    [98]Ryder OA.Species conservation and systematics:the dilemma of subspecies [J].Trends in Ecology and Evolution,1986,1:9-10.
    [99]Shaw DV,Kahler AL,Allard RW.A multilocus estimator of mating system parameters in plant populations[J].Proceedings of National Academy of Sciences of the USA,1981,78:1298-1302.
    [100]Schoen DJ,Clegg MT.Estimation of mating system parameters when outcrossing events are correlated[J].Proceedings of National Academy of Sciences of the USA, 1984, 81: 5258-5262.
    [101] Schoen DJ, Morgan MT, Bataillon T. How does self-pollination evolve? Inferences from floral ecology and molecular genetic variation. In: Silvertown J, Franco M, Harper JL (eds.) Plant Life Histories[M]. Cambridge: Cambridge University Press, 1997: 102-118.
    [102] Sherwin WB, Jabot F, Rush R, et al. Measurement of biological information with applications from genes to landscapes [J]. Molecular Ecology, 2006, 15: 2857-2869.
    [103] Sih A, Baltus MS. Patch size, pollinator behavior and pollinator limitation in catnip [J]. Ecology, 1987, 68: 1679-1690.
    [104] Soloman DL. A comparative approach to species diversity. In: Grassle JF, Patil GP, Smith W, Taillie C (eds.). Ecological Diversity in Theory and Practice [M]. Fairland, Maryland: Inter. Coop. Publish House, 1979: 29-35.
    [105] Smith JSC, Chin ECL, Shu H, et al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree [J]. Theoretical and Applied Genetics, 1997, 95, 163-173.
    [106] Soltis PS, Soltis DE. Genetic variation in endemic and widespread plant species: examples from Saxifragaceae and Polystichum [J]. Aliso, 1991, 13: 215-223.
    [107] Song ZP, Xu X, Wang B, et al. Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers [J]. Theoretical and Applied Genetics, 2003, 107: 1492-1499.
    [108] Sun M, Ritland K. Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America [J]. Heredity, 1998, 80: 225-232.
    [109] Taillie C, Grassle JF, Patil GP, et al. (eds.). Ecological diversity in theory and practice [M]. Fairland, Maryland: Inter. Coop. Publish House, 1979: 356-370.
    
    [110] Talhinhas P, Neves-Martins J, Leitao J. AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp [J]. Plant Breeding, 2003, 122:507-510.
    [111] Tothmeresz B. Comparison of different methods for diversity ordering. Journal of Vegetation Science, 1995, 6: 283-290.
    [112] Tothmeresz B. On the characterization of scale-dependent diversity [J]. Abstracta Botanica, 1998, 22: 149-156.
    [113] Troupin D, Nathan R, Vendramin GG. Analysis of spatial genetic structure in an expanding Pinus halepemis population reveals development of fine-scale genetic clustering over time [J]. Molecular Ecology, 2006, 15: 3617-3630.
    [114] Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations [J]. Molecular Ecology, 2004, 13: 921-935.
    [115] Weber CR, Hanson WD. Natural hybridization with and without ionizing radiation in soybeans [J]. Crop Science, 1961, 1: 389-392.
    [116] Weir BS. Methods to discrete population genetic data. In: Genetic Data Analysis II [M]. Sunderland, Masschusetts: Sinauer Associates, 1996: 245-278.
    [117] Woodruff DS. The problems of conserving genes and species. In: Weston D, Pearl M (eds.) Conservation for the Twenty First Century [M]. New York: Oxford University Press, 1989: 76-88.
    [118] Woodruff DS. Genetics and demography in the conservation of biodiversity [J]. Journal of Scientific Society of Thailand, 1990, 16:117-132.
    [119] Wright S. The genetical structure of populations [J]. Annals of Eugenics. 1951, 15:323-354.
    [120] Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating [J]. Evolution, 1965, 19: 395-420.
    [121] Yeh FC, Yang RC, Boyle T. Microsoft Window-based freeware for population genetic analysis (POPGENE) [CP], 1999,1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700