用户名: 密码: 验证码:
基于温度和CO影响下的公路隧道火灾人员逃生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在研究隧道防灾、救灾、以及人员逃生时,火灾的初始增长阶段对于确定隧道内的温度增长、烟雾扩散、人员逃生以及救援位置是非常重要的。在隧道火灾中,人员除了要遭受高温气体对呼吸道的伤害,还要受到火灾产生的有害气体的伤害。目前,国内外在研究失火隧道内温度、烟气生成等参数时,大多针对不同的火灾场景给出了恒定的热释放率,这样虽然能够简化计算,使结果偏于安全,但是无法模拟出火灾增长和衰减的实际过程。另外,在研究人员逃生时,不少文献只是采用了恒定的温度和CO浓度的逃生条件,显然也存在瑕疵。
     本文首先参考了国内外相关文献,在分析目前国际上多种热释放函数优缺点的基础上,以长安大学杨涛给出的火灾热释放函数为基础,采用数值模拟方法,研究了不同环境风速和不同火灾规模时公路隧道的火灾温度场和烟雾浓度场。
     其次,在文献提出的的修正克拉尼温度逃生条件的基础上,根据火灾烟雾中一氧化碳、二氧化碳、氮氧化物、氰化氢等对人体的伤害机理,将FED失能模型作为隧道火灾时有害气体逃生条件,首次将温度和烟雾对人员的共同伤害引入隧道火灾的逃生中。
     再次,以厦门翔安海底公路隧道为对象,采用数值模拟方法,详细地研究了隧道火灾发生后,在不同入口风速、不同火灾规模、不同火源位置以及射流风机、横通道、竖井的开启时的隧道内的压力分布、流场分布、温度场分布以及烟雾浓度场分布,得出了火灾时隧道内不同区域温度和烟雾的传播分布规律。最后,根据人员极限忍受温度与忍受有害气体的时间,给出了不同隧道风速、不同火灾规模时隧道内人员逃生的区域和可安全逃生的距离。
     本文的主要结论有:
     (1)首次同时考虑温度和有害气体对人体的伤害,并将其应用在隧道火灾的逃生研究中;
     (2)选择包含时间变化的热释放函数,采用数值模拟方法研究不同情况时隧道内的温度场和烟雾场,得到如下结论:
     ①同一时刻各特征点的温度随火源距离的增加而降低,且降低的幅度是逐渐减小的。隧道内除火源处外,其他特征点的最高温度都出现在较晚的时刻,与火源处最高温度的出现时间相比,有一个时间延迟;
     ②火灾发生后,隧道内纵向温度分布呈三段式分布特征:在火区下游开始一小段距离范围内,温度明显低于分布在两侧的“两侧高温段”的温度。随后接下来的一段距离发展为中心区域温度比两侧温度稍高些的“中心高温段”。最后剩下的至出口范围温度分布才趋于均匀的“均匀段”;
     ③针对厦门翔安海底隧道而言,当火灾规模为20MW时,应取不小于3m/s的火灾控制风速,当火灾规模为30MW时,应取不小于4m/s的火灾控制风速;
Research on tunnel disaster prevention, disaster relief, and personnel evacuation, the fire of the initial growth phase is very important for the temperature increase, smoke diffusion, personnel escape and rescue personnel position. In the tunnel fire, the passenger in addition to being high-temperature gas to the respiratory tract damage, but also harmful gases by fire damage. At present, the tunnel of fire at home and abroad in the study of temperature, gas generation and other parameters, according to different fire scale, the constant heat release rate is be used. Although it can simplify calculation result, safety, but cannot tends to simulate fire growth and decay of the actual process. In addition, too many papers only use constant temperature or Carbon monoxide to simulate the fire in the escape condition, obviously defective.
     Firstly, with reference to relevant literature, analysis the current international advantages and disadvantages of a variety of heat release function. On the basis of Chang'an University, Yang Tao given heat release function, based on numerical simulation methods to study the different wind speed and different scale tunnel fire temperature and smoke concentration field.
     Secondly, in the literature, the amendment proposed by Granee formula escape the conditions of temperature is important. According to fire smoke, carbon monoxide, carbon dioxide, nitrogen oxides, hydrogen cyanide and other harm to human body mechanism, the FED model of disability accomplish as a harmful gas to escape when the tunnel fire conditions. It is the first time that consideration the temperature and smoke damage together on the escape tunnel fire.
     Thirdly, as Xia Men undersea tunnel for the object, using numerical simulation method to study the tunnel law after the fire broke out, at different inlet velocity, different fire scale, different fire location and the different fan location, cross channel, shaft opening when the tunnel pressure distribution, flow distribution, temperature distribution and the smoke distribution. Obtain the fire and smoke spread regulation of the temperature distribution in different regions inside the tunnel. Finally, according to extremely time the passengers endure in the harmful gas and high temperature environment, passengers are given areas and safe evacuation distance at different wind speed, different fire scale.
     The main conclusions of this paper are:
     (1) It is the first time that taking into account the temperature and the damage of harmful gases on the human body and its application in the study of tunnel fire escape;
     (2) Choosing the time-varying heat release function and the numerical simulation method to research different situations of the temperature and smoke field inside the tunnel fields, the following conclusion:
     ①In the same time the temperature of each feature point with the fire decreases with increasing distance, and reduce the rate is gradually reduced. In addition to fire, the tunnel, the other characteristic points of the highest temperatures occur at a later time, and fire, the maximum temperature compared to the emergence of time, there is a time delay;
     ②After the fire, the tunnel has three-stage vertical distribution of temperature distribution:In the beginning a short distance downstream of the fire, the temperature was lower than that distributed in both sides of the "hot section on both sides" of the temperature. The next section of the subsequent development of central region from both sides of the temperature slightly higher temperature than some of the "center and high temperatures." The last remaining area to the exit temperature distribution became more uniform, "even paragraph";
     ③For Xiamen undersea tunnel, when the fire size of 20MW, it should take no less than 3m/s wind speed of fire control, when the fire size is 30MW, it should take no less than 4m/s wind speed of fire control;
引文
[1]凤懋润.中国公路和隧道建设[A].国际隧道研讨会暨公路建设技术交流大会论文集[C].北京:人民交通出版社,2002.11
    [2]孔祥金.我国公路隧道的特色工程[A].中国高速公路,2009年第3期
    [3]康晓龙,王伟,赵耀华.公路隧道火灾事故调研与对策分析[A].中国安全科学学报,2007年5月
    [4]王辉,王丹.公路隧道火灾事故统计分析[A].河北交通科技,2009.6
    [5]里查德·卡维尔、阿兰·比尔德、保尔·乔威特.隧道突发火灾时的明智通风控制,消防技术与产品信息,2001年09期
    [6]Richard G. Gann, Jason D. Averill, Kathryn M. Butler, et al. International Study of the Sublethal Effects of Fire Smoke on Survivability and Health (SEFS):Phase I Final Report,2001
    [7]Pot ts W. J, Lederer T. S. A method for comparative testing of smoke toxicity [J]. Journal of Combustion Toxicology,1977,4:114~162
    [8]RobinsonR. S, DresslerD. P, DuggerDL, et al. Smoke to city of fire retardant television cabinets [J]. Journal of Combustion Toxicology,1977,4:435
    [9]Yamamoto K. Acute toxicity of the combustion products from various kinds of fibers [J] Z Rechtsmedizin,1975,76:11~26
    [10]Kishitani K, Nakamura K. Toxicities of combustion products [J]. J FF Combustion Toxicology,1974,1:104~120
    [11]Purser DA, Grimshaw P. The Incapacitative effects of exposure to the thermal decomposition products of polyurethane foams [A]. MTERFLAM 82, Conference Workbook [C], Guildford, England:Univercity of Surrey,1982.71~80
    [12]Cornish H H, Barth M L, Hahn K J. Comparative Toxicology of Plastics During Thermo decomposition [R]. Department of Environment & Indust rial Health, The University of Michigan
    [13]卫巍.长大公路隧道火灾烟气数值模拟及逃生研究[D].西安:长安大学,2008
    [14]钟委,霍然,史聪灵.热释放速率设定方式的几点讨论[J].自然灾害学报,2004年02期
    [15]张松涛.工程燃烧学[M].上海:上海交通大学出版社,1998
    [16]曹振.特长公路隧道分段纵向通风火灾排烟研究[D].西安:长安大学,2007
    [17]Alfred Haack.交通隧道中的火灾安全概念,2001’中瑞公路隧道技术交流,2001
    [18]Allen R. Tunnel operations. Tunnel Management International[J]. Vol.6, No.4.
    [19]STUDIENG ELLSCHAFT STAHLANWENDUNG E.V:"EUREKA-Project EU 499 Firetun:Fire in transport tunnels; Report on full-sale tests ", Verlag and Vertriebsgesellsvhaft, Diuisseldorf, November 1995
    [20]J.A.Gonzalel and N.H.Danziger. Tunnel ventilation design for fire safety,6th International symposium on the aerodynamics and ventilation of vehicle tunnels, England, Sept 1988, P575-P592
    [21]PIARC COMMITTEE ON ROAD TUNNELS, Report to the XVIIIth World Road Congress, Marrakesh(Morocco), September 1991(ref.19.05.B)/COMITE AIPCR DES TUNNELS ROUTIES, rapport au XIXE Congres mondial dela Route, Bruxelles(Belgique), September 1987(ref.18.05.F)
    [22]Ingason. H. "Fire growth rate is more important than maximum heat release rate in tunnel fires", In Tunnel Management International,2006
    [23]Ingason. H., Bergqvist. A, Frantzich. H. and Hasselrot, K."Raddningsinsatser i vagtunnlar", Raddningsverket, P21-459/05 (in Swedish),2005
    [24]Ingason. H. "Design fires in tunnels", Second International Symposium, Lausanne 2006.
    [25]Numajiri. F, Furukawa. K. "Short Communication:Mathe. al Expression of Heat Release Rate Curve and Proposal of 'Burning Index", Fire and Materials,22,39-42,1998
    [26]卢平,丛北华,廖光煊等.纵向通风水平隧道火灾烟气流动特性研究[A].中国工程科学,2004年10月
    [27]杨涛.公路隧道火灾热释放率及通风方式研究[D].西安:长安大学,2009
    [28]童庆杰,权高峰,邵力.火灾事故中人的心理及行为分析[J].合肥工业大学学报(社会科学版),2004年03期
    [29]贺大伟,陈志显.火灾中烟雾对人的危害及防范[J].河南消防,1999年09期
    [30]周永狄.长大公路隧道火灾数值模拟及逃生研究[D].西安:长安大学,2006
    [31]王永东.公路隧道运营安全技术研究[D].西安:长安大学,2007
    [32]黄锐,杨立中,方伟峰.火灾烟气危害性研究及其进展[A].中国工程科学,2002年7月
    [33]张慧,祁海鹰,吕子安.火灾烟气中CO2和CO的释放特性研究[J].工程热物理学报,2004年5月
    [34]童朝阳,阴忆峰,黄启斌.火灾烟气中CO2改变呼吸换气速率对人员吸入其他毒性气体的影响[A].毒理学杂志,2005年9月第19卷第3期
    [35]赵杰,朱明学,陆一呜.火灾烟雾中的有毒气体及中毒机制[J].中华急诊医学杂志,2004年7月第13卷第7期
    [36]邱榕,范维澄.火灾常见有害燃烧产物的生物毒理[J].火灾科学,2001年7月
    [37]李耀庄,邱昌辉,陈长坤.隧道火灾危险性评估研究[J].安全科学技术,2006年4月
    [38]安永林,杨高尚,彭立敏.隧道火灾中CO对人员危害机理的调研[A].采矿技术,2006年9月
    [39]要忠茹.地铁站台及区间火灾数值模拟及逃生研究[D].西安:长安大学,2009
    [40]陈智明,霍然,王浩波.某教学楼火灾中人员安全疏散时间的预测[J].火灾科学,2003年01期
    [41]古晋.地铁隧道火灾的疏散与救援[J].劳动保护,2004年11期
    [42]谢旭阳,周心权,谢续程.高层建筑火灾人员疏散和人员伤亡的模拟[J].中国安全科学学报,2002年03期
    [43]JTJ 026.1-1999,公路隧道通风照明设计规范[S].北京:人民交通出版社,2004
    [44]闫治国.长大公路隧道火灾研究[D].成都:西南交通大学,2002
    [45]张辉,范维澄.火灾问题中湍流模型和数值方法的研究[J].中国科学技术大学学报,1988.18(4).459-46
    [46]王福军.计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004
    [47]刘方.中庭火灾烟气流动与烟气控制研究[D].重庆:重庆大学,2002
    [48]钟委,霍然,史聪灵.热释放速率设定方式的几点讨论[J].自然灾害学报,2004年02期
    [49]邓念兵.公路隧道防火救灾对策研究[D].西安:长安大学,2003
    [50]徐琳,张旭.水平隧道火灾通风纵向通风控制风速的合理确定[J].中国公路学报,2007年02期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700