用户名: 密码: 验证码:
低温等离子体和脉冲电场灭菌技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体和脉冲电场是新兴环境友好的低温灭菌技术。在两个电极之间施加高压脉冲电时,产生较为均匀的脉冲电场但并不发生放电或击穿,是为脉冲电场处理。两个高压电极之间由于局部场强过大而发生放电或击穿并伴随活性粒子、光辐射、脉冲电场、冲击波等复合物理化学效应,则为等离子体处理。本文介绍了三种不同的等离子体/脉冲电场工艺在净化水中微生物的应用,以开发成套的低温净化装备。
     沿面脉冲等离子体系统采用自制脉冲电源和2.5L不锈钢反应器。处理1.6L去离子水时,脉冲放电从悬于水面上方的高压针尖沿水面击穿到接地的筒壁。典型的脉冲电压、脉冲电流、单脉冲能量和脉冲频率分别为18kV、2.5kA、10J和2pps。等离子体的灭菌效率与注入水中的能量密度呈正相关。当能量密度小于2J/mL时,等离子体可将水中的微生物降低4-6个对数,包括大肠杆菌、枯草芽孢杆菌、细菌孢子和白色假丝酵母。细胞的初始密度和水的电导率是影响等离子体灭菌效率的重要因素。水中的初始细胞密度越低,所有细胞越容易被杀光。初始细胞密度低于7×104cfu/mL时,所有细菌在60个脉冲处理之后被全部杀光,能耗约为0.1kWh/m3.细胞密度高于106cfu/mL之后,由于死细胞对活细胞的保护作用,300个脉冲处理之后还有少量残余,在活菌中加入高压蒸汽灭活的死菌可证实这一过程。水的电导率提高后,脉冲电压电流波形发生改变,脉冲等离子体的紫外发射光谱变弱,在水相形成的活性粒子如过氧化氢、臭氧和硝酸也相应减少。当电导率高于2mS/cm之后,等离子体的灭菌效率显著下降。结合紫外发射光谱,以及水下石英管中的灭菌效果,可知NOβ和NOγ自由基产生的紫外辐射是等离子体灭菌的重要原因。水中含与DNA有相似紫外吸收光谱的尿苷时,等离子体的灭菌过程受到抑制。细胞在等离子体处理过程中保持形态完整,但是通过观察含胞内GFP的大肠杆菌的荧光变化可知,细胞内部的蛋白质遭到了快速的破坏。
     沿面脉冲等离子体灭菌系统实现了500L/h的连续水处理,但是,连续处理的灭菌效率远低于静态处理。减小水的流量或者提高脉冲频率可以增大注入水中的能量密度,从而提高等离子体的灭菌效率。等离子体处理自来水的灭菌效率高于去离子水,这与自来水中的微量有机物有关。当大肠杆菌初始细胞密度在103-106cfu/mL,能量密度小于2J/mL时,单次通过反应器细胞密度下降1.2个对数。
     与传统的脉冲电场灭菌工艺相比,我们在极低的脉冲场强下实现了淡水的低温灭菌。采用双极性高频脉冲电源,电压为2-6kV,脉宽为25μs,频率为100-3000Hz,1.2L轴筒式不锈钢反应器内获得的场强为0.6-1.7kV/cm。水的电导率对脉冲电压电流波形和灭菌效率有很大影响,电导率为25μS/cm时获得脉冲方波和最佳灭菌效果。场强为1.7kV/cm时,120000个脉冲处理后大肠杆菌密度下降2-4个对数,消耗的能量密度为70J/mL,水温小于25℃。
     利用双极性高频脉冲电源产生的氩气等离子体射流可高效杀灭琼脂平板表面的大肠杆菌,形成直径数厘米的杀菌斑。当脉冲电压为2-4kV,脉冲频率为1.3kHz时,氩气等离子体射流的功率约为1.5W。用来处理酶标板小孔内的250μL菌液时,在0.5-2.5min内可将大肠杆菌细胞密度下降6个对数。等离子体射流的灭菌效率随脉冲电压、脉冲频率和等离子体能量密度的增大而提高,随处理间距和液体厚度的减小而提高。虽然水中的细菌可被高效的杀光,但消耗的等离子体能量密度在400-2000J/mL之间。可见低温等离子体射流只适合于表面处理,而不适于大规模水处理。
As emerging disinfection techniques, Pulsed Electric Field (PEF) and Non-Thermal Plasma (NTP) are environmentally friendly and of low temperature. PEF is realized by applying a high voltage pulse over two electrodes inside water to generate electric field without electrical breakdown. NTP is generated by high voltage discharges inside water or above water surface. During the NTP process, physical and chemical effects such as reactive species, ultraviolet radiation, strong electromagnetic fields, shock wave, and etc. are produced. In this dissertation, we studied three NTP/PEF processes for water disinfection. The aim of this work is to develop non-thermal decontamination devices.
     A homemade pulsed plasma system includes a pulsed power source and a2.5L stainless steel reactor filled with1.6L deionized water. Air plasma is generated from the tip of high voltage electrodes to the grounded reactor wall via the water surface. The typical vales of peak voltage, peak current, energy per pulse, and repetition rate are18kV,2.5kA,10J, and2pulses per second (pps), respectively. There is a positive correlation between injected energy density and plasma disinfection efficiency. When energy density is2J/mL, the4-6order reduction can be obtained for microorganism such as Escherichia coli, Bacillus subtilis, Bacillus subtilis spores and Candida albicans. Initial cell density and water conductivity are other important factors. Cells are easily sterilized with a lower initial density. For instance, when the cell density is below7×104cfu/mL, all of them can be disinfected after60pulses with an energy consumption of about0.1kWh/m3. However, for the initial density higher than106cfu/mL, there is a so called "shield effect" of the dead cells to the live, which can lead the high-density autoclaved cells to inhibit the plasma treatment. Water conductivity can significantly affects the characteristics of pulsed discharges. When the conductivity is higher, the intensity of light emission decreases and corresponding aqueous products such as hydrogen peroxide, ozone and nitric acid becomes less. According to UV emission spectrum and disinfection of cell suspension inside quartz tubes, it is deduced that germicidal UVC of NOβ and NOγ radicals plays an important role in plasma disinfection. UV absorbents such as uridine can inhibit the process. Inactivated cell morphology almost remains the same shape, their intracellular protein like green fluorescent protein (GFP), however, is destructed rapidly according to fluorescence observation.
     The homemade pulsed plasma system can be operated continuously with a water flow rate of up to500L/h. It is found that the disinfection efficiency is much lower than that for the stationary processing. The efficiency can be improved by increasing the pulse repetition rate or decreasing the water flow rate, since both of them can increase the injected energy density. Compared to the deionized water, it gives a less efficiency to the tap water due to its organic impurities. The order reduction of E. coli by single pass the reactor is1-2, with an energy density of less than2J/mL and cell density of103-106cfu/mL.
     A low intensity PEF device is developed for freshwater disinfection. A repetitive bipolar pulsed power source is applied. The values of peak voltage, pulse width and pulse repetition rate are2-6kV,25μs and200-6000pps, respectively. The PEF intensity is0.6-1.7kV/cm in a1.2L rod-cylinder reactor. It is observed that water conductivity has a significant effect on disinfection efficiency. When conductivity is25μS/cm, it shows best efficiency with a square waveform. After120000pulses, the order reduction of E. coli is2-4with an energy density of70J/mL. Water temperature is below25℃during the PEF processing.
     Argon (Ar) plasma jet is also realized by the bipolar pulsed power source. It can rapidly inactivate E. coli bacteria on the agar plate, with bactericidal spot of few centimeters. When the peak voltage is2-4kV and repetition rate is2000-6000pps, the power of generated Ar plasma jet is1-5W. For250μL of aqueous E. coli in microtiter plates, up to6orders reduction is obtained after0.5-2.5minute treatment. The efficiency of plasma jet disinfection is enhanced by raising the pulsed voltage or frequency as well as inducing the treatment distance and liquid depth. Although the E. coli cells in water are rapidly inactivated by plasma jet, the required energy density is as high as400-2000J/mL. Therefore the presented plasma jet is suitable for surface decontamination, but not for water treatment.
引文
[1]菅井秀郎.等离子体电子工程学[M].科学出版社,2005.
    [2]Conrads H, Schmidt M. Plasma generation and plasma sources [J]. Plasma Sources Science and Technology.2000; 9:441-454.
    [3]杨华明,易滨.现代医院消毒学[M].人民军医出版社,2009.
    [4]Menashi WP. Treatment of surfaces. US Patent 3383163,1968.
    [5]Ashman LE. Treatment of surface with low-pressure plasmas. US Patent 3948601,1973.
    [6]Eraser SJ. Sterilization and packaging process. US Patent 3851436,1974.
    [7]Fraser SJ, Gillette RB, Olson RL. Sterilizing process and apparatus utilizing gas plasma. US Patent 3948601,1976.
    [8]Boucher RMG. Seeded gas plasma sterilization method. US Patent 4207286,1980.
    [9]Bithell RM. Package and sterilizing process for same. US Patent 4321232,1982.
    [10]徐学基,诸定昌.气体放电物理[M].复旦大学出版社,1996.
    [11]Poulsen RG. Plasma etching in integrated circuit manufacture-A review [J]. Journal of Vacuum Science and Technology.1977; 14(1):266-274.
    [12]Jacobs PT, Lin SM. Hydrogen peroxide plasma sterilization system. US Patent 4643876, 1987.
    [13]Jacobs PT, Kowatsch R. Sterrad sterilization system:A new technology for instrument sterilization [J]. Endoscopic Surgery Allied Technologies.1993;1(1):57-58.
    [14]Kyi MS, Holton J, Ridgway GL. Assessment of the efficacy of a low temperature hydrogen peroxide gas plasma sterilization system [J]. Journal of Hospital Infection.1995; 31(4):275-284.
    [15]Rutala WA, Gergen MF, Weber DJ. Sporicidal activity of a new low-temperature sterilization technology:The Sterrad 50 sterilizer [J]. Infection Control and Hospital Epidemiology.1999; 20(7):514-516.
    [16]Lerouge S, Tabrizian M, Wertheimer MR, et al. Safety of plasma-based sterilization:Surface modifications of polymeric medical devices induced by Sterrad(?) and PlazlyteTM processes [J]. Bio-Medical Materials and Engineering.2002; 12(1):3-13.
    [17]Okpara-Hofmann J, Knoll M, Durr M, et al. Comparison of low-temperature hydrogen peroxide gas plasma sterilization for endoscopes using various Sterrad models [J]. The Journal of hospital infection.2005; 59(4):280-285.
    [18]Diab-Elschahawi M, Blacky A, Bachhofher N, et al. Challenging the Sterrad 100NX sterilizer with different carrier materials and wrappings under experimental "clean" and "dirty" conditions [J]. American journal of infection control.2010; 38(10):806-810.
    [19]Diab-Elschahawi M, Blacky A, Bachhofner N, et al. Lumen claims of the STERRAD 100NX sterilizer:testing performance limits when processing equipment containing long, narrow lumens [J]. American journal of infection control.2011; 39(9):770-774.
    [20]Li S, Zhang Y, Liu W. Observation of effectiveness of clinical aterilization by CASP-80A low-temperature plasma sterilizer [J]. Plasma Science and Technology.2006; 8(5):577-581.
    [21]Moore FC, Perkinson LR. Hydrogen peroxide vapor sterilization method. US Patent 4169123, 1979.
    [22]Forstrom RJ, Wardle MD. Cold gas sterilization process using hydrogen peroxide at low concentrations. US Patent 4230663,1980.
    [23]Krebs MC, Becasse P, Verjat D, et al. Gas-plasma sterilization:Relative efficacy of the hydrogen peroxide phase compared with that of the plasma phase [J]. International Journal of Pharmaceutics.1998; 160(1):75-81.
    [24]Cardinaud C, Peignon MC, Tessier PY. Plasma etching:Principles, mechanisms, application to micro-and nano-technologies [J]. Applied Surface Science.2000; 164 (1-4):72-83.
    [25]Lerouge S, Wertheimer MR, Marchand R, et al. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization [J]. Journal of Biomedical Materials Research.2000; 51(1):128-135.
    [26]Lerouge S, Wertheimer MR, Yahia LH. Plasma sterilization:A review of parameters, mechanisms, and limitations [J]. Plamsas and polymers.2001; 6 (3):175-188.
    [27]Moreau S, Moisan M, Tabrizian M, et al. Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores:Influence of the operating conditions [J]. Journal of Applied Physics.2000; 8(2):1166-1174.
    [28]Moisan M, Barbeau J, Moreau S, et al. Low-temperature sterilization using gas plasmas:a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics.2001; 226:1-21.
    [29]Moisan M, Barbeau J, Crevier MC, et al. Plasma sterilization:Methods and mechanisms [J]. Pure and Applied Chemistry.2002; 74(30):349-358.
    [30]Boudam MK, Moisan M, Saoudi B, et al. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture [J]. Journal of Physics D:Applied Physics.2006; 39(16):3494-3507.
    [31]Kutasi K, Saoudi B, Pintassilgo CD, et al. Modelling the low-pressure N2-O2 plasma afterglow to determine the kinetic mechanisms controlling the UV emission intensity and its spatial distribution for achieving an efficient sterilization process [J]. Plasma Processes and Polymers.2008; 5(9):840-852.
    [32]Boudam MK, Moisan M. Synergy effect of heat and UV photons on bacterial-spore inactivation in an N2-O2 plasma-afterglow sterilizer [J]. Journal of Physics D:Applied Physics.2010; 43(29):295202(17pp).
    [33]Awakowicz P, von Keudell A. BIODECON:Plasma decontamination in medical technology [J]. Plasma Processes and Polymers.2006; 3(1):75-76.
    [34]Halfmann H, Bibinov N, Wunderlich J, et al. A double inductively coupled plasma for sterilization of medical devices [J]. Journal of Physics D:Applied Physics.2007; 40(14):4145-4154.
    [35]Stapelmann K, Kylian O, Denis B, et al. On the application of inductively coupled plasma discharges sustained in Ar/O2/N2 ternary mixture for sterilization and decontamination of medical instruments [J]. Journal of Physics D:Applied Physics.2008; 41(19):192005(6pp).
    [36]Hasiwa M, Kylian O, Hartung T, et al. Removal of immune-stimulatory components from surfaces by plasma discharges [J]. Innate immunity.2008; 14(2):89-97.
    [37]Kylian O, Rauscher H, Gilliland D, et al. Removal of model proteins by means of low-pressure inductively coupled plasma discharge [J]. Journal of Physics D:Applied Physics.2008; 41(9):095201(8pp).
    [38]Kylian O, Rauscher H, Denis B, et al. Elimination of homo-polypeptides of amino acids from surfaces by means of low pressure inductively coupled plasma discharge [J]. Plasma Processes and Polymers.2009; 6:848-854.
    [39]Rossi F, Kylian O, Rauscher H, et al. Low pressure plasma discharges for the sterilization and decontamination of surfaces [J]. New Journal of Physics.2009; 11:115017(33pp).
    [40]Kylian O, Rossi F. Sterilization and decontamination of medical instruments by low-pressure plasma discharges:application of Ar/O2/N2 ternary mixture [J]. Journal of Physics D: Applied Physics.2009; 42(8):085207(7pp).
    [41]von Keudell A, Awakowicz P, Benedikt J, et al. Inactivation of bacteria and biomolecules by low-Pressure plasma discharges [J]. Plasma Processes and Polymers.2010; 7:327-352.
    [42]Fumagalli F, Kylian O, Amato L, et al. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination [J]. Journal of Physics D:Applied Physics.2012; 45(13):135203(9pp).
    [43]Yoshida M, Tanaka T, Watanabe S, et al. Experimental study on a new sterilization process using plasma source ion implantation with N2 gas [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films.2003; 21(4):1230(7pp).
    [44]Nagatsu M, Terashita F, Nonaka H, et al. Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization [J]. Applied Physics Letters.2005; 86(21):211502(4pp).
    [45]Xu L, Nonaka H, Zhou HY, et al. Characteristics of surface-wave plasma with air-simulated N2-O2 gas mixture for low-temperature sterilization [J]. Journal of Physics D:Applied Physics.2007; 40(3):803-808.
    [46]Zhao Y, Ogino A, Nagatsu M. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma. Applied Physics Letters.2011; 98(19):191501(4pp).
    [47]Hueso JL, Rico VJ, Frias JE, et al. Ar/NO microwave plasmas for Escherichia coli sterilization [J]. Journal of Physics D:Applied Physics.2008; 41(9):092002(4pp).
    [48]Baxter HC, Richardson PR, Campbell GA, et al. Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination [J]. New Journal of Physics.2009; 11:115028(13pp).
    [49]Roth S, Feichtinger J, Hertel C. Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. Journal of applied microbiology.2010; 108(2):521-531.
    [50]Kitazaki S, Hayashi N. Sterilization characteristics of tube inner surface using oxygen plasma produced by AC HV discharge [J]. IEEE Transaction on Plasma Science.2008; 36(4):1304-1305.
    [51]Pollak J, Moisan M, Keroack D, et al. Plasma sterilization within long and narrow bore dielectric tubes contaminated with stacked bacterial spores [J]. Plasma Processes and Polymers.2008; 5:14-25.
    [52]Schnabel U, Maucher T, Kohnlein J, et al. Multicentre trials for decontamination of fine-lumen PTFE tubes loaded with bacterial endospores by low and atmospheric pressure plasma [J]. Plasma Processes and Polymers.2012; 9:37-47.
    [53]Polak M, Winter J, Schnabel U, et al. Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical Applications [J]. Plasma Processes and Polymers.2012; 9(1):67-76.
    [54]Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma [J]. IEEE Transaction on Plasma Science.1996; 24(3):1188-1191.
    [55]Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas:Review, Analysis, and Prospects [J]. IEEE Transaction on Plasma Science.2002; 30(4):1409-1415.
    [56]Laroussi M, Mendis DA, Rosenberg M. Plasma interaction with microbes [J]. New Journal of Physics.2003; 5:41(10pp).
    [57]Laroussi M. Low temperature plasma-based sterilization:Overview and state-of-the-art [J]. Plasma Processes and Polymers.2005; 2(5):391-400.
    [58]Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications [J]. Applied Physics Letters.2005; 87(11):113902(3pp).
    [59]Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets:A review [J]. Plasma Processes and Polymers.2007; 4(9):777-788.
    [60]Goree J, Liu B, Drake D. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria [J]. Journal of Physics D:Applied Physics.2006; 39(16):3479-3486.
    [61]Uhm HS, Lim JP, Li SZ. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet [J]. Applied Physics Letters.2007; 90(26):261501(6pp).
    [62]Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination [J]. Plasma Processes and Polymers.2008; 5(6):577-582.
    [63]Robert E, Barbosa E, Dozias Sb, et al. Experimental study of a compact nanosecond plasma gun [J]. Plasma Processes and Polymers.2009; 6:795-802.
    [64]Frohling A, Baier M, Ehlbeck J, et al. Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces:Inactivation kinetics and flow cytometric characterization [J]. Innovative Food Science & Emerging Technologies.2012; 13:142-150.
    [65]Volotskova O, Stepp MA, Keidar M. Integrin activation by a cold atmospheric plasma jet [J]. New Journal of Physics.2012; 14(5):053019(16pp).
    [66]Weltmann KD, Polak M, Masur K, et al. Plasma Processes and Plasma Sources in Medicine [J]. Contributions to Plasma Physics.2012; 52:644-654.
    [67]Yu H, Perni S, Shi JJ, et al. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12 [J]. Journal of applied microbiology.2006; 101(6):1323-1330.
    [68]Walsh JL, Shi JJ, Kong MG. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets [J]. Applied Physics Letters.2006; 88(17):171501(6pp).
    [69]Deng XT, Shi JJ, Kong MG. Protein destruction by a helium atmospheric pressure glow discharge:Capability and mechanisms [J]. Journal of Applied Physics.2007; 101(7):074701(9pp).
    [70]Cao Z, Walsh JL, Kong MG. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment [J]. Applied Physics Letters.2009; 94(2):021501(4).
    [71]Nie QY, Cao Z, Ren CS, et al. A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine [J]. New Journal of Physics. 2009; 11:115015(14pp).
    [72]Cao Z, Nie Q, Bayliss DL, et al. Spatially extended atmospheric plasma arrays [J]. Plasma Sources Science and Technology.2010; 19(2):025003(14pp).
    [73]Konesky G. Dwell time considerations for large area cold plasma decontamination [J]. Proceedings of SPIE.2009; 7304:1-10.
    [74]Konesky G. Cold plasma decontamination using flexible jet arrays [J]. Proceedings of SPIE. 2010; 7615:1-8.
    [75]Song Y, Liu D, Ji L, et al. Plasma inactivation of Candida albicans by an atmospheric cold plasma brush composed of hollow fibers [J]. IEEE Transaction on Plasma Science.2012; 40(4):1098-1102.
    [76]Weltmann KD, Kindel E, von Woedtke T, et al. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine [J]. Pure and Applied Chemistry.2010; 82(6):1223-1237.
    [77]Weltmann KD, Brandenburg R, von Woedtke T, et al. Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs) [J]. Journal of Physics D:Applied Physics.2008; 41(19):194008(6pp).
    [78]Pei X, Lu X, Liu J, et al. Inactivation of a 25.5 μm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet [J]. Journal of Physics D: Applied Physics.2012; 45(16):165205(5pp).
    [79]Morfill GE, Shimizu T, Steffes B, et al. Nosocomial infections-a new approach towards preventive medicine using plasmas [J]. New Journal of Physics.2009; 11:115019(10pp).
    [80]Shimizu T, Zimmermann JL, Morfill GE. The bactericidal effect of surface micro-discharge plasma under different ambient conditions [J]. New Journal of Physics.2011; 13(2):023026(7PP).
    [81]Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine [J]. Plasma Processes and Polymers.2008; 5(6):503-533.
    [82]Morfill GE, Kong MG, Zimmermann JL. Focus on plasma medicine [J]. New Journal of Physics.2009; 11:115011 (8pp).
    [83]Kong MG, Kroesen G, Morfill G, et al. Plasma medicine:an introductory review [J]. New Journal of Physics.2009; 11:115012(35pp).
    [84]Weltmann KD, Kindel E, von Woedtke T, et al. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine [J]. Pure and Applied Chemistry.2010; 82(6):1223-1237.
    [85]Weltmann KD, von Woedtke T. Basic requirements for plasma sources in medicine [J]. The European Physical Journal Applied Physics.2011; 55(1):13807(10pp).
    [86]Goree J, Liu B, Drake D. Gas flow dependence for plasma-needle disinfection of 5. mutans bacteria [J]. Journal of Physics D:Applied Physics.2006; 39(16):3479-3486.
    [87]Jiang C, Chen MT, Schaudinn C, et al. Pulsed atmospheric-pressure cold plasma for endodontic disinfection [J]. IEEE Transaction on Plasma Science.2009; 37:1190-1195.
    [88]Lu X, Cao Y, Yang P, et al. An RC plasma device for sterilization of root canal of teeth [J]. IEEE Transaction on Plasma Science.2009; 37:668-673.
    [89]Ritts AC, Li H, Yu Q, Xu C, et al. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration [J]. European Journal of Oral Sciences.2010; 118(5):510-516.
    [90]Rupf S, Lehmann A, Hannig M, et al. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet [J]. Journal of Medical Microbiology.2010; 59(2):206-212.
    [91]Duarte S, Kuo SP, Murata RM, et al. Air plasma effect on dental disinfection [J]. Physics of Plasmas.2011; 18(7):073503(7pp).
    [92]Koban I, Matthes R, Hubner NO, et al. Treatment of Candida albicans biofihns with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet [J]. New Journal of Physics.2010; 12(7):073039(16pp).
    [93]Koban I, Duske K, Jablonowski L, et al. Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro:Proof-of-principle [J]. Plasma Processes and Polymers.2011; 8:975-982.
    [94]Fridman G, Peddinghaus M, Balasubramanian M, et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air [J]. Plasma Chemistry and Plasma Processing.2006; 26(4):425-442.
    [95]Kalghatgi SU, Fridman G, Cooper M, et al. Mechanism of blood coagulation by non-thermal atmospheric pressure dielectric barrier discharge [J]. IEEE Transaction on Plasma Science. 2007; 35(5):1559-1566.
    [96]Kuo SP, Chen CY, Lin CS, et al. Applications of air plasma for wound bleeding control and healing [J]. IEEE Transaction on Plasma Science.2012; 40(4):1117-1123.
    [97]Stoffels E, Flikweert AJ, Stoffels WW, et al. Plasma needle:a non-destructive atmospheric plasma source for fine surface treatment of (bio) materials [J]. Plasma Sources Science and Technology.2002; 11:383-388.
    [98]Stoffels E, Kieft IE, Sladek REJ. Superficial treatment of mammalian cells using plasma needle [J]. Journal of Physics D:Applied Physics.2003; 36:2908-2913.
    [99]Kieft IE, Broers JLV, Caubet-Hilloutou V, et al. Electric discharge plasmas influence attachment of cultured CHO K1 Cells [J]. Bioelectromagnetics.2004; 25:362-368.
    [100]Kieft IE, Darios D, Roks AJM, et al. Plasma treatment of mammalian vascular cells:A quantitative description [J]. IEEE Transaction on Plasma Science.2005; 33(2):771-775.
    [101]Kieft IE, Kurdi M, Stoffels E. Reattachment and apoptosis after plasma-needle treatment of cultured cells [J]. IEEE Transaction on Plasma Science.2006; 34(4):1331-1336.
    [102]Stoffels E. "Tissue Processing" with Atmospheric Plasmas. Contributions to Plasma Physics [J].2007; 47(1-2):40-48.
    [103]Stoffels E, Roks AJM, Deelman LE. Delayed effects of cold atmospheric plasma on vascular cells [J]. Plasma Processes and Polymers.2008; 5(6):599-605.
    [104]Fridman G, Brooks AD, Balasubramanian M, et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria [J]. Plasma Processes and Polymers. 2007; 4:370-375.
    [105]Kalghatgi S, Friedman G, Fridman A, et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release [J]. Annals of biomedical engineering.2010; 38(3):748-757.
    [106]Lloyd G, Friedman G, Jafri S, et al. Gas plasma:medical uses and developments in wound care [J]. Plasma Processes and Polymers.2010; 7(3-4):194-211.
    [107]Dobrynin D, Wu A, Kalghatgi S, et al. Live pig skin tissue and wound toxicity of cold plasma treatment [J]. Plasma medicine.2011; 1 (1):93-108.
    [108]Chakravarthy K, Dobrynin D, Fridman G, et al. Cold spark discharge plasma treatment of inflammatory bowel disease in an animal model of ulcerative colitis [J]. Plasma medicine. 2011; 1(1):3-19.
    [109]Arjunan KP, Friedman G, Fridman A, et al. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species [J]. Journal of the Royal Society.2012; 9(66):147-157.
    [110]Lademann O, Richter H, Patzelt A, et al. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy [J]. Laser Physics Letters.2010; 7(6):458-462.
    [111]Lademann O, Kramer A, Richter H, et al. Skin disinfection by plasma-tissue interaction: comparison of the effectivity of tissue-tolerable plasma and a standard antiseptic [J]. Skin pharmacology and physiology.2011; 24(5):284-288.
    [112]Haertel B, Wende K, von Woedtke T, et al. Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes [J]. Experimental Dermatology. 2011;20(3):282-284.
    [113]Nosenko T, Shimizu T, Morfill GE. Designing plasmas for chronic wound disinfection [J]. New Journal of Physics.2009; 11:115013(19PP).
    [114]Ermolaeva SA, Varfolomeev AF, Chernukha MY, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds [J]. Journal of Medical Microbiology.2011; 60:75-83.
    [115]Isbary G, Morfill G, Schmidt HU, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients [J]. The British Journal of Dermatology.2010; 163(1):78-82.
    [116]Sensenig R, Kalghatgi S, Cerchar E, et al.Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species [J]. Annals of biomedical engineering.2011; 39(2):674-687.
    [117]Lee JK, Kim MS, Byun JH, et al. Biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching [J]. Japanese Journal of Applied Physics.2011; 50(8):08JF1 (7PP).
    [118]Vandamme M, Robert E, Pesnel S, et al. Antitumor effect of plasma treatment on U87 glioma xenografts:Preliminary results [J]. Plasma Processes and Polymers.2010; 7(3-4):264-273.
    [119]Vandamme M, Robert E, Lerondel S, et al. ROS implication in a new antitumor strategy based on non-thermal plasma [J]. International Journal of Cancer.2012; 130(9):2185-94.
    [120]Heinlin J, Morfill G, Landthaler M, et al. Plasma medicine:possible applications in dermatology [J]. Journal of the German Society of Dermatology.2010; 8(12):968-976.
    [121]Heinlin J, Isbary G, Stolz W, et al. Plasma applications in medicine with a special focus on dermatology [J]. Journal of the European Academy of Dermatology and Venereology.2011; 25(1):1-11.
    [122]Sun P, Pan J, Tian Y, et al. Tooth whitening with hydrogen peroxide assisted by a direct-current cold atmospheric-pressure air plasma microjet [J]. IEEE Transaction on Plasma Science.2010; 38(8):1892-1896.
    [123]Kilmer S, Semchyshyn N, Shah G, et al. A pilot study on the use of a plasma skin regeneration device (Portrait PSR3) in full facial rejuvenation procedures [J]. Lasers in medical science.2007; 22(2):101-109.
    [124]Alster TS, Konda S. Plasma skin resurfacing for regeneration of neck, chest, and hands: investigation of a novel device [J]. Dermatologic Surgery.2007; 33(11):1315-1321.
    [125]Fitzpatrick R, Bernstein E, Iyer S, et al. A histopathologic evaluation of the Plasma Skin Regeneration System (PSR) versus a standard carbon dioxide resurfacing laser in an animal model [J]. Lasers in Surgery and Medicine.2008; 40(2):93-99.
    [126]Kono T, Groff WF, Sakurai H, et al. Treatment of traumatic scars using plasma skin regeneration (PSR) system [J]. Lasers in surgery and medicine.2009; 41(2):128-130.
    [127]Higashimori T, Kono T, Sakurai H, et al. Treatment of mesh skin grafted scars using a plasma skin regeneration system [J]. Plastic surgery International.2010; 2010:874348(4pp).
    [128]Trompeter FJ, Neff WJ, Franken O, et al. Reduction of Bacillus subtilis and Aspergillus niger spores using nonthermal atmospheric gas discharge [J]. IEEE Transaction on Plasma Science. 2002; 30(4):1416-1423.
    [129]Heise M, Neff WJ, Franken O, et al. Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure [J]. Plasmas andpolymers.2004; 9(1):23-33.
    [130]Schneider J, Baumgartner KM, Feichtinger J, et al. Investigation of the practicability of low-pressure microwave plasmas in the sterilization of food packaging materials at industrial level [J]. Surface and Coatings Technology.2005; 200(1-4):962-966.
    [131]Deilmann M, Halfinann H, Steves S, et al. Silicon oxide permeation barrier coating and plasma sterilization of PET bottles and foils [J]. Plasma Processes and Polymers.2009; 6(S1):S695-S699.
    [132]Levif P, Seguin J, M, et al. Packaging materials for plasma sterilization with the flowing afterglow of an N2-O2 discharge:damage assessment and inactivation efficiency of enclosed bacterial spores [J]. Journal of Physics D:Applied Physics.2011; 44(40):405201(13pp).
    [133]Leipold F, Schultz-Jensen N, Kusano Y, et al. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas [J]. Food Control.2011; 22(8):1296-1301.
    [134]Song Y, Liu D, Ji L, et al. The inactivation of resistant Candida Albicans in a sealed package by cold atmospheric pressure plasmas [J]. Plasma Processes and Polymers.2012; 9(1):17-21.
    [135]Leipold F, Kusano Y, Hansen F, et al. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas [J]. Food Control.2010; 21(8):1194-1198.
    [136]Ragni L, Berardinelli A, Vannini L, et al. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs [J]. Journal of Food Engineering.2010; 100(1):125-132.
    [137]Kim B, Yun H, Jung S, et al. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions [J]. Food Microbiology.2011; 28(1):9-13.
    [138]Lee HJ, Jung H, Choe W, et al. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets [J]. Food Microbiology.2011; 28(8):1468-1471.
    [139]Misra NN, Tiwari BK, Raghavarao KSMS, et al. Nonthermal plasma inactivation of food-borne pathogens [J]. Food Engineering Reviews.2011; 3(3-4):159-170.
    [140]Noriega E, Shama G, Laca A, et al. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua [J]. Food Microbiology.2011; 28(7):1293-300.
    [141]Niemira BA. Cold plasma decontamination of foods [J]. Annual Review of Food Science and Technology.2012; 3:125-42.
    [142]Liu CM, Nishida Y, Iwasaki K, et al. Prolonged preservation and sterilization of fresh plants in controlled environments using high-field plasma [J]. IEEE Transaction on Plasma Science. 2011; 39(2):717-724.
    [143]Deng S, Ruan R, Mok CK, et al. Inactivation of Escherichia coli on almonds using nonthermal plasma [J]. Journal of food science.2007; 72(2):M62-66.
    [144]Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment [J]. Bioresource technology. 2008; 99(11):5104-5109.
    [145]Basaran P, Basaran-Akgul N, Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment [J]. Food Microbiology.2008; 25(4):626-632.
    [146]Ito M, Ohta T, Hori M. Plasma agriculture [J]. Journal of the Korean Physical Society.2012; 60(6):937-943.
    [147]Kelly-Wintenberg K, Sherman DM, Tsai P, et al. Air filter sterilization using a one atmosphere uniform glow discharge plasma (the Volfilter) [J]. IEEE Transaction on Plasma Science.2000; 28(1):64-71.
    [148]Gallagher MJ, Vaze ND, Gangoli S, et al. Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge [J]. IEEE Transaction on Plasma Science.2007; 35(5):1501-1510.
    [149]Vaze ND, Gallagher MJ, Park S, et al. Inactivation of bacteria in flight by direct exposure to nonthermal plasma [J]. IEEE Transaction on Plasma Science.2010; 38(11):3234-3240.
    [150]Terrier O, Essere B, Yver M, et al. Cold oxygen plasma technology efficiency against different airborne respiratory viruses [J]. Journal of Clinical Virology.2009; 45(2):119-124.
    [151]Park CW, Byeon JH, Yoon KY, et al. Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge [J]. Separation and Purification Technology.2011; 77(1):87-93.
    [152]Liang Y, Wu Y, Sun K, et al. Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma [J]. Environmental science & technology.2012; 46(6):3360-3368.
    [153]Locke BR, Sato M, Sunka P, et al. Electrohydraulic discharge and non-thermal plasma for water treatment [J]. Industrial & Engineering Chemical Research.2006; 45:882-905.
    [154]Mizuno A, Hori Y. Destruction of living cells by pulsed high-voltage application [J]. IEEE Transaction on Plasma Science.1988; 24(3):387-394.
    [155]Efremov NM, Adamiak BY, Blochin Ⅵ, et al. Experimental investigation of the action of pulsed electrical discharges in liquids on biological objects [J]. IEEE Transaction on Plasma Science.2000; 28(1):224-229.
    [156]Ching WK, Colussi AJ, Sun HJ, et al. Escherichia coli disinfection by electrohydraulic discharges [J]. Environmental science & technology.2001; 35:4139-4144.
    [157]Ching WK, Colussi AJ, Hoffmann MR. Soluble sunscreens fully protect E. colifrom disinfection by electrohydraulic discharges [J]. Environmental science & technology.2003; 37(21):4901-4904.
    [158]Zuckerman H, Krasik YE, Felsteiner J. Inactivation of microorganisms using pulsed high-current underwater discharges [J]. Innovative Food Science and Emerging Technologies. 2002; 3:329-336.
    [159]Yantsis SN, Chow-Fraser P, Li OL, et al. Zooplankton mortality in lake water treated by pulsed arc electrohydraulic discharge plasma [J]. International Journal of Plasma Environmental Science and Technology.2008; 2(2):128-133.
    [160]Abou-Ghazala A, Katsuki S, Schoenbach KH, et al. Bacterial decontamination of water by means of pulsed-corona discharges [J]. IEEE Transaction on Plasma Science.2002; 30:1449-1453.
    [161]Marsili L, Espie S, Anderson JG, et al. Plasma inactivation of food-related microorganisms in liquids [J]. Radiation Physics and Chemistry.2002; 65:507-513.
    [162]Zhang R, Wang L, Wu Y, et al. Bacterial decontamination of water by bipolar pulsed discharge in a gas-liquid-solid three-phase discharge reactor [J]. IEEE Transaction on Plasma Science.2006; 34(4):1370-1374.
    [163]Wang CH, Li GF, Wu Y, et al. Role of bipolar pulsed DBD on the growth of Microcystis aeruginosa in three-phase discharge plasma reactor [J]. Plasma Chemistry and Plasma Processing.2006; 27(1):65-83.
    [164]Xin Q, Zhang X, Lei L. Inactivation of bacteria in oil field injection water by non-thermal plasma treatment [J]. Plasma Chemistry and Plasma Processing.2008; 28(6):689-700.
    [165]Fudamoto T, Namihira T, Katsuki S, et al. Sterilization of E. Coli by underwater pulsed streamer discharge in a continuous flow system [J]. Electrical Engineering in Japan.2008; 164:669-674.
    [166]Gupta SB, Bluhm H. The potential of pulsed underwater streamer discharges as a disinfection technique [J]. IEEE Transaction on Plasma Science.2008; 36(4):1621-1632.
    [167]Vaze ND, Arjunan KP, Gallagher MJ, et al. Air and water sterilization using non-thermal plasma.16th IEEE International Pulsed Power Conference, Albuquerque, USA.2007.
    [168]Dors M, Metel E, Mizeraczyk J, et al. Pulsed corona discharge in water for coli bacteria inactivation [J]. IEEE International Conference on Dielectric Liquids, Poitiers, France.2008.
    [169]Izdebski T, Dors M, Mizeraczyk J. River water remediation using electrohydraulic discharges or ozonation [J]. IEEE Transaction on Plasma Science.2011; 39(3):953-959.
    [170]Anpilov AM, Barkhudarov EM, Christofi N, et al. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids [J]. Letters of Applied Microbiology.2002; 35:90-94.
    [171]Anpilov AM, Barkhudarov EM, Christofi N, et al. The effectiveness of a multi-spark electric discharge system in the destruction of microorganisms in domestic and industrial wastewater [J]. Journal of Water Health.2004; 2:267-277.
    [172]Sun B, Aye NN, Wang X, et al. Eradication of invasive organisms from ballast water with electrodeless pulsed-discharge hybrid reactor [J]. IEEE Transaction on Plasma Science.2011; 47(3):1621-1632.
    [173]Yang Y, Kim H, Starikovskiy A, et al. Note:an underwater multi-channel plasma array for water sterilization [J]. The Review of Scientific Instruments.2011; 82(9):096103(3pp).
    [174]Sun P, Wu H, Bai N, Feng H, et al. Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet [J]. Plasma Processes and Polymers.2012; 9(2):157-164.
    [175]Du CM, Wang J, Zhang L, et al. The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization [J]. New Journal of Physics.2012; 14(1):013010(16pp).
    [176]Rutberg PG, Kolikov VA, Kurochkin VE, et al. Electric discharge and the prolonged microbial resistance of water [J]. IEEE Transaction on Plasma Science.2007; 35:1111-1118.
    [177]Satoh K, MacGregor SJ, Anderson JG, et al. Pulsed-plasma disinfection of water containing Escherichia coli [J]. Japanese Journal of Applied Physics.2007; 46(3A):1137-1141.
    [178]Chen CW, Lee HM, Chang MB. Inactivation of aquatic microorganisms by low-frequency ac discharge [J]. IEEE Transaction on Plasma Science.2008; 36(1):215-219.
    [179]Chen CW, Lee HM, Chen SH, et al. Ultrasound-sssisted plasma:A novel technique for inactivation of aquatic microorganisms [J]. Environmental science & technology.2009; 43(12):4493-4497.
    [180]Aye NN, Sun B, Zhu b, et al. Inactivation of algae in ballast water with multi-needle gas-liquid hybrid discharge reactor.2nd Conference on Environmental Science and Information Application Technology, Wuhan, China.2010.
    [181]Fozza AC, Kruse A, Hollaender A, et al. Vacuum ultraviolet to visible emission of some pure gases and their mixtures used for plasma processing. Journal of Vacuum Science & Technology A.1998; 16:72-77.
    [182]Philip N, Saoudi B, Crevier MC, et al. The respective roles of UV photons and oxygen atoms in plasma sterilization at reduced gas pressure:The case of N2-O2 mixtures [J]. IEEE Transaction on Plasma Science.2002; 30(4):1429-1436.
    [183]Kylian O, Sasaki T, Rossi F. Plasma sterilization of Geobacillus Stearothermophilus by O2:N2 RF inductively coupled plasma [J]. The European Physical Journal Applied Physics.2006; 34(2):139-142.
    [184]Walsh JL, Liu DX, Iza F, et al. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges [J]. Journal of Physics D:Applied Physics.2010; 43:032001(7pp).
    [185]Deng XT, Shi JJ, Kong MG. Protein destruction by a helium atmospheric pressure glow discharge:Capability and mechanisms [J]. Journal of Applied Physics.2007; 101:074701(9pp).
    [186]Laroussi M, Richardson JP, Dobbs FC. Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology [J]. Applied Physics Letters.2002; 81(4):772-774.
    [187]Yang L, Chen J, Gao J. Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms [J]. Journal of Electrostatics.2009; 67(4):646-651.
    [188]Hury S, Vidal DR, Desor F, et al. A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas [J]. Letters in Applied Microbiology.1998; 26:417-421.
    [189]Kelly-Wintenberg K, Montie TC, Brickman C, et al. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma [J]. Journal of Industrial Microbiology & Biotechnology.1998; 20:69-74.
    [190]Kelly-Wintenberg K, Hodge A, Montie A, et al. Use of atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms [J]. Journal of Vacuum Science & Technology A.1999; 17(4):1439-1544.
    [191]Roth JR, Sherman DM, Gadri RB, et al. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials [J]. IEEE Transaction on Plasma Science.2000; 28(1):56-63.
    [192]Laroussi M, Tendero C, Lu X, et al. Inactivation of bacteria by the plasma pencil [J]. Plasma Processes and Polymers.2006; 3(6-7):470-473.
    [193]Perni S, Shama G, Hobman JL, et al. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants [J]. Applied Physics Letters.2007; 90(7):073902(3PP).
    [194]Deng XT, Shi JJ, Kong MG. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas [J]. IEEE Transaction on Plasma Science.2006; 34 (4):1310-1316.
    [195]Yasuda H, Hashimoto M, Rahman MM, et al. States of biological components in bacteria and bacteriophages during inactivation by atmospheric dielectric barrier discharges [J]. Plasma Processes and Polymers.2008; 5:615-621.
    [196]Yasuda H, Miura T, Kurita H, et al. Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Processes and Polymers [J].2010; 7:301-308.
    [197]Dobrynin D, Fridman G, Friedman G, et al. Physical and biological mechanisms of direct plasma interaction with living tissue [J]. New Journal of Physics.2009; 11:115020(26PP).
    [198]Bogomaz AA, Goryachev VL, Remmenui AS, et al. Efficiency of pulsed electric discharges in water disinfection [J]. Journal of Experimental and Theoretical Physics Letters.1991; 17:65-68.
    [199]Lee C, Kim J, Yoon J. Inactivation of MS2 bacteriophage by streamer corona discharge in water [J]. Chemosphere.2011; 82(8):1135-1140.
    [200]Tang YZ, Lu XP, Laroussi M, et al. Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media [J]. Plasma Processes and Polymers.2008; 5:552-558.
    [201]Oehmigen K, Hahnel M, Brandenburg R, et al. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids [J]. Plasma Processes and Polymers.2010; 7:250-257.
    [202]Schoenbach KH, Katsuki S, Stark RH, et al. Bioelectrics-New applications for pulsed power technology [J]. IEEE Transaction on Plasma Science.2002; 30(1):293-300.
    [203]Kirawanich P, Pausawasdi N, Srisawat C, et al. An FDTD interaction scheme of a high-intensity nanosecond-pulsed electric-field system for in vitro cell apoptosis Applications [J]. IEEE Transaction on Plasma Science.2010; 38(10):2574-2582.
    [204]Stacey M, Stickley J, Fox P, et al. Differential effects in cells exposed to ultra-short, high intensity electric fields:cell survival, DNA damage, and cell cycle analysis [J]. Mutation Research.2003; 542:65-75.
    [205]Chen N, Schoenbach KH, Kolb JF, et al. Leukemic cell intracellular responses to nanosecond electric fields [J]. Biochemical and Biophysical Research Communications.2004; 317:421-427.
    [206]Beebe SJ, Schoenbach KH. Nanosecond pulsed electric fields:A new stimulus to activate intracellular signaling[J]. Journal of Biomedicine and Biotechnology.2005; 2005(4):297-300.
    [207]Tekle E, Oubrahim H, Dzekunov SM, et al. Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses [J]. Biophysical Journal.2005; 89(1):274-284.
    [208]Nuccitelli R, Pliquett U, Chen X, et al. Nanosecond pulsed electric fields cause melanomas to self-destruct [J]. Biochemistry & Biophysical Research Communication.2006; 343(2):351-360.
    [209]Joshi R, Nguyen A, Sridhara V, et al. Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse [J]. Physical Review E.2007; 75:041920(pps).
    [210]Schoenbach KH, Joshi RP, Beebe SJ, et al. A scaling law for membrane permeabilization with nanopulses [J]. IEEE Transactions on Dielectrics and Electrical Insulation.2009; 16(5): 1224-1235.
    [211]Berghofer T, Eing C, Flickinger B, et al. Nanosecond electric pulses trigger actin responses in plant cells [J]. Biochemical and Biophysical Research Communications.2009; 387(3):590-595.
    [212]Beebe SJ, Schoenbach KH, Heller R. Bioelectric applications for treatment of melanoma [J]. Cancers.2010; 2:1731-70.
    [213]Stacey M, Fox P, Buescher S, et al. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival [J]. Bioelectrochemistry.2011; 82(2):131-134.
    [214]Wouters PC, Alvarez I, Raso J. Critical factors determining inactivation kinetic by pulsed electric field food processing [J]. Trends in Food Science & Technology.2001; 12:112-121.
    [215]Ho SY, Mittal GS. Electroporation of cell membranes:A review [J]. Critical Reviews in Biotechnology.1996; 16(4):349-362.
    [216]Rols MP, Teissie J. Electropermeabilization of mammalian cells to macromolecules:Control by pulse duration [J]. Biophysical Journal.1998; 75(3):1415-1423.
    [217]Guo S, Donate A, Basu G, et al. Electro-gene transfer to skin using a noninvasive multielectrode array [J]. Journal of Controlled Release.2011; 151(3):256-262.
    [218]Sack M, Eing C, Berghofer T, et al. Electroporation-assisted dewatering as an alternative method for drying plants [J]. IEEE Transaction on Plasma Science.2008; 36(5):2577-2585.
    [219]Sack M, Eing Chr, Stangle R, et al. Electric measurement of the electroporation efficiency of mash from wine grapes [J]. IEEE Transaction on Dielectrics and Electrical Insulation.2009; 16(5):1329-1337.
    [220]Sack M, Sigler J, Frenzel S, et al. Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue [J]. Food Engineering Reviews. 2010; 2(2):147-156.
    [221]Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms:Ⅰ. Killing of bacteria and yeasts [J]. Biochemical and Biophysical Acta.1967; 148(3):781-788.
    [222]Hamilton WA, Sale AJH. Effects of high electric fields on microorganisms:Ⅱ. Mechanism of action of the lethal effect [J]. Biochemical and Biophysical Acta.1967; 148(3):789-800.
    [223]Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms:Ⅲ. Lysis of erythrocytes and protoplasts [J]. Biochemical and Biophysical Acta.1968; 163(1):37-43.
    [224]Zimmermann U, Pilwat G, Beckers F, et al. Effects of external electrical fields on cell membranes [J]. Bioelectrochemistry and Bioenergetics.1976; 3(1):58-83.
    [225]Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion [J]. Reviews of Physiology, Biochemistry and Pharmacology.1986; 105:176-256.
    [226]Sampedro F, Rodrigo D, Martinez A, et al. Review:Application of pulsed electric fields in egg and egg derivatives [J]. Food Science and Technology International.2006; 12(5):397-405.
    [227]Perez MCP, Aliaga DR, Bernat CF, et al. Inactivation of Enterobacter sakazakii by pulsed electric field in buffered peptone water and infant formula milk [J]. International Dairy Journal.2007,17(12):1441-1449.
    [228]Puertolas E, Lopez N, Condon S, et al. Pulsed electric fields inactivation of wine spoilage yeast and bacteria [J]. International Journal of Food Microbiology.2009; 130(1):49-55.
    [229]Marselles-Fontanet AR, Puig A, et al. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields [J]. International Journal of Food Microbiology.2009; 130(3):159-165.
    [230]Soliva-Fortuny R, Balasa A, Knorr D, et al. Effects of pulsed electric fields on bioactive compounds in foods:a review [J]. Trends in Food Science & Technology.2009; 20(11-12):544-556.
    [231]Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O. Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials [J]. Food and Bioproducts Processing.2012; 90(2):205-214.
    [232]Alkhafaji SR, Farid M. An investigation on pulsed electric fields technology using new treatment chamber design [J]. Innovative Food Science & Emerging Technologies.2007; 8(2):205-212.
    [233]Huang K, Wang J. Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process:A review [J]. Journal of Food Engineering.2009; 95(2):227-239.
    [234]Zhang Q, Barbosa-Canovas GV, Swanson BG. Engineering aspects of pulsed electric field pasteurization [J]. Journal of Food Engineering.1995; 25:261-281.
    [235]Gongora-Nieto MM, Sepulveda DR, Pedrow P, et al. Food processing by pulsed electric fields:Treatment delivery, inactivation level, and regulatory aspects [J]. LWT-Food Science and Technology.2002; 35(5):375-388.
    [236]Gongora-Nieto MM, Pedrow PD, Swanson BG, et al. Use of circuit analysis simulations in pulsed electric fields food processing [J]. Journal of Food Engineering.2004; 61(3):413-420.
    [237]San Martin MF, Sepulveda DR, Altunakar B, et al. Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields [J]. LWT-Food Science and Technology.2007; 40(7):1271-1279.
    [238]Wan J, Coventry J, Swiergon P, et al. Advances in innovative processing technologies for microbial inactivation and enhancement of food safety-pulsed electric field and low-temperature plasma [J]. Trands in Food Science & Technology.2009; 20:414-424.
    [239]Sepulveda DR, Guerrero JA, Barbosa-Canovas GV. Influence of electric current density on the bactericidal effectiveness of pulsed electric field treatments [J]. Journal of Food Engineering.2006; 76(4):656-663.
    [240]Heinz V, Toepfl S, Knorr D. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment [J]. Innovative Food Science & Emerging Technologies.2003; 4(2):167-175.
    [241]Amiali M, Ngadi MO, Smith JP, et al. Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk [J]. Journal of Food Engineering.2007; 79(2):689-694.
    [242]Noci F, Walkling-Ribeiro M, Cronin DA, et al. Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk [J]. International Dairy Journal.2009; 19(1):30-35.
    [243]Guerrero-Beltran JA, Sepulveda DR, Gongora-Nieto MM, et al. Milk thermization by pulsed electric fields (PEF) and electrically induced heat [J]. Journal of Food Engineering.2010; 100(1):56-60.
    [244]Gupta SB. Investigation of a physical disinfection process based on pulsed underwater corona discharge [D]. PhD Thesis.2007. Karlsruhe Institute of Technology, Germany.
    [245]Locke BR, Shih KY. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water [J]. Plasma Sources Science and Technology.2011; 20: 034006(15pp).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700