用户名: 密码: 验证码:
基于TEM8的口服疫苗构建及其抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管生成是胚胎发育、伤口愈合、炎症中的生理反应,但是在实体瘤、风湿性关节炎、糖尿病性视网膜炎等疾病中却属于病理过程。众多的证据表明,实体瘤的生长和转移依赖于血管生成,肿瘤血管生成也因此成为肿瘤学研究的热点领域之一。目前,部分化学合成的抗血管生成的药物已进入临床试验,并证明抗血管生成是有效的肿瘤治疗方法。由于抗血管生成是一个长期的治疗过程,持续给药不仅麻烦而且给患者带来很重的经济负担。主动免疫治疗在少数几次给药的情况下,便可以获得长期的保护性效果,不但方便而且便宜,所以,抗肿瘤血管生成疫苗的运用前景非常具有吸引力。到目前为止,主动免疫治疗在动物实验中取得了一定的疗效,但还存在一些缺点,比如靶抗原的特异性不高等等。2000年Croix发现多条在结肠癌血管内皮中特异性高表达的基因,命名为肿瘤内皮标志物(tumor endothelial markers,TEMs)。随后的研究提示提示TEM8是目前特异性最高的免疫治疗候选靶抗原,但TEM8是否为抗肿瘤治疗的有效靶抗原并没有得到证明。本课题的目的就在于评估基于TEM8的抗肿瘤免疫治疗的有效性和毒副作用,从而评价是否有必要对TEM8进行更多的免疫治疗方面的研究。
     我们首先构建编码人TEM8-Ⅰ基因的真核表达质粒pTEM8-Ⅰ和编码人TEM8-Ⅰ、小鼠GM-CSF基因的双表达质粒pTEM8/mGM-CSF。经限制性酶切和测序鉴定后转化营养缺陷型小鼠沙门氏菌株SL7207,制备基于TEM8的口服疫苗。以编码绿色荧光蛋白的真核表达质粒pEGFP-N1转化SL7207后制备示踪疫苗,口服免疫C57BL/6小鼠,3天后,在Peyer’s结和脾细胞中均可发现表达绿色荧光蛋白的抗原提呈细胞,确认了这种疫苗传递抗原的有效性和最佳条件。随后,我们以pTEM8-Ⅰ和pTEM8/mGM-CSF免疫C57BL/6J小鼠,取脾,以羊抗小鼠TEM8特异性抗体作免疫组化,检测到TEM8蛋白在脾内APC的细胞膜和细胞浆中表达,证实了所构建的疫苗能够完成质粒DNA由细菌到体内APC的传递,以及在APC内表达目的抗原的工作。
     在证实上述载体的抗原传递能力之后,我们研究了疫苗的抗肿瘤能力。主要包括保护性免疫和治疗性免疫两种方案,在B16黑色素瘤和CT26结肠癌模型中完成。在保护性免疫组,给小鼠口服免疫3次后,皮下接种肿瘤细胞建立皮下肿瘤模型或者经尾静脉注射肿瘤细胞建立肺转移瘤模型;在治疗性免疫组,在第一次口服免疫后3天接种肿瘤细胞,按免疫方案继续给小鼠口服免疫2次。实验结果显示,以TEM8为靶抗原的抗肿瘤血管生成疫苗,对这两种肿瘤都有明显的抑制作用,其中以CT26结肠癌皮下模型最明显;TEM8-Ⅰ和pTEM8/mGM-CSF免疫组的肿瘤体积、肺转移瘤的数目与对照组有明显差异(p<0.05),小鼠生存期延长。肿瘤组织内血管内皮细胞采用抗CD31单克隆抗体作免疫组织化学染色,结果显示TEM8疫苗免疫组微血管密度(MVD)较对照组明显降低;藻酸盐体内实验显示TEM8疫苗免疫组肿瘤血管生成明显少于对照组,FITC-Dextran摄取率也低于对照组。以pTEM8/mGM-CSF免疫后,取脾细胞以标准51Cr释放试验检测TEM8特异性CTL,显示免疫组小鼠脾细胞对CT26无杀伤作用,但可以杀伤对转染了TEM8基因的CT26细胞。以羊抗鼠TEM8抗体A16作免疫组织化学检测证实CT26结肠癌组织中只有血管内皮细胞表达TEM8蛋白,进一步说明TEM8疫苗免疫后,是通过杀伤肿瘤血管内皮细胞取得抗肿瘤效果。
     确认了疫苗的抗肿瘤作用之后,我们进一步研究了疫苗的抗肿瘤机理和毒副作用。分别利用CD4或者CD8基因敲除小鼠作保护性免疫试验,结果发现CD8缺陷时,小鼠不能获得疫苗免疫后的保护性效果;而在CD4缺陷时,实验组和对照组小鼠肿瘤体积仍然有显著性差异(p<0.05),提示CD8+T细胞在抗肿瘤中取主要作用。给小鼠口服免疫pTEM8/mGM-CSF后观察体重、主要内脏、一般情况等,未发现明显差别。皮肤致伤实验结果显示pTEM8/mGM-CSF免疫小鼠和对照组皮肤伤口的愈合时间和组织学特征均无显著差别,提示该疫苗免疫后无明显副作用。
     综合以上研究,可以得出以下结论:①以减毒沙门氏菌SL7207为载体的口服DNA疫苗可以打破自身耐受,诱导针对自身抗原的免疫反应;②以TEM8为靶抗原的疫苗可通过抗血管生成发挥抗肿瘤作用;③CD8+T细胞在以减毒沙门氏菌为载体的口服DNA疫苗所诱导的抗肿瘤免疫应答中取主要作用。
Angiogenesis is important for some normal physiologic progression such as embryonic development, wound healing, inflammation, but also important for some pathologic conditions such as tumor, rheumatic arthritis, retinopathies, etc. Direct and indirect evidences indicated that the growth and metastasis of tumor are angiogenesis-dependent. Therefore, tumor angiogenesis research has become a hot spot recently. Up to date, some specific anti-angiogenic drugs have been enrolled clinical trials and proved that anti-angiogenesis was a potential method for cancer therapy. Since anti-angiogenic therapy needs a persistent and long-term impact to suppress tumor growth, specific chemical or biological inhibitors of angiogenesis often require constant administration at a relatively high dose level that is very troublesome and costly. Compared with chemical therapy, active immunotherapy is more convenient, cost effective and worthy of intensive exploration. Recently, researchers have obtained some evidences that active immunotherapy can inhibit tumor growth in vivo, but some disadvantages such as the low specificity of the targeted antigen need to be improved.
     Tumor endothelial markers (TEMs) which dominantly expressed in endothelium of human colon cancer were observed by Croix and his colleagues in 2000. Following evidences indicated that TEM8 is one of the most specific antigens for anti-angiogenic tumor immunotherapy. However, whether TEM8 can act as an ideal target for anti-angiogenic therapy remains unclear. In this report, we tested our hypothesis that active immunotherapy targeting TEM8 could inhibit tumor angiogenesis and tumor growth.
     we firstly constructed the eukaryotic expression plasmid pTEM8-Ⅰencoding TEM8-Ⅰand bicistronic expression plasmid pTEM8/mGM-CSF containing human TEM8-Ⅰand murine GM-CSF. After identified with restriction enzymes and sequencing, the two plasmids were used to transform an attenuated strain of murine Salmonella typhimurium (SL7207) to obtain oral vaccines based on TEM8. At the same time, eukaryotic expression plasmid pEGFP-N1 encoding green fluorescent protein (GFP) was used to transform SL7207 to obtain a tracing vaccine. Then, C57BL/6 mice were immunized with these oral vaccines. 3 days later, antigen presentation cells expressing GFP were found both in Peyer’s patches and spleen, confirming that the vaccine was effectively processed and the immunization condition was optimal.
     We adopted B16F10 murine melanoma model and CT26 murine colon carcinoma model to estimate the vaccine’s anti-tumor efficacy by protective setting or therapeutic setting. In protective experiment, mice were immunized three times at 2-wk intervals. Two week thereafter, mice were challenged with tumor cells by s.c. or i.v. injection to induce primary tumor or experimental pulmonary metastases. In therapeutic experiment, mice were challenged with tumor cells 3 days after the first immunization, then the other two times vaccinations were performed at 2-wk intervals as before. We found that immunotherapy with SL7207/pTEM8-Ⅰor SL727/pTEM8/mGM-CSF primed effective anti-tumor immune response at both protective and therapeutic settings, resulting in markedly reduced growth of tumors and prolonged life span of immunized mice.
     We also used a monoclonal antibody specific for murine CD31 to detect the microvessel density of tumor tissues, and observed that MVD of tumors in mice immunized with TEM8 vaccines is obviously lower than the control group. The results of alginate assay in vivo and FITC-Dextran ingestion assay also indicated that angiogenesis in immunized mice was inhibited. To detect TEM8 specific CTLs, splenocytes were collected from mice immunized with pTEM8/mGM-CSF or control group, and tested by a standard 51Cr release assay. The results showed that only splenocytes isolated from the mice immunized with pTEM8/mGM-CSF killed the CT26 cells transfected with TEM8 gene. A multiclonal antibody specific for TEM8 was used to detect the expression profile of TEM8 in CT26 colon carcinoma tissues, the results showed that the TEM8 proteins only expressed in tumor endothelial cells. These results further demonstrated that the anti-tumor activity of TEM8 vaccines is resulted from destroying the tumor endothelial cells.
     At last, we explored the vaccine’s anti-tumor mechanism and side effects. We did the experiment of protective immunization utilizing the C57BL/6J derived CD4 gene knockout mice and CD8 gene knockout mice. No obvious protective immune response was observed in mouse immunized with the vaccine in the absence of CD8 molecules; but the CD4 deficiency seemed do not affect the vaccine induced protective immune response. These results implied that CD8+ T cells play the essential role in the anti-tumor immune response primed by the vaccines. As to side effects, we didn’t find obvious differences between the mice orally immunized with pTEM8/mGM-CSF with control group in body weight, major viscera appearance and general state. The skin vulneration assay in the two groups also showed no difference in skin wound healing and histologic characteristics.
     Based on the results above, we can draw following conclusions:①Oral DNA vaccines delivered by attenuated salmonella have the ability to break self-tolerance and induce the immune response against self antigens;②The vaccines targeting the TEM8 can inhibit tumor growth by anti-angiogenesis effects;③CD8+ T cells play the critical role in tumor rejection immune response primed by oral DNA vaccine delivered by attenuated salmonella.
引文
1. Folkmen J,Kalluri R. Cancer without disease. Nature 2004;427(26):787
    2. Eberhard A, et al. heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000,60:1388-1398
    3. Folkmen J. Angiogenesis and angiogenesis inhibition: an overview. EXS,1997,79:1-8
    4. Folkmen J. Tumor angiogenesis and tissue factor. Nature Med.,1996, 2;167-168
    5. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Med. 2002;8(12): 1369-1375
    6. Augustin HG. Antiangiogenic tumor therapy: will it work? TIBS, 1998, 19: 216-222
    7. Falardeau P, et al. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phaseⅢclinical trials. Semin Oncol.,2001,28:620-625
    8. Coussens LM, et al. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295(29): 2387-2392
    9. Wei YQ,Wang QR,Zhao Y, et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nature Med 2000;6(10):1160-6
    10. Okaji Y ,Tsuno NH, Kitayama J, et al. Vaccination with autologous endothelium inhibits angiogenesis and metastasis of colon cancer through autoimmunity. Cancer Sci 2004;95(1):85-89
    11. Liu JY, Wei YQ, Yang L,et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 2003 ;102(5):1815-23
    12. He QM, Wei YQ, Tian L,et al. Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem 2003 ;278(24):21831-6
    13. Su JM, Wei YQ, Tian L, et al. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res. 2003 ;63(3):600-7
    14. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Med. 2002;8(12): 1369-1375
    15. Li YW, Wang MN, Li HL, et al. Active immunization against the vascular endothelialgrowth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 2002;195(12):1575-1584
    16. Finn OJ. Cancer vaccines: between the idea and the reality. Nat Reviews Immunol 2003;3:630-641
    17. Ludewig B, Ochsenbein AF, Odermatt B, et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 2000 Feb;191(5): 795–804
    18. Croix BS, Rago C, Velculescu V, et al. Genes expression in human tumor endothelium. Science.2000; 289(18): 1197-1202
    19. Eleanor B. Carson-Walter, D. Neil.Watkins, et al. Cell surface tumor endothelial makers are conserved in mice and humans. Caner Res. 2001; 61(15):6649-6655
    20. Akash Nanda, Eleanor B. Carson-Walter, D. Steven Seaman, et al. TEM8 Interacts with the Cleaved C5 Domain of Collagenα3(VI). Caner Res. 2004; 64(1):817-820
    21. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994; 12: 337-365.
    22. Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, Lethe B, Brasseur F, Boon T. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med. 1994; 179(3): 921-930.
    23. De Plaen E, De Backer O, Arnaud D, Bonjean B, Chomez P, Martelange V, Avner P, Baldacci P, Babinet C, Hwang SY, Knowles B, Boon T. A new family of mouse genes homologous to the human MAGE genes. Genomics. 1999; 55(2): 176-184.
    24. Van den Eynde BJ, Boon T. Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res. 1997; 27(2): 81-86.
    25. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, et al. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A 2001; 98(18):10290-95.
    26. Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med. 1995; 182(3): 689-698.
    27. Van Pel A, De Plaen E, Duffour MT, Warnier G, Uyttenhove C, Perricaudet M, Boon T.Induction of cytolytic T lymphocytes by immunization of mice with an adenovirus containing a mouse homolog of the human MAGE-A genes. Cancer Immunol Immunother. 2001; 49(11): 593-602.
    28. Zhu B, Chen Z, Cheng X, Lin Z, Guo J, Jia Z, Zou L, Wang Z, Hu Y, Wang D, Wu Y. Identification of HLA-A*0201-restricted cytotoxic T lymphocyte epitope from TRAG-3 antigen. Clin Cancer Res. 2003; 9(5):1850-1857.
    29. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP. Vaccination with a recombinant vaccinia virus encoding a "self" antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc Natl Acad Sci U S A. 1999; 96(6): 2982-2987.
    30. Bowne WB, Srinivasan R, Wolchok JD, Hawkins WG, Blachere NE, Dyall R, Lewis JJ, Houghton AN. Coupling and uncoupling of tumor immunity and autoimmunity. J Exp Med. 1999; 190(11): 1717-1722.
    31. Liu S, Leppla ST. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Bio. Chem. 2003,278(7):5227-5234
    32. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643-1647.
    33. Yang XF, Wu CJ, Chen L, Alyea EP, Canning C, Kantoff P, Soiffer RJ, Dranoff G, Ritz J. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res. 2002; 62(19):5517-5522.
    34. Rimoldi D, Salvi S, Reed D, Coulie P, Jongeneel VC, De Plaen E, Brasseur F, Rodriguez AM, Boon T, Cerottini JC. cDNA and protein characterization of human MAGE-10. Int J Cancer. 1999;82(6):901-907.
    35. Zhai Y, Yang JC, Spiess P, Nishimura MI, Overwijk WW, Roberts B, Restifo NP, Rosenberg SA. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100. J Immunother. 1997; 20(1):15-25.
    36. Houghton AN. Cancer antigens: immune recognition of self and altered self. J Exp Med. 1994; 180(1):1-4.
    37. Dyal R, et al. Heterocylic immunization induces tumor immunity. J Exp Med, 1998,188:1553-1562
    38. Bowne WB, et al. Coupling an uncoupling of tumour immunity and autoimmunity. J Exp Med, 1999, 190:1717-1722.
    39. Weber LW, et al. Tumor immunity and autoimmunity induced by immunization with autologous DNA. J Clin Invest, 1998, 102:1258-1264.
    40. Schreurs MW, et al. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res. 2000, 60: 6995-7001.
    41. Clarke P, et al. Mice transgenic for human carcinoembryonic antigen as a model for immunotherapy. Cancer Res, 1998,58:1469-77
    42. Gillies SD, et al. Antibody-IL12 fusion proteins are effective in SCID mouse models of prostate and colon carcinoma metastases. J Immunol, 1998,160:6195-203
    43. Cochlovius B, et al. Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunol Letters, 2002,80:89-96.
    44. Darji A, et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell, 1997,91:765-75
    45. Darji A, et al. Oral delivery of DNA vaccines using attenuated salmonella typhimurium as carrier. Imunol Med Microbiol. 2000, 27:341-9
    46. Mayloy KJ, et al. Intralymphatic immunization enhances DNA vaccination. Proc Nat Acad Sci USA, 2001,98:3299-3303
    47. Hanahan D, Weinberg RA. The hall markers of cancer. Cell. 2000, 100(7): 57-70
    48. Bergers G, Benjamin LE. 2003. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer. 2003,3:401-410
    49. Nanda A,Croix BS. Tumor endothelial markers: new targets for cancer therapy. Curr Opin Oncol. 2004, 16;44-49.
    50. Sigh M, O’Hagan D. Advances in vaccine adjuvants. Nature Biotechnol, 1999,17(11); 1075-81
    51. Aarts WM, et al. Vector-based vaccines/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Res, 2002,62(20):5770-7
    52. Linsley PS, et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med, 1991,173(3):721-30
    53. Lasen CP, et al. Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol. 1994, 152(11): 5208-19
    54. Chow YH, et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol, 1998,160(3):1320-9
    55. Hotchkiss KA, Basile CM, Spring SC, et al. TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell-matrix interactions on collagen. Exp Cell Res. 2005, 305(1)
    56. Rmali KA., Puntis MCA., Jiang WG. Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J Gastroenterol. 2005, 11(9): 1283-1286
    1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285: 1182-1186
    2. Folkmen J,Kalluri R. Cancer without disease. Nature 2004; 427(26): 787
    3. Hanahan D, Weinberg RA. The hall markers of cancer. Cell. 2000, 100(7): 57-70
    4. Bergers G, Benjamin LE. 2003. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer. 2003,3:401-410
    5. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regulation and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284:1884-1998
    6. Risau W,Flamme I. Vasculogenesis. Annu.Rev.cell.Dev.Biol. 1995;11:73-91
    7. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow- derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 2001;11:1194-1201
    8. Ziegelhoeffer T,Fernandez B,Kostin S,et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circulation Res. 2004;94:230-238
    9. Haiqing Li,William L. Gerald,Robert Benezra. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res. 2004, 64: 6137-6143
    10. Risau W. Mechanisms of angiogenesis Nature 1997;386:671-674
    11. Folberg R, Hendrix MJ, Maniotis AJ, et al. Vasculogenic mimicry and tumor angiogenesis. Am.J Pathol. 2000;156:361-381
    12. Bikfalvi A,Bicknell R. et al. Recent advances in angiogenesis, anti- angiogenesis and vascular targeting. Trends in Pharmacological Science. 2002, 23(12):576-582
    13. Rakesh K Jain. Molecular regulation of vessel maturation. Nature Med. 2003,9(6): 685-693
    14. Powers CJ, Mcleskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 2000, 7:165-197
    15. Levin EG, Sikora L, Ding L, et al. Suppression of tumor growth and angiogenesis in vivo by a truncated form of 24-kd fibroblast growth factor(FGF)-2. Am J Pathol. 2004,164(4): 1183-1190
    16. Kalluri R. Basement members: structure, assembly and role in tumor angiogenesis. Nature Rev. Cancer, 2003,3: 422-433
    17. Croix BS, Rago C, Velculescu V, et al. Genes expression in human tumor endothelium. Science.2000; 289(18): 1197-1202
    18. Nanda A,Croix BS. Tumor endothelial markers: new targets for cancer therapy. Curr Opin Oncol. 2004,16;44-49.
    19. Eleanor B. Carson-Walter, D. Neil. Watkins, et al. Cell surface tumor endothelial makers are conserved in mice and humans. Caner Res. 2001; 61(15):6649-6655
    20. Liu SH, Leppla SH. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Bio. Chem. 2003,278(7):5227-5234
    21. Akash Nanda, Eleanor B. Carson-Walter, D. Steven Seaman, et al. TEM8 Interacts with the Cleaved C5 Domain of Collagenα3(VI). Caner Res. 2004; 64(1):817-820
    22. Scappaticci FA. Mechanisms and future directions for angiogenesis-based cancer therapies J Clin Oncology 2002; 20(18):3906-3927
    23. McCarthy M. Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet. 2003,361:1959
    24. David H. Johnson, Louis Fehrenbacher, William F. Novotny, et al. Randomized phaseⅡtrial comparing Bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004, 22(11): 2184-2191
    25. Posey JA, Ng Thian C, Yang BL, et al. A phaseⅠstudy of anti-kinase insert domain-containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clin Cancer Res. 2003, 9: 1323-1332
    26. Jayson GC, Zweit J, Jackson A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst. 2002; 94: 1484-93
    27. Trikha M, Zhou Z, Nemeth JA, et al. CNTO 95, a fully human monoclonal antibody that inhibitsαⅤintegrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer. 2004; 110:326-335
    28. Wei YQ, Wang QR,Zhao Y, et al. Immunotherapy of tumors with xenogeneic endothelialcells as a vaccine. Nature Med 2000;6(10):1160-6
    29. Li YW, Wang MN, Li HL, et al. Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 2002;195(12):1575-1584
    30. Wei YQ, Huang MJ, Yang L,et al. Immunogenetherapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci U S A. 2001;98(20):11545-50
    31. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Med. 2002;8(12): 1369-1375
    32. He QM, Wei YQ, Tian L, et al. Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice. J Biol Chem 2003 ;278(24):21831-6
    33. Su JM, Wei YQ, Tian L, et al. Active immunogenetherapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res. 2003 ;63(3):600-7
    34. Finn OJ. Cancer vaccines: between the idea and the reality. Nat Reviews Immunol 2003;3:630-641
    35. Felix Mor, Francisco J Quintana, Irun R Cohen. Angiogenesis-Inflammation Cross-Talk: Vascular Endothelial Growth Factor Is Secreted by Activated T Cells and Induces Th1 Polarization. J. Immunol. 2004, 172: 4618-4623
    1. Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primarytumour development and shape tumour immunogenicity. Nature, 410:1107–1111, 2001
    2. DL Morton and A Barth, Vaccine therapy for malignant melanoma. 1996, CA Cancer J Clin. 46 : 225–244.
    3. D Berd, Autologous, hapten-modified vaccine as a treatment for human cancers. 2001, Vaccine 19: 2565–2570.
    4. FC Austin and CW Boone. Virus augmentation of the antigenicity of tumor cell extracts. 1979, Adv Cancer Res., 30: 301–345
    5. MS Mitchell. Perspective on allogeneic melanoma lysates in active specific immunotherapy. Semin Oncol., 1998, 25: 623–635
    6. VK Sondak and JA Sosman, Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: melacine, Semin Cancer Biol . 2003,13. 409–415.
    7. JA Sosman, JM Unger and PY Liu et al., Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome, J Clin Oncol .2002, 20: 2067–2075.
    8. JC Bystryn, M Henn, J Li and S Shroba, Identification of immunogenic human melanoma antigens in a polyvalent melanoma vaccine, Cancer Res . 1992,52: 5948–5953.
    9. PK Srivastava, A Menoret and S Basu et al., Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world, Immunity .1998, 8: 657–665
    10.JW Dennis, M Granovsky and CE Warren, Glycoprotein glycosylation and cancer progression, Biochim Biophys Acta .1999, 1473: 21–34
    11.NK Ibrahim and JL Murray, Clinical Development of the STn-KLH Vaccine (Theratope), Clin Breast Cancer 2003,3 (suppl 4): S139–S143
    12. AS Perelson, Immune network theory, Immunol Rev 1989, 110: 5–36
    13. M Bhattacharya-Chatterjee, SK Chatterjee and KA Foon, Anti-idiotype vaccine against cancer, Immunol Lett .2000,74 : 51–58.
    14. MJ Losman, Z Qu and IS Krishnan et al., Generation and monitoring of cell lines producing humanized antibodies, Clin Cancer Res .1999,5: 3101S–3105S.
    15. Manickasingham SP, Reis a Sousa C. Mature T cell seeks antigen for meaningful relationship in lymph node. Immunology, 2001, 102: 381 6
    16. Janeway CA Jr. The targeting of effector molecules in the immune system. Bioessays1986; 5: 216 20
    17. Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 2001; 13: 114 19
    18. Alexandroff AB, Jackson AM, O'Donnell MA, James K. BCG immunotherapy of blader cancer: 20 years on. Lancet 1999; 353: 1689 94
    19.Duda RB, Yang H, Dooley DD, Abu-Jawdeh G. Recombinant BCG therapy suppresses melanoma tumour growth. Ann. Surg. Oncol. 1995; 6: 542 9
    20.Brunner C, Seiderer J, Schlamp A et al. Enhanced dendritic cell maturation by TNF-a or Cytidine-Phosphate-Guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J. Immunol. 2000; 165: 6278 86
    21. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. Activation of cutaneous dendritic cells by CpG-containing oligo-deoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol. 1998; 161: 3042 9
    22. Martin-Orozco E, Kobayashi H, Van Uden J, Nguyen M-D, Kornbluth RS, Raz E. Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int. Immunol. 1999; 11: 1111 18
    23.Tsuji S, Matsumoto M, Takeuchi O et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 2000; 68: 6883 90.
    24. Goldmann O, Rohde M, Medina E. Phagocytosis of bacille Calmette-Guerin-infected necrotic macrophages induces a maturation phenotype and evokes antigen-presentation functions in dendritic cells. Immunology 2002; 107: 500 6.
    25.Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol. 2000; 12: 1539 46
    26. Colaco CA. Towards a unified theory of immunity: dendritic cells, stress proteins and antigen capture. Cell. Mol. Biol. 1998; 44: 883 90
    27. Hoos A, Levey DL. Vaccination with heat shock protein-peptide complexes: from basic science to clinical applications. Expert Rev. Vaccines 2003; 3: 369 79
    28. Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immunesuppression. Cancer Immunol. Immunother. 2002; 6: 293 8
    29. Almand B, Clark J, Nikitina E et al. Increased production of immature myeloid cells in cancer patients as a mechanism of immunosuppression in cancer. J. Immunol. 2001; 166: 678 89
    30.Dong R, Cwynarski K, Entwistle A et al. Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood 2003; 101: 3560 7
    31. Cerundolo V, Hermans IF, Salio M. Dendritic cells: a journey from laboratory to clinic. Nature Immunol. 2004; 1: 7 10.
    32. Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. 1999; 50: 507 29.
    33. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001; 411: 380 4
    34. Pawelec G. Tumour escape: antitumour effectors too much of a good thing? Cancer Immunol. Immunother 2004; 53: 262 74
    35. Fayad L, Keating MJ, Reuben JM et al. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 2001; 97: 256 63
    36.Sarris AH, Kliche KO, Pethambaram P et al. Interleukin-10 levels are often elevated in serum of adults with Hodgkin's disease and are associated with inferior failure-free survival. Ann. Oncol. 1999; 10: 433 40
    37. Letterio JJ, Roberts AB. Regulation of immune responses by TGF- . Annu. Rev. Immunol. 1998; 16: 137 61.
    38. Crowley M, Inaba K, Steinman RM. Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins. J. Exp. Med. 1990; 172: 383 6
    39.Tsuchiya Y, Igarashi M, Suzuki R, Kumagai K. Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J. Immunol. 1988; 141: 699 708
    40. Oghiso Y, Yamada Y, Ando K, Ishihara H, Shibata Y. Differential induction of prostaglandin E2-dependent and independent immune suppressor cells by tumor-derived GM-CSF and M-CSF. J. Leukoc. Biol. 1993; 53: 86 92
    41.Gabrilovich D, Velders M, Sotomayor E, Kast W. Mechanism of immune dysfunction in cancer mediated by immature Gr-1(+) myeloid cells. J. Immunol. 2001; 166: 5398 406
    42. Toi M, Taniguchi T, Yamamoto Y, Kurisaki T, Suzuki H, Tominaga T. Clinical significance of the determination of angiogenic factors [review]. Eur. J. Cancer 1996; 32A: 2513 19
    43. Ferrara N, Smyth D. The biology of vascular endothelial growth factor. Endocr. Rev. 1997; 18: 4 25
    44. Dikov M, Oyama T, Cheng P et al. Vascular endothelial growth factor effects on nuclear factor-kappa B activation in hematopoietic progenitor cells. Cancer Res. 2001; 61: 2015 21
    45. Oyama T, Ran S, Ishida T et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa ? activation in hemopoietic progenitor cells. J. Immunol. 1998; 160: 1224 32
    46. Davis TA, Maloney DG, Czerwinski DK, Liles TM, Levy R. Anti-idiotypes antibodies can induce long-term complete remissions in non-Hodgkin's lymphoma without eradicating the malignant clone. Blood 1998; 92: 1184 90
    47. Vogel C, Cobleigh MA, Tripathy D et al. First-line, single agent Herceptin (trastuzumab) in metastatic breast cancer: a preliminary report. Eur. J. Cancer 2001; 37: 25 7
    48. Riethmuller G, Schneider-Gadicke E, Schlimok G et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes'C colorectal carcinoma. Lancet 1994; 434: 1177 83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700