用户名: 密码: 验证码:
秸秆成型燃料燃烧过程中沉积腐蚀问题的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的短缺及其带来的环境问题日益严重、秸秆直接燃烧发电技术的推广和普及成为国内外关注的热点。但是秸秆的形成条件及过程与化石能源不同,秸秆具有与其它能源不同的成分和结构,因此,秸秆直接燃烧将给燃烧系统带来了很多问题,其中,以秸秆直接燃烧在锅炉受热面上形成沉积的问题最为严重,它不但影响受热面内的热量传递,而且对受热面造成严重的腐蚀、影响锅炉的操作运行,目前,秸秆燃烧在受热面上形成沉积腐蚀的问题已成为制约秸秆直接燃烧发电技术推广应用的主要障碍。
     尽管国内外对秸秆燃烧过程中在锅炉受热面上形成沉积的研究取得了一定的进展,但是由于沉积的形成是一个极其复杂的物理化学过程,涉及锅炉原理、燃料及灰渣化学和反应动力学、多相流体力学、传热传质学、燃烧原理与技术、材料科学等众多学科,同时还受灰熔点、灰成分、灰粘度、炉膛热力参数燃烧器的结构与布置炉内空气动力工况锅炉运行参数等因素的影响,加之受到研究手段和研究方法的限制,迄今为止沉积的形成机理及其对受热面腐蚀的原理还未彻底弄清,因此,由沉积引起的锅炉问题依然存在。
     为了寻求降低沉积腐蚀的方法和措施,消除沉积给锅炉带来的危害,推动秸秆直接燃烧技术的发展,本文在查阅了大量国内外相关文献的基础上,设计了模拟秸秆成型燃料燃烧在锅炉受热面上形成沉积的试验装置,并研究和分析了原料成分、炉膛温度、进风量等因素的变化对沉积形成的影响。结果表明:秸秆中较高的碱金属及氯含量是燃烧秸秆比木材更易在受热面上形成沉积腐蚀的主要原因;秸秆燃烧过程中,碱金属的逸出量随炉膛温度的升高而增加,炉膛温度的升高也有利于碱金属与SiO_2结合生成低熔点的共晶体;进风量的大小对炉膛内的空气动力场,烟气的速度及方向,烟气中飞灰颗粒的运动速度、方向及沉积位置有重要的影响,在秸秆燃烧过程中,受热面上的沉积随风速的增大而提高,但是,当风速超过12m/s时,烟气中含有较多气体组分的飞灰来不及与受热面接触,就随烟气排出,而且初始沉积在受热面上的灰粒也会重新回到烟气中,受热面上的沉积量出现下降趋势;沉积率随着受热面的温度的升高而下降,但是一旦粘性最大的沉积层全面形成时,受热面温度对沉积率的影响就大大降低最终随着沉积物的增长而完全被消除,另外,受热面温度的升高也促进了结垢层的形成;秸秆的组织和结构的变化对沉积的形成有重要影响,经过高压形成的秸秆成型燃料燃烧以后,形成了密实的焦炭骨架,改变了沉积的形成规律,降低了沉积率。
     为了弄清秸秆燃烧过程中在锅炉受热面上形成沉积的过程和机理,首先,分别对拦火圈内表面和水箱底面上形成的沉积进行了研究和分析,结果表明,炉膛内不同位置,其表面上的沉积是不一样的:拦火圈内表面上的沉积颗粒细腻,反射白光,其成分中没有Si、Al、Fe、Ti等难熔化合物,水箱表面上的沉积颜色为银灰色、颗粒粗大,且Ca、Si、Ti、Mg等矿物质含量较高。然后根据上述分析,对二者的形成过程和机理分别进行了推理,认为:沉积的形成主要是秸秆中的灰分在燃烧过程中的形态变化和输送作用的结果,其形成过程也是灰粒沉积的过程。拦火圈内表面上沉积的形成机制是以凝结和化学反应为主,水箱表面上的沉积主要是通过颗粒撞击和热迁移两种方式形成的。
     针对沉积引起腐蚀的机理,笔者对受热面上脱落的沉积块(脱落处含有壁面)进行了分析,结果表明:腐蚀过程就是将Fe通过化学反应被逐步转移到沉积中去,使受热面原来的保护膜遭到破坏。在腐蚀过程中氯化物和硫酸盐扮演着重要角色,其机理就是沉积中氯化物穿过氧化层与管壁中的Fe反应生成FeCl_3,硫酸盐与FeCl_3反应生成FeS,降低了FeCl_3的浓度,使反应朝着生成FeCl_3的方向进行。
     为了对秸秆直接燃烧过程中受热面上沉积腐蚀的危害有一个清醒的认识,同时也为我国研发秸秆直接燃烧技术提供借鉴。本文首先通过试验研究了沉积对受热面换热效率的影响及对受热面的腐蚀作用,然后结合燃烧秸秆的实际锅炉探讨了沉积对锅炉操作的影响,研究表明:秸秆燃烧在锅炉受热面上形成的沉积比燃煤形成的沉积,更能抑制受热面上的热量传递。一般地,燃煤锅炉受热面上积有3mm疏松灰或10mm熔融渣时,才可造成炉膛传热下降40%,秸秆燃烧形成的灰沉积厚度从0mm增加到0.56mm,受热面的传热系数下降了51%;大量的氯富集在沉积中,对锅炉受热面造成了严重的腐蚀,降低了受热面的使用寿命;随着受热面上沉积的增厚,易于引起塌灰等问题,严重影响了锅炉的安全运行,同时沉积的增厚,使得排烟温度的升高,降低了锅炉出力。
     针对目前各种降低沉积的方法和措施,本文根据它们的特点进行了归类,并一一进行了分析和评价,分析认为目前的这些方法在使用中各有利弊,必须根据实际情况、原则选择合适的方式降低沉积及其引起的腐蚀问题。
With fossil fuels exhausting and environment pollution increasingly serious, Generating technology by straw direct combustion is becoming the focus of attention at home and abroad. But the direct combustion of straw in boiler causes a lot of problems to combustion system owing to its special form conditions and process making the composition and structure of Straw different from fossil energy, among them, the deposit and corrosive on the heat-transfer surface is most severe, which not only influences the transfer of heat in the heat-transfer surface, but also seriously corrodes the heat-transfer surface and impacts on the running of boiler. Currently, the deposits and corrosive on the heat-transfer surface caused by the direct combustion of straw has become a main obstacle of the development of generating technology by straw direct combustion.
     Although at home and abroad the study on deposits on the heat-transfer surface in boiler caused by straw combustion has made some progress, owing to the forming of deposits being a complicated physical chemistry process which comes down to furnace principle, fuel and chemistry and reaction dynamics of ash and slagging, multiphase hydrodynamics、heat and mass transferring、burning principle and technology、material and so on, in addition, which is affected by many factors such as the melting point、elements、viscidity of ash、thermal parameter of hearth、structure of combustion and air dynamical condition in furnace、running parameter of combustion and so on. At the time, current study means is also limited. As a result, the forming process and corrosion principle of deposits is still unclear and the problems caused by deposit still exist.
     In order to seek the Methods and measures of reducing Corrosion and deposit quantity, eliminate the harm caused by deposit and impel the development of generating technology by straw direct combustion, on the basis of consulting a great deal of correlative Literatures of home and abroad, the author designed a test device to simulation the formation of deposit on the heat-transfer surface caused by the direct combustion of straw, and studied and analyzed the influence of the component change of materials, the temperature change of hearth and the speed change of wind on the formation of deposits and corrosion. The result shows: the main cause that the quantity of deposit during straw combustion higher than that during lumber combustion is the quantity of alkali metals and Cl in straw is higher than that in lumber; The quantity of alkali metals separating from straw fuel increases along with the temperature of hearth rising, which is beneficial to the formation of the low melting point share-crystal by alkali metals and SiO_2; Wind speed influences on the aerodynamic field of hearth, smoke speed and direction, changes the velocity, direction and depositing location of fly ash particles, the upper wend speed is good to the separation of alkali metals and Cl from straw, and is easy to the formation of fouling. But when wend speed exceeds 12m/s, the ash in smoke including a lot of gas compositions has no chance to touch the heat-transfer surface and is directly given out, under the condition, the granule that have adhered to heat-transfer surface renewably return to smoke, as a result, the amount of deposits on the heat-transfer surface declines; The rate of deposits declines with the heat-transfer surface temperature enhancing, when the whole surface of deposits with viscosity is formed, the influence of heat-transfer surface temperature falls, and at last, it is eliminated with the amount of deposits increasing. Besides, with the heat-transfer surface temperature increasing, fouling is going to be appearing in deposits. The organization and structure change of straw has an important influence on the deposits. Compared to raw straw, after SDBF burns, the close-grained coke framework is formed which not only changes the rule of the formation of deposits but also declines the rate of deposits.
     In order to get to the bottom of process and mechanism of deposit formation on heat-transfer surface during straw combustion, the author first studied and analyzed separately the formation of deposit on the inner surface of barring fire loop and the surface of water tank, the results show: the deposits on the different surface in the hearth is different, the deposit on the inner surface of barring fire loop is made of fine particles and reflects white light, there are not Si、Al、Fe、Ti or other Refractory compounds found in its components, however the deposit on the surface of water tank is silver gray and made of coarse grains, in it, the content of Ca、Si、Ti、Mg and other Minerals is higher. According to above analysis, the author reasoned separately their formation process and mechanism and thought that the formation of deposits is caused by the configuration change and transportation of ash, which is also the depositing process of ash. The main mechanism of deposit on the inner surface of barring fire loop is condensation and chemical reaction and the deposit on the surface of water tank is formed by thermophoresis、particle impaction.
     To seek the mechanism of corrosion caused by deposit, the author analyzed the deposit shelled from the heat-transfer surface, the result shows that the process of corrosive is also the process of gradually transferring Fe to deposit by chemical reaction, which destroys the original protective film of the heat-transfer surface. During corrosion, chloride and sulphate play an important role, first, chloride goes . through oxide and reacts with Fe to make FeCl_3, then, sulphate reacts with FeCl_3 to make FeS, so that, the concentration of FeCl_3 reduces and the reactor is towards the direction of FeCl_3
     In order to have a clear understanding of harm caused by deposit and corrosive and to provide some reference to straw direct combustion of China, the paper first studied the influence of deposit on heat transfer efficiency of heat-transfer surface and corrosion on heat-transfer surface by test, then, discussed the influence of deposit on the running of boiler with the actual straw burning boiler. Research shows that the deposits formed by straw combustion more seriously inhibits heat transfer than that formed by limber combustion. Generally, when deposit is 3mm loose ash or 10mm slagging, heat transferred through the heat-transfer surface decreases 40%, however, when the thickness of deposit formed by straw combustion adds from 0mm to 0.56mm, heat transferred by the heat-transfer surface decreases 51%; a great deal of Cl who enriches in deposit erodes seriously heat-transfer surface, reduces the life time of heat-transfer surface; at the time, the deposit impacts on the running of the boiler safely.
     In view of the current various methods and measures that reduce deposit, this paper classified them according to their characteristic and analyzed and evaluated them separately, by this way, the author thought that these methods in use have their pros and cons, thus a suitable method must be chose from them to reduce deposit according to the actual situation and Principle
引文
[1]中国统计年鉴.
    [2]Doris Leblond.世界能源展望2005:到2030年的能源需求[J].国内外石油动态.2006,2:1-3.
    [3]万国华.世界能源的发展趋势及江西能源的发展方向[J].价格月刊,2006,3:28.
    [4]赵旺初.生物质与煤共燃技术将再度兴起[J].锅炉制造,2000(2):11.
    [5]Aardenne O荷兰的生物能政策[J].世界环境,2001,(2):25-26.
    [6]张忠孝,吴江全,栾翔.洁净煤燃烧技术发展趋势[J].电站系统工程,1999。15(2):44-47.
    [7]陈清如.煤炭仍是二十一世纪的主要能源.光明日报。2001.10.29.
    [8]国家电网公司.中国电力市场分析与研究.2004春季报告[M].北京:中国电力出版社,2004.
    [9]王艳,梁歆梧.中国能源现状[J].企业与市场:上半月.2006.3:47-49.
    [10]周大地.十一五国家能源形势分析[J].电业政策研究.2006,3:8-9.
    [11]“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究[M].北京:化学工业出版社,2004,9.
    [12]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003,5.
    [13]清华大学核能与新能源技术研究院《中国能源展望》编写组.中国能源展望[M].北京:清华大学出版社,2004.
    [14]霍雅勤.化石能源的环境影响及其政策选择[J].中国能源.2000,5:17-21.
    [15]刘平.生物质能(秸秆)发电技术的展望[J].中州煤炭,2005.2:16-17.
    [16]D anish Government,Energy 21(Copenhagen,1996)
    [17]宋鸿伟,郭民臣,王欣。生物质燃烧过程中的积灰结渣特性[J].节能与环保,2003.9:29-31。
    [18]邓可蕴 等.中国农村能源综合建设理论与实践[M].北京:中国环境科学出版社,2001.
    [19]85-913-04-05攻关课题组*.我国作物秸秆燃烧甲烷、氧化亚氮排放量变化趋势预测(1990-2020)[J].农业环境保护,1995,14(3):111-116
    [20]ZHANG G B.Speech in International Congress on Renew able Energy,2005,Beijing.
    [21]新能源网,2006.10.31.
    [22]盛昌栋.对煤粉炉结渣、积灰及影响的认识[J].中国电力,第30.
    [23]唐艳玲,稻秸热解过程中碱金属析出的试验研究.硕士论文,浙江大学,2004.
    [24]鲁文华.电站锅炉受热面积灰、结渣在线监测的研究与应用.华北电力大学工程硕士学位论文,2002.
    [25]Bo Sander,ELSAMPROJEKT,Kraftvaerksvej 53.EMISSIONS,CORROSION AND ALKALI CHEMISTRY IN STRAW-FIRED COMBINED HEAT AND POWER PLANTS.1st World Conference on Biomass for Energy and Industry,Sevilla,2000,6:5-9.
    [26]Hausen Lone Aslaug.Melting and Sintering of Ashes.Ph.D Thesis.Department of chemical Engineering,Technical University of Denmark.(1998).
    [27]Weigang Lin,Wenli Song.Power production from biomass in Denmark[J]燃料化学学报,2005,33(6):650-655.
    [28]田恒.谈谈煤中氯及其危害[J].煤质技术与科学管理,1994,(3):18-22.
    [29]James P J.Pinder L W Effect of coal chlorine on the fireside corrosion of boiler furnace wall and superheater/reheater tubing[J].Materials at High Temperatures,1997,14(3):187-196.
    [30]E.NATARAJAN,M.OHMAN and A.N.RAO.EXPERIMENTAL DETERMINATATION OF BED AGGLOMERATION TENDENCIES OF SOME COMMON AGRICULTURAL RESIDUES IN FLUIDIZED BED COMBUSTION AND GASIFICATION[J].Biomass and Bioenergy,1998,2(15):163-169.
    [31]秸秆发电,看上去很美的可再生能源。中国可再生能源信息,2005,11-3
    [32]L.L.Baxter.Ash deposition during biomass and coal combustion:a mechanistic approach[J].Biomass Bioenergy 4(2)(1993)85-102.
    [33]P.Thy,C.E.Lesher,B.M.Jenkins.Experimental determination of high-temperature elemental losses from biomass slag[J].fuel79,2000,693-700.
    [34]Sφren Knudsen Kaer ACOMP Research Group.The Impact of Deposits on Heat Transfer during Biomass Combustion.www.iet.auc.dk/~skk/download/CombInst2001.pdf。
    [35]INGWALD OBERNBERGER,FRIEDRICH BIEDERMANN,WALTER WIDMANN AND RUDOLF RIEDL.CONCENTRATIONS OF INORGANIC ELEMENTS IN BIOMASS FUELS AND RECOVERY IN THE DIFFERENT ASH FRACTIONS[J].Biomass and Bioenergy,1997,3(12)211-224.
    [36]Blander M,Pelton A D.The inorganic chemistry of the combustion of wheat straw [J].Biomass Bioenergy 1997,12(4):295-298.
    [37]B.M.Jenkins,L.L.Baxter,T.R.Miles Jr.,T,R.Miles.combustion properties of biomass[J],Fuel processing Technology 54(1998):17-46.
    [38]段菁春,肖军,王杰林,庄新国.生物质与煤共燃的研究[J].电站系统工程.2004,20(1):1-4。
    [39]Lars Storm Pedersen,Hanne Philbert Nielsen.Full-scale co-firing of straw and coal[J].Fuel,1996,13(75)1584-1590.
    [40]Zhang J,Smith K R,Ma Y.Greenhouse gases and other airborne pollutants from household stoves in China:A database for emission factors[J].Atmospheric Environment,2000,34(26):4537-4549.
    [41]Andreae M 0,Artaxo P,Fischer H,et al.Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region[J].Geophys.Res.Lett.,2001,28(6):951-954.
    [42]刘圣勇,生物质(秸秆)成型燃料燃烧设备研制及试验研究,河南农业大学博士论文,2003.
    [43]DIN 51719-A,Testing of solid fuels,determination of ash content(in German),1978.
    [44]ASTM 271-68,Laboratory sampling and analysis of coal and coke,1970.
    [45]ASTM D1857-68,Fusibility of coal and coke ash,1970.
    [46]DIN 51730,Testing of solid fuels,determination of ash melting,1984.
    [47]M.Zevenhoven-Onderwater~*,J.-P.Blomquist,B.-J.Skrifvars,R.Backman,M.Hupa.The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion[J].Fuel,79(2000)1353-1361
    [48]岑可发,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994.
    [49]池作和.燃用劣质煤电站锅炉低负荷稳燃防结渣及减轻烟温偏差的研究.浙江大学博士论文.1996.
    [50]宋永利,杨丽华.工业锅炉生物质燃烧技术[J].节能技术.2003,21(3),p44-45.
    [51]陈冠益,方梦祥.生物质固定床热解特性的实验研究与分析[J].太阳能学报,1999,20(2):p122-129.
    [52]马孝琴,李刚.小型燃煤锅炉改造成SDBF锅炉的前景分析[J].农村能源.2001(5),p20-22.
    [53]樊峰鸣,我国农村秸秆成型燃料规模化技术研究.河南农业大学博士论文,2005.
    [54]林宗虎,魏敦崧,安恩科,等.循环流化床锅炉[M].化学工业出版社,41-45.
    [55]张全国,刘圣勇.燃烧理论及其应用[M].河南科学技术出版社.93-112.
    [56]刘石彩,蒋剑春,戴伟娣,等.专用颗粒成型燃料民用炉灶技术研究[J].林产化工通讯,2000,34(1):10-12.
    [57]郝芳洲,贾振航,王明洲.实用节能炉灶[M].北京,化学工业出版社,2004.
    [58]王天安,王治国,刘胜臻.饮食业炊事型煤炉的设计和结构[J].农村能源,1995,5:7-8.
    [59]王秉铨主编.工业炉设计手册[M].北京:机械工业出版社,1996.
    [60]宋贵良主编.锅炉计算手册(上册)[M].辽宁科学技术出版社,1995.
    [61]炉烟尘测试方法,GB5468-1991.
    [62]侯中兰.河南农业大学硕士论文,
    [63]Tomas R.Miles,Tomas R.miles,JR,Larry,L.Baxter.Bioler deposits from firing Biomass fuels[J].Biomass and Bioenergy:1996,10:125-138.
    [64]植物营养学.
    [65]E.Thy,B.M.Jenkins,C.E.Lesher,High-Temperature Melting Behavior of Urban Wood Fuel Ash[J].Energy&Fuel,1999,13:839-850.
    [66]Weigang Lin,Gitte Krusholm,Kim Dam-Johansen et al.Agglomeration phenomena in fluidized bed combustion of straw[J].ASME Fluidized Bed Combustion,1997(2):831-837.
    [67]B.M.Jenkins,L.L.Baxter.Combustion properties of biomass[J]Fuel Processing Technology,19898(54):17-46.
    [68]Baxter.L.L.Ash deposition during biosolid and coal combustion:a mechanistic approach[J].Biomass Bioenergy,1993,4(2):85-102.
    [69]T.Heinzel,V.Siegle,H.Spliethoff,K.R.G.Hein.Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility[J].fuel processing techenology 1998,54:109-125.
    [70]Anderson I C,Levine J S,Poth M A,et al.Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning[J].J.Geophys.Res,1988,93:3893-3898.
    [71]Crntzen P J,An dreaeM0.Biomass burning in the tropics:lm.pact on atmospheric chemistry and biogeochemical cycles[J].Science,1990,250:1669-1678.
    [72]Lobert J M,Scharffe D H,et al.Experimental evaluation of biomass burning emissions:Nitrogen and carbon containing COW1-pounds[A].In:Levine J S.Global Biomass Burning:Atmospheric,Climatic,and Biospheric Implications[C]Cambridge,M ass.,The M IT Press,1991:289-304.
    [73]Levine J S,Cofer W R,Cahoon D R,et al.Biomass Burning:A Driver for Global Change[J].Environmental Science and Technology,1995,29(3):12OA-125A.
    [74]Miles T R,Miles T R Jr,Baxter,L L,et al.Biomass and Bioenergy[J],1996,10(2-3):125.
    [75]张军,范志林,林晓芬,等.灰化温度对生物质灰特征的影响[J].燃料化学学报,2004,32(5):547.
    [76]徐靓,安莲英.农作物秸杆中钾元素的回收与利用[J].广州微量元素科学.2006,13(1):7-11.
    [77]龙朝.提高烟草钾含量的技术途径[J].现代农业科技,2006,14:53-54.
    [78]张云生,顾思平.哈尔滨市主要农作物籽实、秸杆根茬产量及其养分含量的分析[J].东北农业大学学报,2002,33(2):125-128.
    [79]王华,林卫红.贵州省油菜生产现状与可持续发展战略[J].贵州农业科学,2000,28(2):57-59.
    [80]何良胜,刘初成.烟草秸杆还田的效果研究初报[J].湖南农业科学,2002(6):34-35.
    [81]王道明.果园秸杆覆盖技术[J].农村经济与科技,2002,13(115):35.
    [82]江涛.要重视有机钾肥的利用[J].河南科技,2003,(5):10.
    [83]王正银,胡尚钦.中国优势肥用植物资源潜力与利用[J].植物资源与环境学报,2000,9(3):49-53.
    [84]宋宏伟,郭臣民,王欣.生物质燃烧过程中积灰结渣特性[J].节能与环保,2003,9:29-31.
    [85]植物必需的营养元素.冀鲁信息网。
    [86]E.H.Halstead,J.D.Beaton,J.C,W.Keng,Miaoyuon Wang.氯--重要的植物营养元素研究最新的进展[J].微量元素学术会议.
    [87]邹邦基.土壤与植物中的卤族元素(Ⅱ)氯[J].土壤学进展,1984,(6).
    [88]於丙军,刘友良.植物中的氯、氯通道和耐氯性[J].植物学通报2004,21(4):402-410.
    [89]陈木旺,卢廷群.农田施肥要走出恐氯误区[J].福州农业科学,2003,5:31-32.
    [90]胡蔼堂.植物营养学(下册)[M].北京:农业出版社,1985.
    [91]谢瑞芝,董树亭,胡昌浩.植物硫素营养研究进展[J].中国农学通报,2004,18(2):65-69.
    [92]闵凡飞,陈清如,张明旭.新鲜生物质热解气化半焦特性的XRD研究.中国矿业大学学报.2006,35(3):336-340.
    [93]Ardersen K.H.Deposite Formation During Coal-straw Co-combustion in a Utility PF-Bolier.Ph.D Thesis.Department of chemical Engineering,Technical University of Denmark.(1998).
    [94]Miles T.R.,Miles T.R.,Jr,Baxter,L.L.,et al.Boiler Deposits from firing biomass fuels[J].Biomass and bioenergy,vol.10,1996,pp125-138.
    [95]Nielsen H.P.,Deposit and High-Temperature Corrosion in Biomass-Fired Boilers.Ph.D.Thesis.Department of chemical Engineering,Technical University of Denmark.(1998).
    [96]张军,盛昌栋,魏启东.生物质燃烧过程中受热面的腐蚀性机理和防范措施[J].能源技术,2005,26(增刊):124-127.
    [97]Grabke H.Reese E,queiegel M.Corrosion science[J],1995,37:1023,
    [98]Henriksen N,Larsen O H.Materials at high temperatures[J],1997,14(3):227,
    [99]Lin W,Jensen A D,lohnsson J E.et al.Proceedings of the international conference on fluidized bed com-bustion[C],2003:945.
    [100]Michelsen H P,Frandsen F,Dam-Johansen K,et al.Fuel processing technology[J],1998,54(1-3);95.
    [101]Rasmussen I,Clausen J C.American society of me-chanical engineers,advanced energy systems division(Publication)AES[J],1995,1:557.
    [102]张殿军 陈之航.生物质燃烧技术的应用[J].能源研究与信息.1999,15(3):15-21。
    [103]张军,盛昌栋,魏启东.生物质燃烧过程中受热面的腐蚀性机理和防范措施[J].能源技术.2005,26增刊:124-127.:
    [104]杨世铭.传热学[M].北京高等教育出版社.1987
    [105]唐必光,刘勇,余艳芝,等.锅炉水冷壁两种壁温波动特点及其原因分析[J]华中理工大学学报1999,27(8):110-112.
    [106]白杰.电站锅炉受热面积灰、结渣在线监测及智能吹灰的研究.华北电力大学硕士学位论文,2002.
    [107]许尧.电站煤粉锅炉结渣、积灰监测的研究.华北电力大学硕士学位论文,2001.
    [108]Wei X,Schnell U,Hein K R G.Fuel[J],2005,84(7-8):841.
    [109]Grabke H J.In:Bryers R W,editor.Incinerating municipal and industrial waste[M].New York:Hemisphere,1989.161.。
    [110]Dayton D C,Jerkins B M,Turn S Q,et al.Eand fuels[J],1999,13(4):860.
    [111]Demirbas A Energy sources[J],2003,25(7);679.
    [112]Robinson A L,Junker H,Baxter L L.Energy and fuels[J],2002,16(2):343.
    [113]卢洪波,徐海军,马文学等,鹿钦军.煤与玉米秸秆混合燃烧的实验研究。东北电力学院学报,2005,6:5-8.
    [114]TURN S Q,KINOSHITA C M,ISHIMURA D M,et al.A review of sorbent materials for fixed bed alkali getter systems in biomass gasifier combined cycle power generation applications[J].Journal of the Institute of Energy,1998,71:163-177。
    [115]马孝琴,骆仲泱,方梦祥,等.添加剂对秸秆燃烧过程中碱金属行为的影响[J].浙江大学学报(工学版).2006,40(4):599-604.
    [116]Coda B,Aho M,Berger R,et al.Energy and fuels[J],2001,15(3):680.
    [117]Gustafsson S,Kremsner F,Langer G.Welding and cutting[J],2002,54(2):90.
    [118]Hearley J A,Liu C,Little J A,et al.British corrosion journal[J],2001,36(2):111.
    [119]陈琪.解决电站锅炉水冷壁高温腐蚀问题的试验研究 华北电力大学硕士学位论文.2000.
    [120]Xu Cheng,Richard W.Kephart,Jeffry.J.illiams,Ross Papilla.Boiler Cleaning Sootblower Scheduling Optimization[J].International Joint Power Generation Conference and Exposition and the International Conference on Power Engineering,July 25-28,1999,USA.
    [121]谢孝东.影响锅炉结渣的因素及其预防措施。中国发电网
    [122]李霄飞,基于人工神经网络的锅炉积灰、结渣在线监测方法的研究,华北电力大学硕士学位论文,2002.
    [123]Ensted CHP plant(EV3)Biomass energy。
    [124]biomass fired super-heater energy center denmark

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700