用户名: 密码: 验证码:
固体基质表面光合细菌生物膜成膜及产氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为主要能源的化石燃料储量急剧地减少以及它们燃烧所带来的全球气候变化、环境污染和健康问题,对能源结构产生了巨大挑战。氢气由于其高燃烧值和有效燃烧或直接在燃料电池中使用,被认为是最有潜力的替代能源之一。生物制氢反应条件温和、能耗低、能够妥善解决环境污染和能源需求间的矛盾,具有良好的发展前景。相比于暗发酵制氢技术,光生物产氢技术具有纯度高、理论底物转化效率高和无氧气活性抑制等优点而备受研究者的关注。而作为细胞固定化技术之一的生物膜法,不仅能有效提高生物反应器单位体积内的生物量进而提高产氢速率,而且具有底物传质速率大、光传输特性好和操作简单等优点。在典型的生物膜反应器中,底物从主流区对流和扩散进入生物膜内,而代谢产物反向从生物膜内扩散到主流区,因而生物膜结构对底物-产物质量传输和反应器整体性能均有重要影响。本文采用生物膜法光生物制氢技术,利用本实验室筛选培育的光合细菌沼泽红假单胞菌Rhodoseudomonas palustris CQK 01作为产氢菌种,构建了用于生物膜结构研究和实现产氢的可视化平板式光生物反应器,研究了不同光照强度、光照波长、进口溶液流量和底物浓度条件下形成的光合细菌生物膜结构,并讨论了不同膜结构对反应器内底物传输和产氢性能的影响。在实验研究基础上,采用扩散-反应方程和元胞自动机规则,结合前期实验得到的光合细菌生长动力学参数,建立了光合细菌生物膜在固体基质表面上生长的二维模型,预测了光照强度、底物浓度、温度、pH和初始接种量对光合细菌在固体基质表面生长、成膜过程中表面形态和特征参数的影响。主要研究结果如下:
     1.生物膜中的光合细菌以短杆状为主,但也有少量的长杆状存在。不同启动条件下形成的生物膜结构对后期稳定运行期中光生物反应器的产氢性能有着显著影响。
     2.在光照强度为5000 lx和光照波长为590 nm下形成的生物膜具有较大的细菌形态、较高的孔隙率、生物膜干重(0.915 mg/cm~2)和厚度(18.7μm),且该条件下形成的生物膜在稳定运行期的产氢性能最高。尽管光照波长为470 nm下形成的生物膜具有最大的生物膜干重和厚度(1.013 mg/cm~2和27.8μm),但由于其极低的孔隙率导致了产氢性能严重下降。
     3.生物膜结构随反应器进口溶液流量的增加变得更加致密,生物膜厚度在进口溶液流量为38 ml/h时形成的低流体剪切力作用下达到最大(19.1μm),但此时生物量却较低;而在进口溶液流量为228 ml/h下形成的生物膜具有较大的细菌形态和适中的孔隙率,且该条件下形成的生物膜在稳定运行期的产氢性能最高。
     4.随着底物浓度的增加,生物膜结构会变得更加疏松,底物浓度为110 mmol/l下形成的生物膜具有最大的孔隙率。但生物膜干重和厚度是在底物浓度为60 mmol/l下获得最大值,且该条件下形成的生物膜在稳定期的产氢性能也为最佳。
     5.在稳定运行期,光合细菌生物膜产氢速率随光照波长、光照强度、进口流量和底物浓度的增加呈先增加后减小的趋势,最大产氢速率为11.2 mmol/m~2/h。产氢得率均随进口底物浓度的增加而持续减少,最大产氢得率为0.66 mol H_2/mol glucose。光能转化效率均随光照强度的增加而逐渐降低,最高光能转化效率为28.1%。
     6.光合细菌生物膜生长模拟结果表明在生物膜生长、成膜过程中,孔隙率随时间都呈减小的规律,而表面粗糙度在生长一定时间后都趋于一个稳定值,生物膜厚度都随时间而逐渐增大。在光照强度为5000 lx,底物浓度为10.0 g/l,温度为30 oC,pH为7.0和初始接种量为500时生物膜具有较高的孔隙率、表面粗糙度和厚度。
The rapidly diminishing reserves of fossil fuels and resulting global climate change, environmental pollution and health problems by their combustion make the current energy structure face a significant challenge. Hydrogen, which is of high combustion efficiency with high caloric value and can be directly used in fuel cells, is considered as one of the most promising alternatives to fossil fuels. Bio-hydrogen production from organic pollutants leads a solution for the confliction of environmental protection and energy requirements and has a bright future due to its moderate reaction condition and low energy consumption. Compared with hydrogen production by dark-fermentation, the photo-fermentation process has attracted intensive attention due to high purity of the produced hydrogen, high theoretical substrate conversion efficiency and no O2-evolving activity which causes O2 inactivation in green algae hydrogen production systems. The biofilm method, as one of the cell immobilization technologies, not only effectively improves the biomass amount per unit volume, the tolerance ability of bacteria and the hydrogen production rate, but also bear the advantages of high mass transfer rate, good light penetration and simple operation.
     In a typical biofilm-based bioreactor, substrate diffuses from bulk liquid into biofilm, while end-products transports inversely into the bulk liquid. It can be expected that the biofilm structure is a critical factor affecting the mass transport substrates and products as well as the overall performance of the reactor. Focusing on photo-hydrogen production by biofilm technology, visualization flat-panel photobioreactors with indigenous Rhodoseudomonas palustris CQK 01 were constructed in the present study for observation on biofilm structure and hydrogen production performances, and the effect of the structure of photosynthetic bacterial (PSB) biofilm formed under different illumination intensities, illumination wavelengths, influent flow rates and substrate concentrations were then discussed on the substrate transport and hydrogen production performance in the bioreactor. Based on the experimental works, a two-dimensional model with the diffusion-reaction equations and cellular automata rules combined with the previously obtained growth kinetics parameters of PSB was established to simulate PSB growth and biofilm formation on the solid carrier. As a result, the effects of illumination intensity, substrate concentration, operation temperature, pH and initial inoculation were numerical predicted on the biofilm growth and structure on the solid surface. The main outcomes of the present study were shown as following:
     1. The predominant morphology of the bacteria in the biofilm was short rods, while a few long rods were also observed. The biofilm structures formed under different star-up conditions significantly affected hydrogen production performance of the photobioreactor during steady operation process.
     2. The PSB biofilm formed under illumination wavelength 590 nm and illumination intensity 5000 lx had larger bacterial size, higher porosity, higher biomass dry weight (0.915 mg/cm2) and biofilm thickness (18.7μm), resulting in the best hydrogen production performance during steady operation process. The biofilm formed under illumination wavelength 470 nm gained the highest biomass dry weight (1.013 mg/cm2) and biofilm thickness (27.8μm); however, it led to inferior hydrogen production performance during steady operation process due to the lowest porosity.
     3. The PSB biofilm structure turned to be dense with the increase in influent flow rate. The biofilm formed under influent flow rate 38 ml/h obtained the highest thickness (19.1μm) due to low shear force, while the biomass was insufficient. The biofilm formed under 228 ml/h gained larger bacterial size and moderate porosity, leading to the highest hydrogen production performance during the steady operation process.
     4. The PSB biofilm turned to loose with increasing influent substrate concentration. The biofilm formed under 110 mmol/l of substrate concentration had the largest porosity, while the highest biomass dry weight and biofilm thickness were achieved by the biofilm formed under 60 mmol/l of substrate concentration inducing the best hydrogen production performance during steady operation process.
     5. During the steady operation process, the hydrogen production rate of the PSB biofilm increased with increasing illumination wavelength, illumination intensity, influent flow rate and substrate concentration to achieve a peak value and then dropped when these parameters were further increased. The maximum hydrogen production rate was 11.2 mmol/m2/h. The hydrogen yields of biofilms continuously dropped with the increase in influent substrate concentration and the maximal hydrogen yield was 0.66 mol H2/mol glucose. The light conversion efficiency of the reactor decreased with enhancing illumination intensity and the maximum value achieved to 28.1%.
     6. The simulation results from the PSB biofilm growth model indicated that the biofilm porosity decreased during the biofilm formation process, while the surface roughness reached a stable value after a certain time of growth, and the biofilm thickness increased as time progressed. The optimal growth condition for the PSB biofilm formation was 5000 lx of illumination intensity, 10.0 g/l of substrate concentration, 30℃of temperature, 7.0 of pH and 500 of initial inoculation.
引文
[1]袁传敏,颜种捷,曹建勤.生物质制氢气的研究[J].煤炭转化, 2002, 25: 18-22.
    [2] J. Miyake, M. Miyake, Y. Asada. Biotechnological hydrogen production: research for efficient light energy conversion [J]. Journal of Biotechnology, 1999, 70: 89–101.
    [3] A. Melis, M.R. Melnicki. Integrated biological hydrogen production [J]. International Journal of Hydrogen Energy, 2006, 31: 1563-1573.
    [4] A.A. Tsygankov, S.N. Kosourov, I.V. Tolstygina, M.L. Ghirardi, M. Seibert. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions [J]. International Journal of Hydrogen Energy, 2006, 31: 1574-1584.
    [5] M.L. Ghirardi, L. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum, A. Melis. Microalgae: a green source of renewable H2 [J]. Trends in Biotechnology, 2000; 18: 506–511.
    [6]傅秀梅,王亚楠,王长云,鹿守本,管华诗.生物制氢-能源、资源、环境与经济可持续发展策略[J].中国生物工程杂志, 2007, 27: 119-125.
    [7]李福枝,刘飞,曾晓希,李小龙,张凤琴.光合细菌(PSB)应用的研究进展[J].食品与机械, 2008, 24: 152-158.
    [8]揭晶,赵越.光合细菌应用的研究进展[J].广东药学院学报, 2006, 22: 113-115.
    [9]曾宇,秦松,梁明山.光合细菌综合应用新进展[J].水产科学, 2000, l9: 34-36.
    [10] C.Y. Chen, M.H. Yang, K.L. Yeh, C.H. Liu, J.S. Chang. Biohydrogen production using sequential two-stage dark and photo fermentation processes [J]. International Journal of Hydrogen Energy, 2008, 33: 4755-4762.
    [11]郑耀通,闵航.共固定光合和发酵性细菌处理有机废水生物制氢技术[J].污染防治技术, 1998, 11: 187-189.
    [12]邓平,费良润,刘雪梅.光合细菌产氢机制研究进展[J].安徽农业科学, 2008, 36: 6184 -6186.
    [13]张明,史家梁.光合细菌光合产氢机理研究进展[J].应用与环境生物学报, 1999, 5: 25-29.
    [14]刘如林,刁虎欣,梁凤来.光合细菌及其应用[M].北京:中国科技出版社, 1991.
    [15]刘灵芝,孙军德,梅韩,陈锡时.光合细菌产氢因子的研究进展[J].生态科学, 2004, 23: 184-186.
    [16] Y.P. Zhang, E.L. Pohlmann, P.W. Ludden, G.P. Roberts. Mutagenesis and Functional Characterization of the glnB, glnA, and nifA Genes from the Photosynthetic Bacterium Rhodospirillum rubrum [J]. Journal of Bacteriology, 2000, 182: 983-992.
    [17]吴永强,陈秉俭,仇哲.浑球红假单胞菌在暗处发酵生长时的固氮酶,吸氢酶以及放氢机制的研究[J].微生物通报, 1991, 18: 71-74.
    [18] H. Youn, M. Conrad, S.Y. Chung, G.P. Roberts. Roles of the heme and heme ligands in the activation of CooA, the CO-sensing transcriptional activator [J]. Biochemical and Biophysical Research Communication, 2006, 348: 345-350.
    [19] T. Kondo, M. Arakawa, T. Hirai, T. Wakayama, M. Hara, J. Miyake. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment [J]. Journal of Bioscience and Bioengineering, 2002, 93: 145-150.
    [20] J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution [J]. Science, 1998, 282: 1853-1858.
    [21] I. Tommasi, M. Arestaa, P. Giannoccaroa, E. Quarantaa, C. Fragale. Bioinorganic chemistry of nickel and carbon dioxide: a Ni complex behaving as a model system for carbon monoxide dehydrogenase enzyme [J]. Inorganica Chimica Acta, 1998, 272: 38-42.
    [22]杨素萍,赵春贵,曲音波,钱新民.铁和镍对光合细菌生长和产氢的影响[J].微生物学报, 2003, 43: 257-263.
    [23]方萍, A.M.N. Omar.培养基铁浓度对不同非共生固氮菌株小麦基因型联合固氮效率的影响[J].浙江农业大学学报, 1997, 23: 716 -721.
    [24] M. Yang, R. Agarwal, G.R. Fleming. The mechanism of energy transfer in the antenna of photosynthetic purple bacteria [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142: 107-119.
    [25] E. Nakada, Y. Asada, T. Arai, J. Miyake. Light Penetration into Cell Suspensions of Photosynthetic Bacteria and Relation to Hydrogen Production [J]. Journal of Fermentation and Bioengineering, 1995, 80: 53-57.
    [26] Q. Xu, M.R. Gunner. Trapping conformational intermediate states in the reaction center protein from photosynthetic bacteria [J]. Biochemistry, 2001, 40: 3232-3241.
    [27] K. Sasikala, Ch.V. Ramana, P. R. Rao. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001 [J]. International Journal of Hydrogen Energy, 1991, 16: 597-601.
    [28] T. Wakayama, J. Miyake, A. Toriyama, T. Kawasugi, T. Arai, Y. Asada. Photohydrogen production using photosynthetic bacterium Rhodobacter sphaeroides RV; simulation of the light cycle of natural sunlight using an artificial source [J]. In: Zaborsky OR, editor. Biohydrogen. New York: Plenum Press; 1998.
    [29] E. Ero?lu, ?. Ero?lu, U. Gündüz, M. Yücel. Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater [J]. Bioresource Technology, 2008, 99:6799-6808.
    [30] H. Zhu, T. Wakayama, T. Suzuki, Y. Asada, J. Miyake. Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4+ [J]. Journal of Bioscience and Bioengineering, 1999, 88: 507-512.
    [31] H.H.P. Fang, H. Liu, T. Zhang. Phototrophic hydrogen production from acetate and butyrate in wastewater [J]. International Journal of Hydrogen Energy, 2005, 30: 785–793.
    [32] M.J. Barbosa, J.M.S. Rocha, J. Tramper, R.H. Wijffels. Acetate as carbon source for hydrogen production by photosynthetic bacteria [J]. Journal of Biotechnology, 2001, 85: 25-33.
    [33]杨素萍,赵春贵,刘瑞田,曲音波,钱新民.沼泽红假单胞菌乙酸光合放氢研究[J].生物工程学报, 2002, 18: 486-490.
    [34] P. Hillmer, H. Gest. H2 metabolism in the photosynthetic bacterim rhodopseudomonas capsulate: H2 production by growing cultures [J]. Journal of bacteriology, 1977, 129: 724-731.
    [35]魏丽芳,郑先君,张治红,许培援,魏明宝. pH值对光合细菌利用乙酸(钠)产氢的影响[J].河南化工, 2007, 24: 32-34.
    [36]王永忠,廖强,朱恂,张攀,巴淑丽.静态培养条件对光合细菌产氢行为的影响[J].工程热物理学报, 2007, 28: 45-48.
    [37] H. Koku, ?. Ero?lu, U. Gündüz, M. Yücel, L. Türker. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides [J]. International Journal of Hydrogen Energy, 2002, 27: 1315-1329.
    [38] T. Kondo, T. Wakayama, J. Miyake. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment [J]. International Journal of Hydrogen Energy, 2006, 31: 1522-1526.
    [39] C.Y. Chen, J.S. Chang. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination [J]. Process Biochemistry, 2006, 41: 2041-2049.
    [40] J. Miyake, T. Wakayama, J. Schnackenberg, T. Arai, Y. Asada. Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production [J]. Journal of Bioscience and Bioengineering, 1999, 88: 659-663.
    [41] I. Agalidis, A. Ivancich, A. Tony, F.R.H. Mattioli. Characterization of the Rhodocyclus tenuis photosynthetic reaction center [J]. Biochimet Biophys Acta (BBA)-Bioenergetics, 1997, 1321: 31-46.
    [42] T. Kondo. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics [J]. International Journal of Hydrogen Energy, 2002, 27: 1303-1308.
    [43] M. Janssen. Cultivation of microalgae: effect of light/dark cycles on biomass yield [D]. Thesis,Wageningen University, Wageningen, the Netherlands, 2002.
    [44] B. Zabut, K. El-Kahlout, M. Yücel, U. Gündüz, L. Türker, ?. Ero?lu. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor [J]. International Journal of Hydrogen Energy, 2006, 31: 1553-1562.
    [45] S. Hoekema, M. Bijmans, M. Janssen, J. Tramper, R.H. Wijffels. A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium [J]. International Journal of Hydrogen Energy 2002, 27: 1331– 1338.
    [46] M. Modigell, N. Holle. Reactor development for a biosolar hydrogen production process [J]. Renewable Energy, 1998, 14: 421-426.
    [47] C.Y. Chen, C.M. Lee, J.S. Chang. Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors [J]. Biochemical Engineering Journal, 2006, 32: 33-42.
    [48]王建龙,施汉昌,钱易.固定化微生物技术在难降解有机污染物治理中的研究进展[J].环境科学研究, 1999, 12: 60-64.
    [49]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学, 2003, 24: 158-161.
    [50]刘蕾,李杰,王亚娥.生物固定化技术中的包埋材料[J].净水技术, 2005, 24: 40-42.
    [51]赵长青,辜海彬,宋丹,郑柳仙,陈武勇.生物固定化技术在制革废水处理中的研究现状与展望[J].皮革科学与工程, 2008, 18: 39-45.
    [52]段明峰,吴卫霞,肖俊霞,李良红.利用固定化细胞技术处理废水研究进展[J].油气田环境保护, 2004, 9:17-20.
    [53]郭雪琳,王成端.固定化微生物技术在废水处理中的应用[J].广东化工, 2007, 34: 67-69.
    [54] Z.P. Zhang, K.Y. Show, J.H. Tay, D.T. Liang, D.J. Lee. Biohydrogen production with anaerobic fluidized bed reactors-A comparison of biofilm-based and granule-based systems [J]. International Journal of Hydrogen Energy, 2006, 33: 1559-1564.
    [55] K.S. Lee, J.F. Wu, Y.S. Lo, Y.C. Lo, P.J. Lin, J.S. Chang. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor [J]. Biotechnology and Bioengineering, 2004, 87: 648-657.
    [56] X. Tian, Q. Liao, W. Liu, Y.Z. Wang, X. Zhu, J. Li, H. Wang. Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells [J]. International Journal of Hydrogen Energy, 2009, 34: 4708-4717.
    [57]齐水冰,罗建中,乔庆霞.固定化微生物技术处理废水[J].上海环境科学, 2002, 21: 185-188.
    [58]董双石,周丹丹,高欣.好氧锥形流化床生物膜反应器启动与生物膜形成特征研究[J].环境科学, 2009, 30: 827-833.
    [59]田鑫,廖强,张攀,朱恂,王永忠.生物膜光生物反应器启动及产氢特性[J].工程热物理学报, 2008, 10: 46-50.
    [60] J Fiβle, G.W. Kohring, F. Giffhorn. Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris [J]. Applied Microbiology and Biotechnology, 1995, 44: 43-46.
    [61] H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, Y. Takasaki. Hydrogen production by immobilized cells of aciduric enterobacter aerogenes strain HO-39 [J]. Journal of Fermentation and Bioengineering, 1997, 83: 481-484.
    [62] X. Tian, Q. Liao, X. Zhu, Y.Z. Wang, P. Zhang, J. Li, H. Wang. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production [J]. Bioresource Technology, 2010, 101: 977-983.
    [63] J.W. Costerton, P.S. Stewart, E.P. Greenberg. Bacterial Biofilms: A Common Cause of Persistent Infections [J]. Science, 1999, 284: 1318-1322.
    [64] G.O. Toole, H.B. Kaplan, R. Kolter. Biofilm formation as microbial development [J]. Microbiology, 2000, 54: 49-79.
    [65] J. Wimpenny. Ecological determinants of biofilm formation [J]. Biofuling, 1996, 10: 43-63.
    [66] S.W. Hermanowicz. A model of two-dimensional biofilm morphology [J]. Water science and technology, 1998, 37: 219-222.
    [67] R. Colasanti. Cellular automata models of microbial colonies [J]. Binary, 1992, 4: 191-193.
    [68] J.W.T. Wimpenny, R. Colasanti. A unifying hypothesis for the structure of microbial biofilms bases on cellular automaton models [J]. FEMS Microbiology Ecology, 1997, 22:1-16.
    [69] C. Picioreanu, M.C.M. van Loosdrecht, J.J. Heijnen. A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads [J]. Biotechnology and bioengineering, 1998, 57: 718-731.
    [70] C.S. Laspidou, B.E. Rittmann. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances [J]. Water Research, 2004, 38: 3349-3361.
    [71]艾建宇,吴显辉,冯胜彦,陈蔚梅,郭明雄,熊晓然,吴斌.杆菌在平板上的生长模拟[J].生物物理学报, 2002, 18: 246-250.
    [72] T.C. Li, X.G. Li, S.L. Zhu. Two-dimension dynamic simulations on biofilm forming and developing [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44: 50-54.
    [73]赵峰,陶祖莱.生物模式的元胞自动机模型(Ⅱ):菌落的生长模式[J].生物医学工程学杂志, 2007, 24: 820-823.
    [74] S. Wijeyekoon, T. Mino, H. Satoh, T. Matsuo. Effects of substrate loading rate on biofilm structure [J]. Water research, 2004, 38: 2479-2488.
    [75] H. Beyenal, Z. Lewandowski. Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms [J]. Water Research, 2000, 34: 528-538.
    [76] S. W?sche, H. Horn, D.C. Hempel. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface [J]. Water Research, 2002, 36: 4775-4784.
    [77]王永忠,廖强,朱恂,田鑫,王中康,张攀,张宝鹏.产氢光合细菌的分离鉴定及高产氢菌株的筛选[J].应用与环境生物学报, 2008, 14: 673-677.
    [78] R. Bakke, P.Q. Oisson. Biofilm thickness measurement by light microscopy [J]. Journal of Microbtologtcal Methods, 1986, 5: 93-98.
    [79] W.G. Characklis, K.E. Cooksey. Biofilms and microbial fouling [M], in: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt (Eds.). Advances in Applied Microbiology. Academic Press Inc., London, 1983, pp. 93–138.
    [80] B. Uyar, I. Eroglu, M. Yücel, U. Gündüz, L. Türker. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors [J]. International Journal of Hydrogen Energy, 2007, 32: 4670-4677.
    [81] Y. Akutsu, Y.Y. Li, H. Harada, H.Q. Yu. Effects of temperature and substrate concentration on biological hydrogen production from starch [J]. International Journal of Hydrogen Energy, 2009, 34: 2558-2566.
    [82] T.J. Battin, L.A. Kaplan, D. Newbold, X.H. Cheng, C. Hansen. Effects of Current Velocity on the Nascent Architecture of Stream Microbial Biofilms [J]. Applied and Environmental Microbiology, 2003, 69: 5443-5452.
    [83] D. de Beer, P. Stoodley, F. Roe, Z. Lewandowski. Effects of biofilm structures on oxygen distribution and mass transport [J]. Biotechnology and Bioengineering, 1994, 43: 1131-1138.
    [84] C. Picioreanu, M.C.M. van Loosdrecht, J.J. Heijnen. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach [J]. Biotechnology and Bioengineering, 1998, 58: 101-116.
    [85]尤希凤.光合产氢菌群的筛选及其利用猪粪污水产氢因素的研究[D].河南农业大学博士学位论文, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700