用户名: 密码: 验证码:
虚拟手术培训系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟手术(Virtual Surgery)培训系统是虚拟现实技术在现代医学中的应用,是专门用来模拟在手术过程可能遇到各种现象的虚拟现实(Virtual Reality)应用系统。它通过对医生手术操作过程中的整个流程进行模拟,来实现对医生的虚拟培训。一套完整的手术仿真系统所要实现的功能包括模型的构建、碰撞检测技术的实现、手术刀对软组织的切割、缝合、变形和真实感渲染方面的研究。
     该培训系统是基于SOFA仿真框架来进行研发。首先对系统要用到的手术器械和软组织模型进行建模,每个模型都由碰撞模型、行为模型、可视模型组成,三种模型之间的联系是通过映射机制来实现的。其中碰撞模型负责场景中的模型(如手术刀与软组织)在运动过程中碰撞检测部分,而碰撞模型的精确性,直接影响变形与切割的真实性。模型之间发生碰撞后,通过映射反应到行为模型上,行为模型主要实现力的计算、物体重力和质量、各种算法等。行为模型通过计算,把信息映射到可视模型上,可视模型主要负责信息的显示,通过它把信息反馈到操作者。模型构建完成后,就可以加载到场景当中。由于碰撞模型由球体体素组成,所以,通过光线跟踪算法来实现模型之间的碰撞检测。为了简化计算量,行为模型在实现变形时是通过弹簧-质子算法来实现计算的。
     切割操作是培训系统的一项关键技术,系统采用的是基于四面体的最小单元分裂的切割算法。切割发生后,通过对交点进行计算,然后,通过改变几何模型相关的数据结构来完成软组织拓扑结构的改变,通过映射反馈到可视模型上。
The training system of virtual surgery is the application of the technology of virtual reality in modern medicine,and is designed to simulate surgical procedures that may be encountered in the phenomena of virtual reality applications. It is through the process of surgical operations to simulate the entire process. A complete set of surgical simulation system will be include the research of model building, the implementation of the technology of collision detection , the cutting of soft tissue with scalpel, suturing, deformation and realistic graphical rendering.
     The research and development of the training system is based on the SOFA framework. First of all, I will build the models. Each model is composed of collision model, behavior model and visual model. The collision model is charge of the collision detection of model. After that the collision is to occur, it will be response to the behavior model by mapping mechanism. Behavior model is mainly to achieve the calculation of force, gravity, quality of objects, various algorithms, and so on, while the information which is calculated by behavior model will be mapped to the visual model. The visual model mainly responsible for the display with information, it will be feedback to the operator. Once the model is complete, it can be loaded into the scene. The collision model is composed of ball element. Therefore, the collision algorithm is the ray tracing algorithm. The deformation is adopted in the spring-mass algorithm in order to simplify the calculation.
     The cutting operation is a key technology of the training system. The cutting algorithm is based on the smallest unit split tetrahedron cut algorithm. Through the calculation of the intersection after cutting, it will change the data structure and topology of soft tissue. Finally, it will map back to the visual model.
引文
[1]J. ALLARD S, COTIN F.FAURE P.-J. BENSOUSSAN F, et al. SOFA– an Open Source Framework for Medical Simulation. CIMIT Sim Group - Harvard Medical School, INRIA - Evasion, Alcove, and Asclepios teams.
    [2]F.FAURE,J.ALLARD,S.COTIN,et al. SOFA:A MODULAR YET EFFICIENT SIMULATION FRAMEWORK. INRIA– Evasion, Alcove, and Asclepios teams– FRANCE CIMIT Sim Group– 65 Lansdowne Street– Cambridge, MA 02139– USA.
    [3]SOFA-Simulation Open Framework Architecture. http://www.sofa-framework.org.
    [4]Everton Hermann, Francois Faure, Bruno Raffin. RAY-TRACED COLLISION DETECTION FOR DEFORMABLE BODIES. INRIA, Grenoble Universities.
    [5]Denis Steinemann Miguel A, Otaduy Markus Gross. Fast Arbitrary Splitting of Deforming Objects. Computer Graphics Laboratory, ETH Zurich, Switzerland. Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)M.-P. Cani, J. O Brien (Editors).
    [6]Jingsi Zhang, Lixu Gu*, Pengfei Huang, et al.Real-time Cutting and Suture Simulation Using Hybrid Elastic Model.Proceedings of the 29th Annual International Conference of the IEEE EMBS August 23-26,2007.
    [7]T. Goktekin, M. Cenk Cavusoglu, and F. Tendick. Gipsi: An open source software development framework for surgical simulation. In International Symposium on Medical Simulation, pages 240–248, 2004.
    [8]Zeike A. Taylor, Mario Cheng, and Sébastien Ourselin. High-Speed Nonlinear Finite Element Analysis for Surgical Simulation Using Graphics Processing Units. IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 5, MAY 2008.
    [9]K. Montgomery et al. Spring: A general framework for collaborative, real-time surgical simulation. In Proceedings of MMVR, pages 23–26, 2002.
    [10]Eftychios Sifakis,Kevin G. Der,Ronald Fedkiw. Arbitrary Cutting of Deformable Tetrahedralized Objects. Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007).
    [11]Andrew B. Mor and Takeo Kanade. Modifying Soft Tissue Models: Progressive Cutting with Minimal New Element Creation. Center for Medical Robotics and Computer Assisted Surgery CarnegieMellon University, Pittsburgh, PA 15213.
    [12]Hui Zhang, Shahram Payandeh and John Dill. Simulation of Progressive Cutting on Surface Mesh Model. Robotics and Computer Graphics Laboratories,School of Engineering Science Simon Fraser University
    [13]D Bielser, M H Gross. Interactive simulation of surgical cuts [C]. Hong Kong, China: IEEE Computer Society Press, 2000: 116-125.
    [14]Han-Wen Nienhuys and A. Frank van der Stappen. Supporting cuts and finite element deformation in interactive surgery simulation. UU-CS-2001-16 June, 2001.
    [15]C.Forest *,H.Delingette, N. Ayache. Removing Tetrahedra from manifold tetrahedralisation: application to real-time surgical simulation. Epidaure Laboratory, INRIA, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis, France.
    [16]C. Monserrat, U. Meier, M. Alcaniz, et al. A new approach for the real-time simulation of tissue deformations in surgery simulation. Computer Methods and Programs in Biomedicine 64 (2001) 77–85.
    [17]Stéphane Cotin, HervéDelingette, Nicholas Ayache. Real-time elastic deformations of soft tissues for surgery simulation. Rapport de recherche n3511 - Octobre 1998 - 28 pages.
    [18]D Bielser, P Glardon, M Teschner, et al. A State Machine for Real-Time Cutting of Tetrahedral Meshes [J]. Graphical Models (S1524-0703), 2004, (66): 398-417.
    [19]JIA Shi-yu, PAN Zhen-kuan. A Preliminary Study of Soft Tissue Cutting in Virtual Surgery Simulation[C], 2004年生命系统建模仿真国际会议暨第一届全国生命系统建模仿真学术会议, 2004: 177-183.
    [20]贾世宇,潘振宽.虚拟手术中基于最少单元分裂的切割仿真技术.系统仿真学报,第20卷第6期2008年3月.
    [21]于健,贾世宇,潘振宽.虚拟手术中模拟软组织切割的混合弹性模型.计算机仿真,第24卷第04期2007年04月.
    [22]刘奇,周明全,刘晓宁.一种基于标志点的三维表面模型的切割方法.计算机应用,第二期,2007年.
    [23]王健宁,闫丽霞,石教英.一种基于四面体的软组织切割算法.系统仿真学报第12卷第5期2000年9月.
    [24]熊岳山,罗军,谭珂等.一种新的基于体元剖分的软组织切割算法计算机研究与发展.42(12):2132~2136,2005.
    [25]吴雯,孙剑,王平安.用于三维软组织实时切割的混合凝聚有限元模型.计算机学报,第25卷第9期2002年9月.
    [26]邢英杰,张少华,刘晓冰.虚拟手术系统技术现状.(大连理工大学自动化研究所,大连116024).
    [27]叶秀芬,乔冰,郭书祥等.虚拟手术仿真中人体软组织形变技术的研究.计算机应用,第29卷第2期2009年2月.
    [28]张青.虚拟手术中人体软组织变形仿真.青岛大学,2003年6月.
    [29]于健.虚拟手术中支持实时切割的混合弹性模型.青岛大学,2006年6月.
    [30]李振明.支持力反馈的软组织变形研究.青岛大学,2006年6月.
    [31]阎丽霞.虚拟手术关键技术研究[D].浙江:浙江大学CAD&CG国家重点实验室博士论文.2001.1.1.
    [32]侯丽平,刘越,王涌天.基于光线跟踪的碰撞检测技术.系统仿真学报,第18卷增刊12006年8月.
    [33]方锡武,崔汉国.有限元网格自动生成的Delaunay算法[J].海军工程学院学报,1998,4: 31~34.
    [34]R.M.克里斯坦森.粘弹性力学引论[M].科学出版社.
    [35]王勇军,吴鹏,郭光友等.支持力反馈的腹腔镜虚拟手术仿真系统[J].系统仿真学报, 2001, 13(3):404-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700