用户名: 密码: 验证码:
班公湖—怒江缝合带中西段构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
班公湖—怒江缝合带是拉萨地体和羌塘地体的分界线,对班公湖—怒江洋盆的性质、演化模式、俯冲极性和闭合机制等关键的大地构造问题都存在着激烈争论,对班公湖—怒江蛇绿岩带的地幔源区动力学和缝合带中东段聂荣—嘉玉桥变质微陆块的演化地位还缺乏高精度的数据积累,这直接影响了对特提斯域构造和青藏高原形成演化的理解,以及对青藏高原中部缝合带两侧中—新生代含油气盆地的评价。
     本文选择班公湖—怒江缝合带研究最薄弱的中西段改则地区3条重要的蛇绿岩剖面(改则南拉果错,缝合带内洞错和改则北查尔康错),开展详细的野外地质填图;对蛇绿岩单元和岛弧类岩石进行系统的岩石学、岩相学、矿物化学(尖晶石)、地球化学、Sr-Nd-Pb同位素地质学及锆石SHRIMP U-Pb年代学研究;对拉萨地体和羌塘地体邻近缝合带的构造推覆体进行野外地质学、矿物化学和同构造新生云母~(40)Ar-~(39)Ar年代学研究;综合分析上述研究资料,建立班公湖—怒江缝合带中西段演化模式,并在前人研究基础上,探讨班公湖—怒江缝合带的构造—沉积演化。
     拉果错、洞错和查尔康错蛇绿岩的岩石组合、岩相学、矿物学和矿物化学(尖晶石)、Sr-Nd-Pb同位素特征,以及变质橄榄岩、堆积岩、玄武岩和辉绿岩地球化学特征(如TNT(Ti-Nb-Ta)负异常)均显示为SSZ型蛇绿岩,但具体构造环境各异。拉果错蛇绿岩的地球化学特征兼备MORB和IAT型,蛇绿岩形成于洋内俯冲带之上洋内岛弧的弧间盆地环境;洞错蛇绿岩中的尖晶石矿物化学显示MORB和IAT的特征,堆积岩的地球化学特征显示为MORB型,蛇绿岩形成于洋内俯冲带之上不成熟的弧后盆地环境;查尔康错蛇绿岩兼有MORB和IAT的特征,形成于洋内俯冲带之上的岛弧环境。
     详细研究拉果错斜长花岗岩的成因及其锆石SHRIMP U-Pb年代学,拉果错斜长花岗岩可能为剪切带中含水条件下辉长岩剪切深熔作用形成的,其锆石SHRIMP U-Pb年龄为166.6±2.5 Ma,证明在班公湖—怒江中西段存在中侏罗世洋盆。
     首次在羌塘地体南缘的查尔康错蛇绿岩北侧发现岛弧类岩石,岩石组合为流纹岩、安山岩和闪长岩等,闪长岩的锆石SHRIMP U-Pb年龄为166.6±2.5 Ma,表明班公湖—怒江洋盆于中侏罗世向羌塘地体下北向俯冲消减。
     拉果错和查尔康错蛇绿岩是分别被构造仰冲推覆于拉萨地体和羌塘地体的前中侏罗世陆棚相沉积地层之上的,其底部均为厚~20 m的韧性断层带,断层带内构造片岩的同构造新生云母矿物的~(40)Ar-~(39)Ar年龄为151~153 Ma。同时的双向仰冲表明班公湖—怒江洋盆于晚侏罗世早期闭合,这种快速闭合双向仰冲模式是雅鲁藏布江新特提斯洋的低角度俯冲,致使拉萨地体的快速北移与羌塘地体强烈碰撞的结果,并造成了班公湖—怒江蛇绿岩带面状分布,形成班公湖—怒江缝合带两侧晚侏罗世的构造推覆体。
     班公湖—怒江洋盆的裂开、MOR型洋盆阶段、SSZ型洋盆阶段和洋壳俯冲闭合均存在东早西晚的穿时现象,班公湖—怒江洋盆可能只发育了约130 Ma,并以聂荣—嘉玉桥变质微陆块为轴作剪刀状的开裂和闭合,存在二叠纪(或石炭纪)—晚三叠世和早—中侏罗世(西段延至晚侏罗世)东西两期残留海盆地。
     班公湖—怒江缝合带演化过程制约着拉萨地体晚侏罗世周缘前陆盆地和羌塘地体早—中侏罗世弧后盆地的沉积面貌。在改则周边地区甄别出一套早白垩世(长石~(40)Ar-~(39)Ar年龄为122.9 Ma)OIB型火山岩,证明由于雅鲁藏布江洋壳低角度俯冲的回返(roll-back)在该区产生强烈的裂谷作用,在青藏高原中部形成了一套巨厚的早白垩世—晚白垩世早期冈底斯弧弧后盆地沉积以及班公湖—怒江带内及其拉萨和羌塘陆块周边的一套早白垩世OIB型火山岩,冈底斯弧弧后裂谷作用的影响范围可能越过班公湖—怒江缝合带达到羌塘地体,青藏高原的隆升不应早于晚白垩世。
     改则地区蛇绿岩的源区显示为印度洋型的MORB特征,存在Dupal同位素异常,洞错和拉果错蛇绿岩具有亏损地幔(DDM)和富集地幔Ⅱ(EMII)混合的特征,而查尔康错地幔源区是亏损地幔(DMM)和富集地幔Ⅰ(EMI)混合的结果。Dupal同位素异常源于早二叠世(~280 Ma)携带Dupal物质组分的地幔柱,该地幔柱导致冈瓦纳大陆北缘的裂解,是古、中、新特提斯洋形成的源动力。
The ophiolite-bearing Bangong-Nujiang suture zone, traversing central Tibet from east to west, separates the Qiangtang block to the north from the Lhasa block to the south. Some key aspects about the Bangong-Nujiang suture zone, such as its nature of the ocean basin the suture represents, its evolution, subduction polarity, and closure mechanism, are still open to intense debate. The mantle geodynamics of the Bangong-Nujiang ophiolites, along with the role of the Nierong-Jiayuqiao metamorphic microcontinents in the central-eastern Bangong-Nujiang suture, also remain obscure. This has constituted a obstacle for understanding the evolution of the Tethys and the development of the Tibetan Plateau. This scientific issue is also critical to correctly assessing the structure and evolution of the Mesozoic-Cenozoic petroliferous basins on the suture zone.
     Intensive studies, including fieldwork, petrology, petrography, mineral geochemistry, geochemistry, Sr-Nd-Pb isotopes and zircon SHRIMP U-Pb and ~(40)Ar-~(39)Ar geochronology, were conducted on three key ophiolite profiles in the Bangong-Nujiang suture across Gaize, a famous town in western Tibet, where the ophiolites are well cropped out but little work has been covered so far. The rock assemblages, geochemistry, Sr-Nd-Pb isotopes, petrography, and spinel mineral chemistry of the Laguo Co, Dong Co and Chaerkang Co ophiolites profiles indicate that they were produced under environments of a supra-subduction zone. The metamorphic peridotites, cumulates, basalts and diabases from these three profiles all display negative TNT (Ti-Nb-Ta) anomalies, even though they belong to different tectonic units.
     The Laguo Co ophiolite in the northern margin of the Lhasa block geochemically show a distinct affinity with middle oceanic ridge basalts (MORB) and island arc tholeiites (IAT) and could possibly have been produced in an inter-arc basin above an intra-oceanic subduction zone. The mineral chemistry of spinels indicates that the Dong Co ophiolite within the suture exhibits MORB and IAT affinity, and the geochemistry of the cumulates shows that they could have formed under a middle oceanic ridge environments. Therefore, the Dong Co ophiolite perhaps was generated in an immature back-arc basin above the intra-oceanic subduction zone. In contrast, the Chaerkang Co ophiolite in the southern margin of the Qiangtang block geochemically displays characteristic features of MORB and IAT and could likely have been formed in an arc environment above the intra-oceanic subduction zone.
     The plagiogranites from the Laguo Co ophiolite were carefully studied for their genesis and geochronology. Our results indicate that these rocks could possibly have been derived from anatexis of hydrated gabbros by ductile shearing during transport of the oceanic crust. These plagiogranites have an age of 166±2.5 Ma by zircon SHRIMP U-Pb measuring. This age may represent the formation age of the ophiolite. indicative of that an oceanic basin could have existed in the western part of the Bangong-Nujiang zone in the Middle Jurassic.
     The arc-related rocks were identified the first time in this study in the southern margin of the Qiangtang block and on the north of the Chaerkang Co ophiolite. These magmatic rocks include rhyolites, andesites, and diorites, and have an age of 157.5±2.2 Ma based on zircon SHRIMP U-Pb method. Clearly they were a result of the northward subduction of the Bangong-Nujiang ocean under the southern Qiangtang block during the middle Jurassic.
     The Laguo Co and Chaerkang Co ophiolites are thrust over the Pre-Upper Jurassic shelf-facies sedimentary cover rocks, which are marked by -20 m-thick ductile faults filled by syn-tectonic felsic schists. Three samples of mica grains from these schists produce ages of 151-153 Ma by ~(40)Ar-~(39)Ar geochronology. Such bilaterally simultaneous obduction indicates that the Bangong-Nujiang oceanic basin must have closed just at this time. The closure is suggested to be a result of the low-angel subduction of the Neo-Tethys Ocean on the south of the Lhasa block, which drove the Lhasa block moved northward quickly and the Bangong-Nujiang ocean was closed.
     The rifting of the Bangong-Nujiang oceanic basin, the development of the MOR and SSZ oceanic basin, and the subduction of the oceanic crust developed earlier in the east and propagated westwards, showing a scissors-like opening and closure during a stage of -130 My. Two-stage remnant oceanic basins, present in eastern and western segments, respectively, were existed during the Permian (or Carboniferous) to late Triassic and the early to middle Jurassic (extended to late Jurassic in the western segment).
     The evolution of the Bangong-Nujiang suture zone, strictly speaking, controlled the sedimentation of the Late Jurassic peripheral foreland basin in the Lhasa block and the Early-Middle Jurassic back-arc basin in the Qiangtang block. A suite of Lower Cretaceous OIB-type volcanic rocks, with a ~(40)Ar-~(39)Ar age of 122.9 Ma, were recognized across Gaize and provided strong evidence that the thick Lower to Middle Cretaceous sedimentary rocks in the back-arc basin of the Gandese arc in central Tibetan Plateau should have been formed under an environment of rifting possibly owing to the roll-back of the Neo-Tethys oceanic crust after the low-angle subduction. The back-arc rifting of the Gandese arc could probably have extended to the Qiangtang block, and the uplifting time of the Tibetan plateau should not be earlier than the late Cretaceous.
     As the origin is concerned, the ophiolites across Gaize are characterized by the Indian Ocean-type MORB with Dupal Sr-Nd-Pb isotope anomalies. The Dong Co and Laguo Co ophiolites could geochemically be a result of mixture of DDM-type and EM II-type magmas. However, the Chaerkang Co ophiolite could geochemically have been generated from mixture of DMM-type and EM I-type magmas. These Dupal isotope anomalies are considered to have resulted from the early Permian (-280 Ma) mantle plume upwelling with Dupal isotopic features. This event possibly resulted in the rifting of the north margin of the Gondwana and initiated the Paleo-, Meso- and Neo-Tethyan Oceans.
引文
鲍佩声,王军,2000,青藏高原缝合带的岩石学,地球化学及其构造意义.见:肖序常,李廷栋,青藏高原的构造演化与隆升机制,广州:广东科技出版社,139~189
    鲍佩声,王希斌,1984,藏北蛇绿岩的堆积岩.喜马拉雅地质(Ⅱ),北京:地质出版社,149~166
    鲍佩声,肖序常,王军,1996,西藏洞错蛇绿岩的地球化学及其生因,见:张旗主编.蛇绿岩与地球动力学研究,北京:地质出版社,190~194
    鲍佩声,肖序常,王军,1999,西藏中北部双湖地区蓝片岩带及其构造意义.地质学报,73(4):302~314
    边千韬,郑祥身,1997,青海可可西里地区蛇绿岩的时代及形成环境.地质论评,43(4):347~35
    曹圣华,廖六根,邓世友等,2005,西藏班公湖蛇绿岩组合层序,地球化学及其成因研究,25(3):101~109
    曹圣华,罗小川,唐峰林等,2004,班公湖—怒江结合带南侧弧—盆系时空结构与演化特征.中国地质,31(1):51~56
    常承法,1992,特提斯及青藏碰撞造山带的演化特点.见:徐贵忠,常承法:大陆岩石圈构造与资源.北京:海洋出版社,1~18
    陈炳蔚,1991,三江地区主要大地构造问题及其与成矿的关系.北京:地质出版社,110
    陈国荣,陈玉禄,张宽忠等,2004,班戈幅地质调查新成果及主要进展.地质通报,23(5-6):520~532
    陈国荣,刘鸿飞,蒋光武等,2004,西藏班公湖—怒江结合带中段沙木罗组的发现.地质通报,23(2):193~194
    陈亮,孙勇,裴先治等,2003,古特提斯蛇绿岩的综合对比及其动力学意义—以德尔尼蛇绿岩为例.33(12):1136~1142
    陈明,杨恒书,2003,青藏高原三叠纪沉积盆地与古生物特征.沉积与特提斯地质,23(2):14~19
    陈玉禄,张宽忠,李关清等,2005,班公湖—怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义.地质通报,24(7):621~624
    陈岳龙,2006,松潘—甘孜碎屑沉积岩的地球化学与Sm-Nd同位素地球化学.中国地质,33:109~118
    程裕淇,1994,中国区域地质概论.北京:地质出版社,259~266
    崔军文,李朋武,李莉,2001,青藏高原的隆升:青藏高原的岩石围结构和构造地貌.地质论评,47(2):75~82
    邓万明,1983,藏北和藏南两条超基性岩带的地质对比.岩石学研究,北京:地质出版社,(3):1~16
    邓万明,1984,藏北东巧—怒江基性,超基性岩带的岩石成因.喜马拉雅地质Ⅱ,北京:地质出版社.83~98
    邓万明,1985,藏北基性—超基性深成岩的微量元素特征.岩石学研究,6:47~58
    邓万明,1988,藏北蛇绿岩尖晶石类矿物的化学成分.地质科学,(2):121~127
    邓万明,1996,青藏古特提斯蛇绿岩与“冈瓦纳古陆北界”.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,172~176
    邓万明,1998,青藏高原北部新生代板内火山岩.北京:地质出版社,1~200
    邓万明,Pearce JA,1990,拉萨至格尔木(1985)和拉萨至加德曼都(1986)的蛇绿岩.见:中—英青藏高原综合科学考察队,青藏高原地质演化.北京:科学出版社,175~241
    邓万明,王方国,1987,藏北班公湖—怒江蛇绿岩带.见:王希斌,邓万明,鲍佩声等:西藏蛇绿岩.北京:地质出版社,138~214
    邓万明,尹集祥,呙中平,1996,羌塘茶布双湖地区基性超基性岩和火山岩研究.中国科学(D辑),26(4):296~301
    邓希光,丁林,刘小汉等,2000,藏北羌塘中部冈玛日—桃形错蓝片岩的发现.35(2):227~232
    邓希光,丁林,刘小汉等,2002,藏北羌塘中部蓝片岩地球化学及其构造意义.岩石学报,18:517~525
    地质矿产部青藏高原地质文集编委会,1983-1985,青藏高原地质文集(1~17)册.北京:地质出版社
    董学斌,王忠民,谭承泽等,1990,亚东—格尔木地学断面古地磁新数据与青藏高原地体演化模式的初步研究.中国地质科学院院报,(21):139~148
    董彦辉,许继峰,曾庆高,2006,存在比桑日群弧火山岩更早的新特提斯洋俯冲纪录么?岩石学报,22(3):661~668
    冯晔,廖六根,徐平,2005,西藏班公湖蛇绿岩地质特征及形成时代.资源调查与环境,26(3):185~191
    高剑峰,陆建军,赖鸣远等,2003,岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报,39(6):844~850
    郭铁鹰,梁定益,张宜智等,1991,西藏阿里地质.武汉:中国地质大学出版社,152~304
    郭铁鹰,莫宣学,赵崇贺,1996,青藏高原蛇绿岩时空分布与特提斯演化.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,167~171
    郭新峰,张元日,程庆云等,1990,青藏高原亚东—格尔木地学断面岩石圈电性研究.中国地质科学院院报,(21):191~202
    韩松,贾秀勤,黄忠祥等,1996,云南金沙江蛇绿岩的地球化学特征及其成因的初步研究.岩石矿物学杂志,15(3):203~212
    何科昭,奚成德,李国良等,1983,对班公湖断裂的新认识.地球科学,(1):137~145
    和钟铧,杨德明,王天武,2006,西藏嘉黎断裂带凯蒙蛇绿岩的年代学,地球化学特征及大地构造意义.岩石学报,22(2):653~660
    侯青叶,赵志丹,张宏飞等,2005,北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义.中国科学(D辑),35(8):710~719
    候增谦,曲晓明,2001,三江地区义敦岛弧碰撞造山过程花岗岩记录.地质学报,75(4):5~17
    胡承祖,1990,狮泉河—古昌—永珠蛇绿岩带特征及其地质意义.成都地质学院学报,17(1):23~30
    胡健民,孟庆任,石玉若等,2005,松潘—甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报,21(3):867~880
    黄汲清,陈炳蔚,1987,中国及邻区特提斯海的演化.北京:地质出版社,1~105
    黄婉康,王岩国,张旗等,1993,丁青和喀里多尼亚玻安岩类的辉石及其超微结构.矿物学报,13(2):115~123
    简平,刘敦一,张旗等,2003,蛇绿岩及蛇绿岩浅色岩的SHRIMP U-Pb测年.地学前缘,10(4):439~456
    简平,汪啸风,何龙清等,1999,金沙江蛇绿岩中斜长岩和斜长花岗岩的地质意义.岩石学报,590~593
    江元生,周幼云,王明光等,2004,措勤区幅地质调查新成果及主要进展.地质通报,23(5-6): 512~515
    姜枚,许志琴,Him A等,2001,青藏高原及其部分邻区地震各向异性和上地幔特征.地球学报,22(2):111~116
    蒋忠惕,1994,青藏高原地区的特提斯性质,演化及区域构造发育特征.中国地质科学院562综合大队集刊,115~119
    金城伟,许荣华,Harris NBW等,1990,拉萨至格尔木的深成岩.北京:科学出版社,141~173
    金性春,周祖翼,汪品先,1995,大洋钻探与中国地球科学.上海:同济大学出版社,1~56
    科尔曼 RG,1977,蛇绿岩(鲍佩声译),北京:地质出版社,1~105
    孔祥儒,王谦身,熊绍柏,1996,西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D辑),26(4):308~315
    孔祥儒,王谦身,熊绍柏,1999,青藏高原西部综合地球物理剖面和岩石圈结构与动力学.科学通报,44(12):1257~1265
    赖绍聪,刘池阳,2003,青藏高原安多岛弧型蛇绿岩地球化学及成因.岩石学报,19(14):675~682
    兰中伍,2006,四川松潘—甘孜盆地砂岩的物质来源:来自锆石U-Pb(SHRIMP)年龄证据.沉积学报,24:321~332
    李才,1987,龙木错—双湖—澜沧江板块缝合带与石炭—二叠纪冈瓦纳北界.长春地质学院学报,17(2):155~166
    李才,1997,西藏羌塘中部蓝片岩青闪石~(40)Ar-~(39)Ar定年及其地质意义.科学通报,42(2):488
    李才,程立人,胡克,1995,西藏龙木错—双湖古特提斯缝合带研究.北京:地质出版社,1~131
    李才,翟庆国,陈文等,2006a,青藏高原羌塘中部榴辉岩~(40)Ar-~(39)Ar定年.岩石学报,22(12):2843~2849
    李才,翟庆国,董永胜,2006b,青藏高原羌塘中部榴辉岩的发现及其意义.科学通报,51:70~74
    李才,王天武,杨德明,2001,西藏羌塘中央隆起区物质组成与构造演化.长春科技大学学报,31(1):25~31
    李昌年,1992,火成岩微量元素岩石学.武汉:中国地质大学出版社,74~109
    李长青,1999,滇黔桂地区印支构造特征及前陆盆地形成演化.云南地质,18(3):239~247
    李春昱,王荃,刘雪亚等,1982,亚洲大地构造图及说明书.北京:地图出版社,1~10
    李达周,张旗,张魁武,1988,西藏丁青地区与玻镁安山岩类有关的蛇绿岩的矿物学特征.岩石矿物学杂志,7:235~243
    李红生,1988,西藏丁青地区早侏罗世放射虫.微体古生物学报,5:323~330
    李红生,边千韬,1993,可可西里西金乌兰—冈齐曲蛇绿混杂岩中晚古生代放射虫.现代地质,7(4):410~420
    李金高,曲德,1993,措勤—纳木错缝合带特征及其找矿意义探讨.西藏地质,10(2):38~44
    李锦铁,1995,新疆东准噶尔蛇绿岩的基本特征和侵位历史.岩石学报,11(增刊):73~84
    李秋生,王建平,1996a,西藏东部丁青—怒江蛇绿混杂岩带的地质特征.见:张旗,蛇绿岩与地球动力学研究.北京:地质出版社,195~198
    李秋生,王建平,1996b,西藏班公湖—怒江蛇绿岩带东段古特提斯蛇绿岩.见:中国地质学会(编).“八五”地质科技重要成果学术交流会议论文选集.北京:冶金工业出版社,161~164
    李曙光,1993,蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报,9(2):146~157
    李献华,刘颖,2002,硅酸盐岩石化学组成的IGP-AES和ICP-MS准确测定:酸溶与碱熔分解 样品方法的对比.地球化学,31(3):289~294
    李勇,王成善,伊海生,2001,青藏高原中侏罗世—早白垩世羌塘复合型前陆盆地充填模式.沉积学报,19(1):20~27
    李勇,王成善,伊海生,2002a,西藏晚三叠世北羌搪前陆盆地构造层序及充填样式.地质科学,37(1):27~37
    李勇,王成善,伊海生,2002b,中生代羌塘前陆盆地充填序列及演化过程.地层学杂志,26(1):62~67
    李勇,王成善,伊海生,2003,西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应.沉积学报,21(2):191~197
    梁细荣,韦刚健,李献华,2003,利用MC-ICPMS精确测定~(143)Nd/~(144)Nd和和Sm/Nd比值.地球化学,32(1):92~96
    林文第.陈德泉,1990,藏北改则—色哇地区的蛇绿岩特征.成都地质学院院报,17(2):17~25
    刘宝珺,1994,中国南方岩相古地理图集.北京:科学出版社,130
    刘本培,1992,古大陆边缘沉积地质.武汉:中国地质大学出版社,211
    刘登忠,陶晓风,马润则等,2004,措勤县幅地质调查新成果及主要进展.地质通报,23(5-6):506~511
    刘敦一,简平,张旗等,2003,内蒙古图林凯蛇绿岩中的埃达克浅色岩SHRIMP U-Pb测年.地质学报.77(3):317~327
    刘国惠,金成伟,王富宝等,1990,西藏变质岩及火成岩.北京:地质出版社.100~233
    刘世坤,滕云,1994,西藏蛇绿岩的四个岩石地层单位及有关问题.西藏地质,(1-2):120~126
    刘文斌.钱青,岳国利等,2002,西藏丁青弧前蛇绿岩的地球化学特征.岩石学报,18(3):392~400
    刘训,傅德荣,姚培毅,1992,青藏高原不同地体的地层,生物区系及沉积构造演化史.北京:地质出版社,1~168
    刘颖,刘海臣,李献华,1996,用ICP-MS准确测定岩石样品中40余种微量元素.地球化学.25(6):552~558
    刘增乾,刘宝田,郑海翔等,1984,对特提斯—喜马拉雅构造域的再认识.青藏高原地质文集(15).北京:地质出版社
    刘增乾,徐宪,潘桂棠,1990,青藏高原大地构造与形成演化.北京:地质出版社,1~174
    卢书炜,张良,杜风军等,2004,尼玛区幅,热布喀幅地质调查新成果及主要进展.地质通报,23(5-6):516~519
    陆松年,李怀坤,于海峰,2001,地质事件,序列和事件群.地质论评,47(5):521~526
    路凤香,桑隆康,邬金华,2002,岩石学.武汉:中国地质大学出版社,81~82
    路远发,2004,Geokit:一个用VBA构造的地球化学工具软件包.地球化学,33(5):459~464
    吕庆田,马开义,姜枚,1996,青藏高原南部下的横波各向异性.地震学报,18(2):215~223
    马中平,夏林圻,夏祖春,2004,蛇绿岩年代学研究方法及应注意的问题.西北地质,37(3):103~108
    梅厚钧,林学农,1981,西藏的蛇绿岩.见:西藏岩浆活动和变质作用.北京:科学出版社,147~211
    梅厚钧,林学农,吴明堂等,1981,青藏高原蛇绿岩体系和西藏西部的蛇绿岩成因.地球化学.(2):108~113
    穆元皋.陈玉禄,2001,班公错—怒江结合带中段早白垩世火山岩的时代确定及意义.西藏地质,1:13~18
    潘桂棠,陈智梁,李兴振等,1997,东特提斯地质构造形成演化.北京:地质出版社,71~218
    潘桂棠,丁俊,姚东生等,2004a,青藏高原及邻区地质图.成都:成都地图出版社,1~47
    潘桂棠,李兴振,王立全等,2002,青藏高原及邻区大地构造单元初步划分.地质通报,21(11):701-707
    潘桂棠,莫宣学,侯增谦等,2006,冈底斯造山带的时空结构及演化.岩石学报,22(3):521~533
    潘桂棠,王立全,朱弟成,2004c,青藏高原区域地质调查中几个重大科学问题的思考.地质通报,23(1):12~17
    潘桂棠,郑海翔,徐荣耀等.1983.初论班公湖—怒江结合带.青藏高原地质文集,北京:地质出版社,229~242
    潘桂棠,朱弟成,王立全等,2004b,班公湖—怒江缝合带作为冈瓦纳大陆北界的地质地球物理.地学前缘,11(4):371~382
    潘裕生.1984.班公湖—怒江带中段构造性质探讨.地质科学,(2):139~148
    秦国卿,陈久辉,刘大建等,1994,昆仑山脉和喀喇昆仑山脉地区的地壳上地幔电性结构特征.地球物理学报,37(2):193~199
    青藏高原地质文集编委会,1981-1992,青藏高原地质文集(1-21),,北京:地质出版社
    青海省地质矿产局,1991,青海省地质志.北京:地质出版社,1~662
    邱华宁,2006,新一代Ar-Ar实验室建设与发展趋势:以中国科学院广州地球化学研究所Ar-Ar实验室为例.地球化学,35(2):133~140
    邱家骧,1885,岩浆岩岩石学.北京:地质出版社,1~203
    邱瑞照,蔡志勇,李金发,2004b,青藏高原西部蛇绿岩中玻安岩(Boninite)及其地质意义.现代地质,18(3):305~307
    邱瑞照,邓晋福,周肃等,2005,青藏高原西部蛇绿岩类型,岩石学与地球化学证据.地学前缘,12(2):277~289
    邱瑞照,周肃,邓晋福等,2004a,西藏班公湖—怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定—兼论班公湖—怒江蛇绿岩带形成时代.中国地质,31(3):262~268
    饶荣标,1987,青藏高原的三叠系.北京:地质出版社,329
    任纪舜,1992,中国东部及邻区大陆岩石圈的构造演化及成矿.北京:科学出版社,205
    任纪舜,肖黎薇,2004,1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报,23(1):1~11
    史大年,董英君,姜枚,1996,西藏定日—青海格尔木上地幔各向异性研究.地球学报,70(4):291~297
    史仁灯,2005,蛇绿岩研究进展,存在问题及思考.地质评论,51(6):681~693
    史仁灯,2007,班公湖SSZ型蛇绿岩年龄对班—怒洋时限的制约.科学通报,52(2):223~227
    史仁灯,杨经绥,许志琴等,2004,西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义.科学通报,49(12):1179~1184
    史仁灯,杨经绥,许志琴等,2005,西藏班公湖存在MOR型和SSZ型蛇绿岩—来自两种不同地幔橄榄岩的证据.岩石矿物学杂志,24(5):397~408
    史仁灯,支霞臣,陈雷,2006,Re-Os同位素体系在蛇绿岩应用研究中的进展.岩石学报,22(6):1585~1695
    四川省地质矿产局,1991,四川区域地质志.北京:地质出版社,1~730
    宋彪,张玉海,万渝生,2002,锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,48(增刊):26~30
    苏本勋,2006,松潘—甘孜地块三叠系砂岩的地球化学特征及其意义.岩石学报,22:961~970
    苏尚国,赖兴运,1994,高压变质作用压力估算的热力学方法.地质科技情报,13(2):91~97
    孙鸿烈,郑度,1998,青藏高原形成演化与发展.广州:广东科技出版社,3~71
    孙晓猛,矗泽同,蒋定益,1995,滇西北全抄江带硅质岩沉积环境的确定及大地构造意义.地质论评.41(2):174~178
    汤耀庆,王方国,1984,藏北湖区蛇绿岩形成环境浅析.见:喜马拉雅地质Ⅱ,北京:地质出版社,115~139
    汤耀庆,王方国,1986b,藏北湖区蛇绿岩的板块构造意义.中国地质科学院地质研究所所刊,(13):35~51
    唐峰林,黄建村,罗小川等,2004,藏北阿索构造混杂岩的发现及其地质意义.华东理工学院学报,27(3):245~249
    滕吉文,王绍舟,姚振兴等,1980,青藏高原及其邻近地区的地球物理特征与大陆板块构造.地球物理学报,23(3):254~268
    汪啸风,Metcalfe I,简平等,1999,金沙江缝合带构造地层划分及时代厘定.中国科学(D辑),29(4):289~297
    汪洋,2007,羌塘地体中生代火山—构造演化:来自火山岩年代学,地球化学及同位素的证据,中国科学院广州地球化学研究所硕士论文,1~80
    汪洋,张开均,2006,青藏高原新生代构造研究最新进展和构造发展的阶段性.南京大学学报(自然科学版),42(2):199~219
    王成善,胡成祖,吴瑞忠等,1987,西藏北部查桑—茶布裂谷的发现及其地质意义,成都地质学院学报,14(2):33~44
    王成善,刘志飞,李祥辉等,1999,西藏日喀则弧前盆地与雅鲁藏布江缝合带.北京:地质出版社,1~237
    王成善,伊海生,2001,西藏羌塘盆地地质演化与油气远景评价.北京:地质出版社,1~249
    王传尚,1999,滇西德钦地区放射虫化石新发现.华南地质与矿产,2:31~35
    王冠民,2002,西藏改则地区二叠系沉积环境及石油地质特征.石油试验地质,22(4):355~358
    王冠民,钟建华,2002,班公湖—怒江构造带两段三叠纪—侏罗纪构造—沉积演化.地质论评,48(3):297~302
    王国芝,王成善,2001,西藏羌塘基底变质岩系的解体和时代厘定.中国科学(D辑),31(增刊):77~82
    王鸿祯,1985,中国古地理图集.北京:地图出版社
    王建平,2003,西藏东部特提斯地质.北京:科学出版社,50~280
    王建平,刘彦明,李秋生,2002,班公湖—丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分.地质通报,21(7):405~410
    王乃文,1984,青藏印度古陆及其与华夏古陆的并合,中法喜马拉雅考察成果.北京:地质出版社
    王希斌,鲍佩声,1985,西藏蛇绿岩中纯橄岩类型及其地质意义.中国地质科学院地质研究所所刊,(12):63~79
    王希斌,鲍佩声,陈克樵,1987b.西藏的蛇绿岩.中国区域地质,(3):248~256
    王希斌.鲍佩声,邓万明等,1987a,喜马拉雅岩石圈构造演化—西藏蛇绿岩—岩石矿物地球化学.北京:科学出版社,(3):138~214
    王希斌.鲍佩声,戎合,1995,中国蛇绿岩中变质橄榄岩的稀土元素地球化学.岩石学报(增刊),11:24~41
    王希斌,鲍佩声,郑海翔,1984,构造解体的藏北湖区蛇绿岩及其地球化学研究.喜马拉雅地质Ⅱ,北京:地质出版社:115~147
    王希斌,郝梓国,1994,中国造山带蛇绿岩的时空分布及构造类型.中国区域地质,(3):193~204
    王永峰,郑有业,金振民,2005,西藏东巧方辉橄榄岩的显微镜构造特征及其流变学意义.地球科学,30(1):52~57
    王玉净,舒良树,2001,中国蛇绿岩带形成时代研究中的两个误区.古生物学报,40(4):529~532
    王玉净,王建平,刘彦明等,2002a,西藏丁青蛇绿岩特征,时代及其地质意义.微体古生物学报,19(4):417~420
    王玉净,杨群,松冈笃等,2002b,藏南泽当雅鲁藏布缝合带中的三叠纪放射虫.微体古生物学报,19(3):215~227
    王忠恒,王永胜,谢元和等,2005,西藏班公湖—怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义.沉积与特提斯地质,25(1-2):153~162
    韦刚健,梁细荣,李献华等,2002,(LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学,31(3):295~299
    魏启荣,沈上越,莫宣学等,2003,三江中段Dupal同位素异常的识别及其含义.地质地球化学,31(1):36~41
    文世宣,章炳高,1984,西藏地层.北京:科学出版社,1~320
    吴功建,肖序常,李廷栋,1996,揭示青藏高原的隆升—青藏高原亚东—格尔木地学断面.地球化学—中国地质大学学报,21(1):34~39
    吴功建,肖序常,李延栋,青藏高原亚东—格尔木地学断面.地质学报,1989,63(4):285~296
    吴浩若,1993,滇西北金沙江带早石炭世深海沉积的发现.地质科学,28(4):395~396
    吴珍汉,江万,2001,青藏高原腹地典型岩体热历史与构造—地貌演化过程的热年代学分析,地质学报,75(4):16~27
    吴珍汉,江万,吴中海,2002,青藏高原腹地典型盆—山构造形成时代,地球学报,23(4):289~294
    吴珍汉,叶培盛,胡道功等,2003,青藏高原腹地的地壳变形与构造地貌形成演化过程.北京:地质出版社,9
    西藏自治区地质矿产局,1979,1:100万拉萨幅地质调查报告
    西藏自治区地质矿产局,1983,1:100万日幅喀则幅,亚东幅区域地质调查报告
    西藏自治区地质矿产局,1985,1:100万改则幅区域地质调查报告
    西藏自治区地质矿产局,1986,中华人民共和国1:100万改则幅区域地质调查报告
    西藏自治区地质矿产局,1987,1:100万日土幅区域地质调查报告
    西藏自治区地质矿产局,1993,西藏自治区区域地质志.北京:地质出版社,1~707
    夏斌,1993,喜马拉雅及邻区蛇绿岩和地体构造图说明书.兰州:甘肃科学技术出版社,1~36
    夏斌,钟富泰,1991,西藏北部洞错蛇绿岩地体的岩石地球化学特征及成因意义.西藏地质,(2):73~87
    夏代祥,1986,斑公湖—怒江、雅鲁藏布江缝合带中段演化历程的剖析.青藏高原地质文集,北京:地质出版社,(9):123~138
    夏代祥,刘世坤,1997,西藏自治区岩石地层,武汉:中国地质大学出版社,1~301
    肖平,刘军,2001,多硅白云母晶体化学式几种方法的讨论—用电子探针数据计算.华东地质学院学报,24(1):11~14
    肖序常,2000,不同地质时期特提斯洋形成和消减.见:肖序常,李廷栋,青藏高原的构造演化与隆升机制,广州:广东科技出版社,123~135
    肖序常,李廷栋,2000,青藏高原的构造演化与隆升机制.广州:广东科技出版社,3~331
    肖序常,李廷栋,李光岑等,1988,喜马拉雅岩石圈构造演化—总论.北京:地质出版社,1~188
    邢光福,1997.Dupal同位素异常的概念,成因及其地质意义.火山地质与矿产,18(4):281~291
    熊绍柏,刘宏兵,1997,青藏高原西部的地球结构.科学通报,42(12):1309~1311
    熊盛青,周伏波,姚正煦等,2001,青藏高原中西部航磁调查.北京:地质出版社,1~250
    熊盛青,周伏洪,姚正煦等,2001,青藏高原中西部航磁概查取得重要成果.中国地质,28(2):21~24
    徐义刚,1999,拉张环境中的大陆玄武岩浆作用:性质及动力学过程.见:郑永飞主编,化学地球动力学.北京:科学出版社,119~167
    许继峰.1997,秦岭勉略地区古特提斯洋的形成演化及化学地球动力学意义.中国科学院广州地球化学研究所博士后研究工作报告,1~15
    许继峰,于学元,李献华等,2000,秦岭勉略带中鞍子山蛇绿杂岩的地球化学—古洋壳碎片的证据及意义.地质学报,7(41):39~50
    许志琴,1992,中国松潘—甘孜造山带的造山过程.北京:地质出版社,156
    阎雅芬,夏国辉,张凤玉,青藏高原区域磁异常与岩石圈结构的研究.见:潘裕生,孔祥儒编.青藏高原岩石圈结构和动力学.广州:广东科技出版社,1997,95~122
    杨逢清,1994,松潘甘孜地块与秦岭褶皱带,扬子地台关系及其发展史.地质学报,68:208~218
    杨经绥,许志琴,耿全如等,2006,中国境内可能存在一条新的高压/超高压(?)变质带—青藏高原拉萨地体中发现榴辉岩带.地质学报,80(12):1784~1791
    杨日红,李才,迟效国等,2003,西藏永珠藏布—纳木湖蛇绿岩地球化学特征及其构造环境初探,现代地质,17(1):14~19
    杨瑞瑛,黄忠详,邓万明,1986,藏北火山岩的微量元素特征.核技术,2:17~20
    杨瑞瑛,王方国,李继亮等,1984,藏北中生代火山岩的岩石化学与地球化学初步研究.地质科学,(1):72~79
    杨瑞瑛,王方国,李继亮等,1984,藏北中生代火山岩的岩石化学与地球化学初步研究.地质科学,(1):72~79
    叶培盛,吴珍汉,胡道功等,2004a,东巧蛇绿岩的地球化学特征及其形成的构造环境.现代地质,18(3):309~315
    叶培盛,吴珍汉,胡道功等,2004b,西藏纳木错西岸蛇绿岩的地球化学特征及其形成环境.现代地质,18(2):237~243
    叶培盛,吴珍汉,胡道功等,2005,西藏永珠—果芒错蛇绿岩的地球化学特征及其构造意义.现代地质,19(4):508~514
    伊海生,林金辉,赵兵,2003,藏北羌塘地区地层新资料.地质论评,49(1):59~65
    阴家润,高金汉,王永胜等,2006,西藏北部色哇—安多地区侏罗纪菊石类与缺氧黑色页岩相.古生物学报,45(3):311~331
    殷鸿福,1992,秦岭及邻区三叠系.武汉:中国地质大学出版社,211
    尹安,2001,喜马拉雅—青藏高原造山带地质演化—显生宙亚洲大陆生长.地球学报,22(5):193~223
    尹光侯,侯世云,1998,西藏碧土地区怒江缝合带基本特征与演化.中国区域地质,17(3):246~254
    尹集祥,1988,青藏高原南特提斯地层地质演化轮廓.中国科学院地质研究所集刊(3),北京:科学出版社,5~30
    尹集祥,邓万明,文世宣等,1998,青藏高原及邻区中间过渡陆块前侏罗纪构造演化.见:潘裕生等(主编):青藏高原岩石圈结构演化和动力学.广州:广东科技出版社,217~332
    尹集祥,呙中平,1996,羌塘查布—双湖地区基性超基性岩和火山岩研究.中国科学(D),26(4):296~301
    雍永源,贾宝江,2000,板块剪式汇聚加地块拼贴—中特提斯消亡的新模式.沉积与特提斯地质,20(1):85~89
    游再平,1997,西藏丁青蛇绿混杂岩~(40)Ar-~(39)Ar年代学.西藏地质,2:24~30
    余光明,王成善,1990,西藏特提斯沉积地质.北京:地质出版社,1~185
    袁学诚,周姚秀,李立等,1990,西藏古地磁与大地电磁研究.北京:地质出版社,25~37
    曾融生,吴大明,Owesn TJ,1992,青藏高原地壳上地幔结构及地球动力学的研究.地震学报,14(增刊):521~522
    翟庆国,李才,程立人等,2004,西藏羌塘角木日地区二叠纪蛇绿岩的地质特征及构造意义.地质通报,23(12):1228~1230
    张本仁,高山,张宏飞,2002,秦岭造山带地球化学.北京:科学出版社,150~180
    张国伟,2004,中国大陆构造中的西秦岭—松潘大陆构造结.地学前缘,11:23~32
    张旗,1983,丁青蛇绿岩新知.地质科学,(1):101~102
    张旗,1990,如何正确使用玄武岩判别图.岩石学报,2:88~155
    张旗,1994,蛇绿岩研究的进展.地学前缘,1(1-2):98~102
    张旗,1995a,蛇绿岩研究中的几个问题.岩石学报(增刊),11:228~240
    张旗,1995b,云南双沟蛇绿岩的特征和成因.岩石学报,11(增刊):190~202
    张旗,1996,蛇绿岩与地球动力学研究.北京:地质出版社,1~300
    张旗,王岳明,钱青等,1997,甘肃景泰县老虎山地区蛇绿岩及其上覆岩系中枕状熔岩的地球化学特征.岩石学报,13:92~99
    张旗,杨瑞瑛,1985,西藏丁青蛇绿岩玻镁安山岩类的深成岩及其地质意义.科学通报,30(16):1243~1245
    张旗,杨瑞瑛,1987,西藏丁青玻镁安山岩系侵入岩的地球化学特征.岩石学报,(2):64~74
    张旗,张魁武,李达周,1992,横断山区镁铁—超镁铁岩.北京:科学出版社,1~216
    张旗,周国庆,2001,中国蛇绿岩.北京:科学出版社.1~200
    张以茀,郑健康,1994,青海可可西里及邻区地质概论.北京:地震出版社,10~158
    张玉修,李勇,李亚林等,2004,西藏羌塘盆地东部侏罗系生油条件与油气显示.合肥工业大学学报(自然科学),27(6):635~639
    张玉修,李勇,张开均等,2006b,西藏羌塘盆地依仓玛地区中上侏罗统碳酸盐岩特征及其环境意义.中国地质,33(2):393~400
    张玉修,张开均,黎兵等,2007a,西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究.科学通报,52(1):100~106
    张玉修,张开均,李勇等,2007b,西藏羌塘盆地东部中—上侏罗统碎屑岩沉积特征及沉积相划分.大地构造与成矿学,31(1):52~62
    张玉修,张开均,夏邦栋等,2006a,西藏羌塘地体中生代砂岩颗粒组分及其构造意义.沉积学报,24(2):25~34
    赵崇贺,1992,西藏阿里班公湖地区火成岩组合及构造演化.岩石学论文集,武汉:中国地质大学出版社,56~69
    赵崇贺,李国良,1991,阿里地区蛇绿岩.见:郭铁鹰等,西藏阿里地质.武汉:中国地质大学出版社,201~261
    赵文津,刘葵,蒋忠惕等,2004a,西藏班公湖—怒江缝合带—深部地球物理给出的启示.地 质通报,23(7):623~635
    赵文津,薛光琦,赵逊等,2004b,INDEPTH Ⅱ地震层析成像—藏北印度岩石圈俯冲断落的证据.地球学报,25(1):1~10
    赵文津,赵逊,史大年等,2002,喜马拉雅和青藏高原深剖面(INDEPTH)研究进展.地质通报,22(11):691~700
    赵政璋,李永铁,叶和飞,2001a,青藏高原地层,北京:科学出版社,1~250
    赵政璋,李永铁,叶和飞等,2001b,青藏高原大地构造特征及盆地演化.北京:科学出版社,1~35
    赵宗溥,1984,蛇绿岩与大陆缝合线.地质科学.(4):359~372
    郑海翔,潘桂棠,徐荣耀,1989,怒江构造带超基性岩新知—一个完整的蛇绿岩套的确定,北京:地质出版社,青藏高原地质文集,(13):191~192
    郑海翔,张选阳,1988,青藏高原大地构造问题.青藏高原地质文集,北京,地质出版社,19(1):73~90
    郑海翔,张选阳,江耀明等,1986,西藏蛇绿岩新知—新鉴别出来的蛇绿岩剖面.中国地质科学院成都地质矿产研究所所刊,(7):85~94
    郑巧荣,1983,由电子探针分析值计算Fe~(3+)和Fe~(2+).矿物学报,1:55~62
    郑祥身,边千韬,1997,青海可可西里地区侵入岩的岩石化学特征及其成因意义研究.岩石学报,13(1):44~58
    郑一义,1983,西藏丁青地区蛇绿岩—混杂带的发现.见:地质矿产部青藏高原地质文集编委会,青藏高原地质文集,北京:地质出版社,13:177~186
    郑有业,何建社,赵平甲,2004a,兹格塘错幅地质调查新成果及主要进展.地质通报,23(5-6):5~8
    郑有业,许荣科,何来信等,2004b,西藏狮泉河蛇绿混杂岩带—一个新的多岛弧盆系统的厘定及意义.沉积与特提斯地质,24(1):13~20
    郑有业,许荣科,马国桃等,2006,锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束.岩石学报,22(4):895~904
    支霞臣,1999,Re-Os同位素体系和大陆岩石圈地幔定年.科学通报,44(22):2362~2371
    中国地质调查局,2004,班公湖—怒江结合带区域地质调查成果与进展,地质通报,23(1):61~62
    钟大赉,1998,滇川西部古特提斯造山带.北京:科学出版社,1~231
    钟大赉,丁林,1993,从三江及邻区特提斯带演化讨论冈瓦那火陆离散与亚洲大陆增生.IGCP第321相中国工作组编.亚洲的增生,北京:地震出版社,5~8
    钟立峰,夏斌,周国庆等,2006,藏南罗布莎蛇绿岩成因:壳层熔岩的Sr-Nd-Pb同位素制约.矿物岩石,26(1):57~63
    周国庆,1996a,蛇绿岩的概念及其演变.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,15~20
    周国庆,1996b,蛇绿岩分类的回顾.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,63~68
    周肃,莫宣学,Mahoney JJ等,2001,西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征.科学通报,46(16):1387~1390
    周详,曹佑功,1986,西藏板块构造—建造图说明书.北京:地质出版社,1~20
    朱弟成,潘桂棠,莫宣学等,2006a,青藏高原中部中生代OIB型玄武岩的识别:年代学,地球化学及其构造环境.地质学报,80(9):1312~1328
    朱弟成,潘桂棠,莫宣学等,2006b,冈底斯中北部晚侏罗世—早白垩世地球动力学环境:火 山岩约束.岩石学报,22(3):534~546
    邹光富,1993,西藏丁青蛇绿岩岩石地球化学特征及其成因意义.西藏地质,10:46~57
    Aitchison JC, Davis AM, 2004, Evidence for the multiphase nature of the India-Asia collision from the Yarlung-Tsangpo suture zone, Tibet. In: Malpas J, Fletcher CJN, Aitchison JC (eds), Aspects of the tectonic evolution of China. Geol. Soc., Lond., Spec. Publ.: 226: 217~233
    Aitchison JC, Davis AM, Abrajevitch AV, et al., 2003, Stratigraphic and sedimentological constraits on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet. In: Dilek Y, Robinson PT (eds), Ophiolites in Earth history. Geol. Soc., Lond., Special Publications, 218:147~164
    Alabaster T, Pearce JA, Malpas J, 1982, The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib. Mineral Petrol., 81:168~183
    Allan JF, 1994, Cr-spinel in depleted basalts from the lau backarc basin: Petrogenetic history from Mg-Fe crystal-liquid exchange. In: Hawkins J, Parson L, Allan J, et al. (eds), Proceedings Ocean Drilling Program, Scientific Results, 135, Ocean Drilling Program, College, Station, Texas, 565~583
    Alleger C J, Lewin E, Dupre B, 1988, A coherent crust-mantle model for the uranium-thorium-lead isotopic system. Chem. Geol., 70:211~234
    Allegre CJ, Courtillot V, Tapponnier P, et al., 1984, Structure and evolution of the Himalaya- Tibet orogenic belt. Nature, 307:17~22
    Allegre GJ, HirnA, 1987,喜玛拉雅山深部地质与构造地质,北京:地质出版社,1~38
    Avigad D, 1995, Exhumation of the Dabie Shan ultrahigh-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China: Comment. Geology, 23:764
    Basaltic Volcanism Study Project, 1981, Basaltic Volanism on the Terrestial Planets. New York: Progamon Press, 1 286
    Basden H, Franklin BJ, Marshall B, et al., 1987, Terranes of the Tumut District. Southeastern New South Wales, Australia. In: Leitch EC, Scheibner E (eds), Terrane accretion and orogenic belts. American Geophysical Union. Geodynamics Ser., 19:57~66
    Belov AA, Gatinsky YG, Mossakyovsky AA, 1986, A precision pre-Alpine tectonic history of Tethyan paleooceans. In: Zoninshain LP (ed), Special Issue: Tectonics of the Eurasian Fold Belts. Tectonophysics, 127:197~211
    Ben OD, White WM, Patchett J, 1989, The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett., 94:1~21
    Black LP, Kamo SL, Allen CM, et al., 2003, Temoral: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol., 200(1-2): 155~170
    Booij E, Bettison-varga L, Farthing D, et al., 2000, Pb-isotope systematics of a fossil hydrothermal system from the troodos ophioplite, Cyprus: Evidence for a polyphased alteration history. Geochim. Cosmochim. Acta, 64(20): 3559~3569
    Bortolotti V, Kodra A, Marroni M, et al., 1996, Geology and petrology of ophiolitic sequences in the Mirdita region (Northern Albania). Ofioliti, 21:3~20
    Bridges JC, Prichard HM, Meireles CA, 1995, Podiform chromitite -bearing ultrabasic rocks from the Braganca massif, northerm Portugal: fragments of island arc mantle? Geol. Magazine, 132:39~49
    Briquen L, Lancelor JR, 1979, Rb-Sr systematics and crustal constal contamination models for calc-alkaline igneous rocks. Earth Planet. Sci. Lett., 43: 381~396
    Brown GC, Thorpe RS, Webb PC, 1984, The geochemical characteristics of granitoids incontrasting arcs and comments on magma sources. J. Geol. Soc. Lond., 141:411-426
    Bruguier, O, 1997, U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): provenance and tectonic correlations. Earth Planet. Sci. Lett., 152: 217-231
    Bruhn RL, Stern CR, de Wit MJ, 1978, The bearing of new field and geochemical data on the origin and development of a Mesozoic volcano- tectonic rift zone and back-arc basin in southernmost South America: Earth Planet. Sci. Lett., 41: 32-46
    Burchfiel BC, Royden LH, 1991, Tectonics of Asia 50 years after the death of Emile Argand. Eclo. Geol. Helvetiae, 84: 599-629
    Burg JP, Chen GM, 1984, Tectonics and structural zonation of southern Tibet, China. Nature, 311: 219-223
    Cameron WE, 1985, Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib. Mineral Petrol., 89: 239-255
    Carroll AR, Graham SA, Hendrix MS, et al., 1995, Late Paleozoic tectonic amalgamation of northwestern China, sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geol. Soc. Am. Bull., 107: 571-594
    Castillo PR, 1988, The Dupal anomaly as a trace of the upwelling upper mantle. Nature, 336: 667-670
    Castillo PR, 1996, Origin and geodynamic implication of the Dupal isotopic anomaly in volcanic rocks from the Philippine island arcs. Geology, 24(3): 271-274
    Chang, CF, Chen N, Coward, MP, et al., 1986, Preliminary conclusions of the Royal Society/Academia Sinica 1985 Geotraverse of Tibet. Nature, 323: 501-507
    Chappell BW, White AJR, 1992, 1- and S-type granites in the Lachlan fold belt. Trans. R. Soc. Edinburgh, Earth Sci., 83: 1-26
    Chen F, Hegner E, Todt W, 2000, Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany - evidence for a Cambrian magmatic arc. Int. J. Geol., 88: 791-802
    Chen F, Siebel W, Satir M, et al., 2002, Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int. J. Earth Sci., 91: 469-481
    Chen JH, Pallister JS, 1981, Lead isotopic studies of the Semail ophiolite, Oman. J. Geophy. Res., 86: 2 699-2 708
    Chi Chester 钻石公司考察团, 1997, 西藏罗布莎和东巧地幔橄榄岩中不存在原生或残留的金刚石。西藏地质,17: 103-112
    Chung SH, Sun SS, 1992, A new genetic model for the East Taiwan ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth Planet. Sci. Lett., 109: 133-145
    Chung SL, Zhang YQ, Xie YW, et al., 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev., 68: 173-196
    Claesson S, Vetrin V, Bayanova T, et al., 2000, U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archean to the Palaeozoic. Lithos, 51(1-2): 95-108
    Claoue-long JC, Compston W, Roberts J, et al., 1995, Two carboniferous ages: A comparison of SHRJMP zircon dating with conventional zircon ages and ~(40)Ar/~(39)Ar analysis. In: Berggren WA, Kent DV, Aubry MP, et al. (eds), Geochronology, Time Scales and Global Stratigraphic Correlation. Sepm. Spec. Publ., 4: 3~31
    
    Cliff RA, 1985, Isotopic dating in metamophic belts. Geol. Soc. Lond., 142: 97-110
    Coleman RG, Keith TEC, 1971, A chemical study of serpentinization-Burro Mountain, California. J.Petro., 12:311-328
    
    Coleman RG, Peterman ZE, 1975, Oceanic plagiogranite. J. Geophy. Res., 80: 1 099-1 108
    Composton W, Williams IS, Meyer C, 1984, U-Pb geochronology of zircons from lunarbreccia 73217 using a sensitive high mass - resolution ion microprobe. J. Geophy. Res., 89: 525-534
    Coulon C, Maluski H, Bollinger C, et al., 1986, Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: ~(40)Ar-~(39)Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett., 79: 281-302
    Cox KG, Bell JD, Pankhurst RJ, 1979, The interpretation of igneous rocks. George, Allen and Unwin, London, 2-35
    David CG, William PL, Hans GAL, 1981, Petrology and geochemistry of plagiogranite in the Canyon Mountain ophiolite, Oregon. Contr. Mineral Petrol., 77: 82-89
    De la Roche H, Leterrier J, Granda Claude P, et al., 1980, A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses - its relationships and current nomenclature. Chem. Geol., 29: 183-210
    de Wit MJ, Stern CR, 1981, Variation in the degree of crustal extension during formation of a back-arc basin. Tectonophysics, 72: 229-260
    Dewey JF, Bird J, 1971, Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophy. Res., 76: 3 179-3 206
    Dewey JF, Shackleton RM, Chang C, et al., 1988, The tectonic development of the Tibetan plateau.Phil. Trans. R. Soc. Lond., A327: 379-413
    Dick HJB , Bullen T, 1984, Chrominium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 86: 54-76
    Dilek V, Furnes H, Shallo M, et al., 2001, Structure, petrology and geochronology of the Albanian ophiolites and their tectonic evolution within the Neotethyan orogenic belt. J. Conf. Abstr., (EUGX1)6:321
    Dilek Y, Thy P, Hacker B, et al., 1999, Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): implications for the Neotethyan ocean. Geol. Soc. Ame. Bull., 111: 1 192-1216
    Droop GTR, 1987, A general equation for estimating Fe3+ coneentrations in ferromagnesiansilicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. magazine, 51(9): 431-435
    Dupre B, Allegre CJ, 1983, Pb-Sr isotope variation in Indian, Ocean basalts and mixing phenomena. Nature, 303: 142-146
    Elthon D, Casey JF, Komor S, 1982, Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands Ophiolite: evidence for high-pressure crystal fractionation of oceanic basalts. J. Geophy. Res., B87(10): 8 717-8 734
    Elthon D, Stewart M, Ross DK, 1992, Composition trends of minerals in oceanic cumulates. J. Geophy. Res., 97: 15 189-15 199
    England R, Searle M, 1986, The Cretaceous-Tertiary deformation of the Lhasa block and itsimplications for crustal thickening in Tibet. Tectonics, 5: 1-14
    Ewart A, 1982, The Mineralogy and Petrology of Tertiary -Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic-Basaltic ompositional Range. In: Andesite RS, Thorpe RL (eds), Wiley, New York, 25~95
    Flagler PA, Spray JG, 1991, Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 19(1): 70~73
    Floyd PA, Winchester JA, 1975, Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett., 27:211~218
    Gass IG, 1968, Is the Troodos Massif of Cyprus a fragment of Mesozoic oceanic floor? Nature, 200:39~42
    Gehrels GE, 2003, Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull., 115:881~896
    Ghazi AM, Hassanipak AA, Mahoney JJ, et al., 2004, Geochenical characteristics, ~(40)Ar-~(39)Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, SE Iran. Tectonophysics, 393: 175~196
    Girardear J,1991,阿富汗和西藏的新基梅里蛇绿岩:对比和演化,特提斯构造演化及成矿作用(译文集).地矿部成都地质矿产研究所,78~92
    Girardeau J, Marcoux J, Allkgre CJ, et al., 1984, Tectonic environment and geodynamic significance of the Neo Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature. 307:27~31
    Girardeau J, Marcoux J, Fourcade E, et al., 1985a, Xainxa ultramafic rocks, central Tibet, China; tectonic environment and geodynamic significance. Geology, 13:330~333
    Girardeau J, Marcoux J, Montenat C, 1989, The Neo-Cimmerian ophiolite belt in Afghanistan and Tibet, comparison and evolution. Mathem. Phys. Sci., 259:477~504
    Girardeau J, Mercier JCC, Tang Youking, 1986, Petrology of the Donqiao-Xainxa Ophiolite (North Tibet, China); evidence for its formation in a supra-subduction zone environment. Ofioliti, 11:235~262
    Girardeau J, Mercier JCC, Zao Youggong, 1985b, Structure of the Xigaze Ophiolite, Yarlung Zangbo suture zone, southern Tibet, China: genetic implications. Tectonics, 4:267~788
    Graham IT, Franklin B J, Marshall B, et al., 1996, Tectonic significance of 400 Ma zircon ages for ophiolitie rocks from the Lachlan fold belt. Geology. 24(12): 1111~1114
    Gray DR, Hand M, Mawby J, et al., 2004, Sm-Nd and Zircon U-Pb ages fron garnet-bearing eclogites, NE Oman: constraints on High-P metamorphism. Earth Planet. Sci. Lett., 222: 407~422
    Gu XX, 1994, Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China: implications for provenance and interpretations of the tectonic setting. Geochim. Cosmochim. Acta, 58:4615~4631
    Guynn JH, Kapp P, Pullen A, et al., 2006, Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508
    Hacker B, Gnos E, Ratschbacher L, et al., 2000, Hot and dry deep crustal xenoliths from Tibet. Science, 287:2463~2466
    Haines SS, Klemperer SL, Brown L, et al., 2003, INDEPTH Ⅲ seismic data: From surface observations to deep crustal crustal processes in Tibet. Tectonics, 22:1001
    Haq BU,Hardenbol J,Vail PR,et al.,1993,中—新生代年代地层表与海平面变化周期.见:威尔格斯CK,et al.(eds,),层序地层学原理(海平面变化综合分析)(徐怀大译).北京:石油工业出版社,86~137
    Harker A, 1909, The natural history of igneous rocks, Methuen, London
    
    Harris NBW, Pearce JA, Tindle AG, 1986, Geochemical characteristics of collision-zon magmatism. In: Coward MP, Reis AC (eds), Collision tectonics. Spec. Publ. Geol. Soc, 19: 67-81
    Hart SR, 1984, A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753-757
    Hart SR, 1988, Heterogeneous mautle domains: signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett., 90: 273-296
    Hawkesworth CJ, Rogers NW, van Calsteren PWC, et al., 1984, Mantle enrichment processes. Nature, 301: 331-335
    Helo C, Hegner E, Krner A, et al., 2006, Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in south Mongolia: constraints on arc environments and crustal growth. Chem. Geol., 227:236-257
    Hickey-Vargas R, 1991, Isotope characteristics of submarine lava from the Philippine Sea: Implication for te origin of arc and basin magmas of the Philippine tectonic plate. Earth Planet. Sci. Lett., 107: 290-304
     Hirose K, Kawamoto T, 1995, Hydrous partial melting of Lherzolite at 1 Gpa: the effect of H_2O on the genesis of basaltic magmas. Earth Planet. Sci. Lett., 133: 463-473
    Hofmann AW, 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90: 297-314
    Hsu KJ, Pan GT, Sengor AMC, 1995, Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the Archipelago model of orogenesis. Int. Geol. Rev., 37: 473-508
    Ingersoll RV, Bullard TF, Ford RL, et al., 1984, The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point counting method. Sediment. Petrol., 54: 103-116
    Irvine TN, Baragar WRA, 1971, A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8: 523-548
    Ishii T, Robinson PT, Maekawa H, et al., 1992, Petrological studies from diapiric serpentinite seamounts in the Izu-Ogazawara-Mariana forearc. In: Fryer P, Pearce JA, Stokking LB (eds), Proceedings of the Ocean Drilling Program, Scientific Results , 125, Ocean Drilling Program, College Station ,Tx: 445-485
    Jacobsen SB, Wasserburg GJ, 1979, Nd and Sr isotopic study of Bay of Islands Ophiolite Complex and the evolution of the source of mid-ocean ridge basalts. J. Geophys. Res., 84: 7429-7 445
    Janney P, Castillo P, 1997, Geochemistry of Mesozoic Pacific mid-ocean ridge basalt: constraints on melt generation and evolution of the Pacific upper mantle. J. Geophys. Res., 102: 5 207-5 229
    Janney PE, Castillo PR, 1996, Basalts from the Central Pacific basin: evidence for the origin of Cretaceous igneous complexes in Jurassic western Pacific. J. Geophys. Res., 101: 2 875-2 893
    Jense LS, 1976, A new cation plot for classifying subalkalic volcanic rocks. Ontario Div. Mines. Misc., 66
    
    Jense LS, Pyke DR, 1982, Komatiites in the Ontario portion of the Abitibi belt. In: Arndt NT, Nisbet EG (eds), Komatiites. George Allen and Unwin. London, 147-157
    
    Kampunzu AB, Tombale AR, Zhai M, et al., 2003, Major and trace ele-ment geochemistry ofplutonic rocks from Francistown, NE Bot-swana: Evidence for a neoarchean continental active margin in the Zimbabwe craton. Lithos, 71: 431-460
    Kapp P, Murphy MA, Yin A, et al., 2003, Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet, Tectonics, 22: doi: 10.1029 /2001T C001332
    Kapp P, Yin A, Harrison TM, et al., 2005, Cretaceous-Tertiary shortening, basin development. and volcanism in central Tibet. Geo. Soc. Am. Bull., 117: 865-878
    Kapp P, Yin A, Manning CE, et al., 2000, Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28: 19-22
    Kapp P, Yin A, Manning CE, et al., 2003, Tectonic evolution of the early Mesozoic blueschist -bearing metamorphic belt, central Tibet. Tectonics, 24: 1043, doi: 1029/2002TC001383
    
    Kidd RGW, 1997, A model for the process of formation of the upper oceanic crust. Geophs. J. R. Astro. Soc, 50: 149-183
    Kinny PD, Friend CR, Strachan RA, et al., 1999, U-Pb geochronology of regional mimatites in East Sutherland, Scotland: evidence for crustal melting during the Caledonian orogeny. J. Geol. Soc, Lond., 156: 1 143-1 152
    Komor SC, Grove TL, Hebert R, 1990, Abyssal peridotites from ODP Hole 670A (21°10'N, 45° 02'W): Residues of mantle melting exposed by non-constructive axial divergence. In:Detrick R, Honnorez J, Bryan WB, et al. (eds.), Proceedings of the Ocean Drilling ProgramScientific Results, (106-109): 85-101
    Kong XR, Wang QS, Xiong SB, 1996, Comprehensive geophysics and lithospheric in western Xizang (Tibet) Plateau. Sci. China (Ser. D), 39(4): 348-358
    Koppers AAP, 2002, ArArCALC - software for ~(40)Ar/~(39)Ar age calculations, Comput. Geosci., 28: 605-619
    Kosarev G, Kind R, Sobolev SV, et al., 1999, Scismic evidence for a detached Indian Lithospheric mantle beneath Tibet. Science, 283: 1 306-1 309
    Kuno H, 1968, Differentiation of basalt magmas. In: Hess HH, Poldervaart A (eds), Basalts: The Poldervaart treatise on rocks of basaltic composition, Interscience. New York, (2): 623-688
    Kurth M, Sassen A, Suhr G, et al., 1998, Precise ages and isotopic constraints for the Lewis Hills (Bay of Island Ophiolite): Preservation of an arc-spreading ridge intersction. Geology. 26(12): 1 127-1 130
    Lapierre H, Ortiz LE, Abouchami W, et al., 1992, A crustal section of an intra-oceanic island arc: The Late Jurassic- Early Cretaceous Guanajuato magmatic sequence, Central Mexico. Earth Planet. Sci. Lett., 108: 61-77
    Le Maitre RW, Bateman P, Dudek A, et al., 1989, A classification of igneous rocks and glossary of terms. Blackwell, Oxford, 42-60
    Leeder MR, Smith AB, Yin J, 1988, Sedimentology, paleoecology, and paleoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Phil. Trans. R. Soc. Lond., A327: 107-143
    Leterrier J, Maury RC, Thonon P, et al., 1982, Clinopyroxene composition as a method of identification of the magmatic affinities of palaeo-volcanic series. Earth Planet. Sci. Lett., 59: 139-154
    Li RW, 2005, Provenance of Jurassic sediments in the Hefei basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth Planet. Sci. Lett., 231: 279-294
    Liu G, Einsele G, 1994, Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol. Rund., 83: 32-61
    Ludwig KR, 2001, Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication No. 1a, 58
    Mahoney JJ, Duncan RA, Tejada MLG, et al, 2005, A Jurassic-Cretaceous boundary age and MORB-type mantle source for Shatsky Rise. Geology, 33(3): 185-188
    Mahoney JJ, Frei R, Tejada MLG, et al., 1998, Tracing the Indian Ocean mantle domain through time: isotope results from old west Indian, East Tethyan, and South Pacific seafloor. J. Petro., 39: 1 285-1 306
    Mahoney JJ, LeRoex AP, Peng Z, et al., 1992, Southwestern limits of Indian Ocean Redge mantle and the origin of low ~(206)Pb/~(204)Pb Mid-Ocean Ridge basalt: Isotope systematics of the Central Southwest Indian Ridge (17°~50°E). J. Geophy. Res., 97: 19 771-19 790
    Malpas J, Zhou MF, Robinson PT, et al., 2003, Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. In: Dilek Y, Robinson PT (eds.), Ophiolites in Earth History. London: Geol. Soc, Spec. Publ., 218: 191-206
    Massonne HJ, Schreyer W, 1987, Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Mineral Petrol., 96: 212 -224
    McCulloch MT, Gregory RT, Wasserbyrg GJ, et al., 1980, A neodymium, strontium and oxygen isotopic study of the Cretaceous Samail ophiolite and implication for the petrogensis and seawater-hydrothermal alteration of oceanic crust. Earth Planet. Sci. Lett., 46: 201-211
    McDonough WF, Sun SS, 1995, Composition of the Earth. Chem. Geol., 120: 223-253
    MeKenzie D, O'Nions RK, 1983, Mantle reservoirs and ocean island basalts Nature, 301: 229-231
    Meschede M, 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., 56: 207-218
    Metcalfe I, 1996, Pre-Cretaceous evolution of SE Asian terranes In: Hall R, Blundell D (eds),Tectonic evolution of Southeast Asia, 97-122
    Michard A, Montigny R, Schlich R, 1986, Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-east Indian Ridge, Earth Planet. Sci. Lett., 78: 104-114
    Miller C, Thoni M, Frank W, et al., 2003, Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolites, SW Tibet. Lithos, 66: 155-172
    Miyashiro A, 1973, The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet, Sci. Lett., 19: 218-224
    
    Moores EM, Jackson ED, 1974, Ophiolites and oceanic crust. Nature, 250: 136-139
    Moores EM, Kellogg LH, Dilek Y, 2000, Tethyan ophiolites, mantle convection, and tectonic "historical contingency": a resolution of the "ophiolite conundrum" In: Dilek Y, Moores EM,Elthon D, et al. (eds), Ophiolites and Oceanic Crust: New Insights from Field Studies and the Geological Society Ocean Drilling Prograf America, Special Papers, 349: 3-12
    Moores EM, Vine FJ, 1971, The Troodos massif, Cyprus and other ophiolites as oceanic crust: evaluations and implications. Philos. Trans. R. Soc, A268:433-466
    Mukasa SB, McCabbe R, Gill JB, 1987, Pb-isotopic compositions of the volcanic rocks in the west and east Philippine island arcs: Presence of the Dupal isotopic anomaly. Earth Planet. Sci. lett., 84: 153-164
    Mullen ED, 1983, MnO/TiO_2/P_2O_5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogensis. Earth Planet. Sci. Lett., 62:53-62
    Murphy MA, Yin A, Harrison TM, et al., 1997, Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25: 719-722
    Nie SY, et al., 1994, Exhumation of the Dabie Shan ultrahigh-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China. Geology, 22: 999-1 002
    Parlak O, Hock V, Delaloye M, 2002, The supra-subduction zone Pozanti -Karsanti ophiolite, southem Turkey: evidence for highpressure crystal fractionation of ultramafic cumulates. Lithos, 65: 205-224
    Patriat P, Achache J, 1984, India-Eurasia chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615-621
    Pearce JA, 1975, Basalt geochemistry used to investigate Past teconic environments on Cyprus. Tectonophysics, 25: 41-67
    
    Pearce JA, 1976, Statistical analysis of major element patterns in basalts, J. Petrol., 17:15-43
    Pearce JA, 1982, Trace element characteristics of lavas from destructive plate boundaries. In: Thorps RS (ed), Andesites, Chichester, Wliley, 525-548
    Pearce JA, 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins In: Hawkesworth CJ, Norry MJ (eds), Continental basalts and mantle xenoliths, Shiva, Nantwich., 230-249
    
    Pearce JA, 1991, Ocean floor comes ashore. Nature, 354(6 349): 110-111
    Pearce JA, Alabaster T, Shelton AW, et al., 1981, The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Phil. Trans. R. Lond., A 300: 299-317
    Pearce JA, Cann JR, 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 19: 290-300
    Pearce JA, Deng Wanming, 1988, The ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). in: Chang C, et al., (eds) The Geological Evolution of Tibet. London: R. Soc, 215-238
    Pearce JA, Gale GH, 1977, Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. Geol. Soc. Spec. Publ., 7: 14-24
    Pearce JA, Harris NB W Tindle AG, 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25: 956-983
    Pearce JA, Lippard SJ, Roberts S, 1984, Characteristics and tectonic signifficance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds), Marginal Basin Geology. Geol. Soc. Lond. Spec. Publ. 16. London: Blackwell Sci. Publ., 77-94
    Pearce JA, Mei H, 1988, Volcanic rocks of the 1985 Tibet geotraverse, Lhasa to Golmud, Phil. Trans. R. Soc. Lond., Ser. A, 327, 169-201
    Pearce JA, Norry MJ, 1979, Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral Petrol., 69: 33-47
    Pedersen RB, Malpas J, 1984, The origin of oceanic plagiogranites from the Karmoy ophiolite. western Norway. Contr. Mineral Petrol, 88(1-2): 36-52
    Peters T, Kamber BS, 1994, Peraluminous, potassium-rich granitoids in the Semail Ophiolite. Contr. Mineral Petrol., 118(3): 229-238
    Plank T, Langmuir CH, 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145: 325-394
    Qiu HN, 2006, Construction and development of new Ar-Ar laboratories in China: Insights from GV-5400 Ar-Ar laboratory in Guangzhou Institute of Geochemistry, Chinese Academy Sci., Geochimica, 35: 133-140
    Qiu RZ, Zhou S, Li TD, et al., 2006, The tectonic-setting of ophiolites in the western Qinghai -Tibet Plateau, China. J. Asian Earth Sci., 25-42
    
    Rampone E, Hofman AW, Raczek I, 1998, Isotopic contrasts within the Internal Liguride ophiolite (N Italy): the lack of a genetic mantle-crust link. Earth Planet. Sci. Lett., 163: 175-189
    Rapine R, Tilmann F, West, M, et al., 2003, Crustal structure of northern and southern Tibet from surface wave dispersion analysis. Geophys. Res., 108 (B2): Art. No. 2 120
    Richwood PC, 1989, Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263
    Robertson AHF, 2002, Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67
    Roger F, Paul Tapponnier, et al., 2002, An Eocene magmatic belt aross central Tibet: mantle subduction triggered by the Indian collision? Terra Nova, 12(3): 102-108
    Rollinson HR, 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley and Sons, 1-352
    Rowley DB, 1996, Age of initiation of collision between India and Asia: A review of stratigraphic data, Earth Planet Sci Lett., 145:1-13
    Rowley DB, Currie BS, 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439(04506): 677-681
    Saunder AD, Tamey J, 1984, Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar BP, Howells MF (eds.), Marginal Basin Geology. 59-76
    Saunders AD, Norry MJ, Tamey J, 1998, Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J. Petro., 29 (Special Lithosphere Issue): 425-445
    Schiling JG, Zajac M, Evans R, et al., 1983, Petrologic and geochemical variations along the Mid-Atlantic Rigde from 27°N to 73°N. Am. J. Sci., 283: 510-586
    Searle MR, Windley BF, Coward MP, et al., 1987, The closing of Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull., 98: 678-701
    Sengor AMC, 1987, Tectonic subdivisions and evolution of Asia. Istanb. Tech. Univ. Bull., 40: 355-435
    Sengor AMC, 1990, Plate tectonics and orogenic research after 25 years: Tethyan perspective. Earth Sci. Rev., 27: 1-201
    Sengor AMC, 1992, The Paleo-Tethyan Suture: a line of demarcation between two fundamentally different architectural styles in the structure of Asia. Island Arc, 1: 78-91
    Sengor AMC, Altiner D, Cin A, 1988, Origin and assembly of the Tethy - side orogenic collage at the expense of Gondwana Land, Geol. Soc. Spec. Pub., 37: 119- 181
    Sengor AMC, Natal'in BS, 1996, Paleotectonics of Asia: fragments of a synthesis. In: Yin A et al. (eds.), The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 486-640
    She ZB, Ma CQ, Mason R, et al., 2006, Provenance of the Triassic Songpan-Ganzi flysch, west China. Chem. Geol., 231: 159-175
    Shervais JW, 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59: 101-118
    Shervais JW, 2001, Birth death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochem. Geophy. Geosys., 2
    Shi Danian, Wenjin Zhao, Brown L, et al., 2004, Detection of southward intracontinental subduction of Tibetan lithosphere along the Bangong-Nujiang suture by P-to-s converted waves. Geology, 32(3): 209~212
    Shirey SB, Walker RJ, 1998, The Re-Os isotope system in cosmoehemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci., 26:423~500
    St CG Kendall C,Lerche I,1993,全球性海平面的升和降.见:威尔格斯CK,et al.(eds,),层序地层学原理(海平面变化综合分析)(徐怀大译).北京:石油工业出版社,1993,3~18
    Stacey JS, Kramers JD, 1975, Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26:207~221
    Stern RJ, 2004, Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett., 226: 275~292
    Stern RJ, Bloomer SH, Lin PH, et al., 1989, Submarine arc volcanism in the southern Mariana Arc as an ophiolite analogue. Tectonophysics, 168:151~170
    Stille P, Unruh DM, Tatsumoto, 1983, Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Haweii basalts. Nature, 304:25~29
    Sun SS, 1982, Chemical composition and origin of the earth's primitive mantle. Geochim. Cosmochim Acta, 46:179~192
    Sun SS, McDonough WF, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Saunders AD,Norry MJ (eds), Magmatism in ocean basins. Geol. Soc. Lond. Spec. Pub., 42:313~345
    Tatsumoto M, Nakamura Y, 1991, Dupal anomaly in the Sea of Japan: Pb, Nb and Sr isotope variations at the eastern Eurasian continental margin. Geochim. Cosmochim. Acta, 55:3697~3708
    Thy P, Moores EM, 1988, Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics, 147:221~245
    Tu K, Flower MFJ, Calson RW, et al., 1992, Magmatism in the South China basin 1: Isotopic and trace element evidence for an endogenous Dupal mantle component. Chem. Geol., 97: 47~62
    Upadhyay HD, ERW Neale, 1979, On the tectonic regimes of ophiolite genesis. Earth Planet. Sci. Lett., 43(1): 93~102
    Velde B, 1965, Phengite micas: synthesis, stability, and national occurrence. Ame. J. of Sci., 263: 886~913
    Walker D, Shibara J, DeLong SE, 1979, Abyssal tholeiites from the oceanographer fracture zone Ⅱ: Phase equilibria and mixing. Contrib. Mineral. Petrol., 70:111~125
    Wang YG, Sun DL, 1985, The Triassic and Jurassic paleogeography and evolution of the Qinghai-Xizang (Tibet) plateau. Can. J. Earth Sci., 22:195~204
    Weaver BL, Tamey J, 1984, Empirical approach to estimating the composition of the continental crust. Nature, 310:575
    Wei W, Unsworth M, Jones A, et al., 2001, Detection of widespread fluids in the Tibetan crest by magnetotelluric studies. Science, 292:716~718
    Weis D, Bassias Y, Gautier I, et al., 1989, Dupal anomaly in existence 115 Ma ago: Evidence from isotopic study of the Kergulen Plateau (south Indian Ocean). Geochim. Cosmochim. Acta, 53:2125~2131
    Weis D, Frey FA, Saunders A, et al., 1991, Ninetyeast Ridge (Indian Ocean): A 5 000 km record of a Dupal mantle plume. Geology, 19:99~102
    Weislogel AL, 2006, Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34: 97~100
    Whitehead J, Dunning GR, Spray JG, 2000, U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians. Geol. Soc. Ame. Bull., 112(6):915-928
    
    Wilkinson JFG, 1982, The genesis of mid-ocean ridge basalt. Earth Sci. Rev., 18: 1-57
    Williams IS, 1998, U-Th-Pb geochronology by ion microprobe. In: Mckibben MA, Shanks WC, Ridley WI, (eds), Applications of microanalytical techniques to understanding mineralizing processes, Rev. Eclo. Geol., 7: 1-35
    
    Wilson JT, 1963, A possible origin of the Hawaiian islands. Can. J. Phys., 41: 863 -70
    Wilson M, 1989, Igneous Petrogenesis. London: Unwin Hyman, 1-25
    Winchester JA, Floyd PA, 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20: 325-343
    Wood DA, 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmaticclassification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett., 50: 11-30
    Xia BD, Li C, Ye HF, 2001, Blueschist-bearing metamorphic core complexes in the Qiangtang terrain reveal deep crustal structure of northern Tibet: Comment. Geology, 29: 663
    Xia BHX, Yu GW Chen L, et al., 2003, Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. Geochem. J., 37(3): 311-324
    Xu JF, Castillo PR, 2004, Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393: 9-27
    Xu JF, Castillo PR, Li XH, et al., 2002, MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low ~(206)Pb/~(204)Pb and high ~(143)Nd/~(144)Nd mantle component in the Indian Ocean. Earth Planet. Sci. Lett., 198:323-337
    Xu RH, Scharer U, Allegre CJ, 1985, Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. J. Geol., 93: 41-57
    Yang JS, Chair YC, Feng BG, 1991, Plume-type mid-ocean ridge basalt in the Bangong Lake ophiolite: geochemistry evidence. Li GC, Zhou WQ, Nicolas A, Geology of the Himalayas. Beijing: Geol. Pub. House, 447-491
    Ye K, 2000, Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos., 52: 157-164
    Yin A, Harrison TM, 2000, Geologic evolution of the Himalayan - Tibetan Orogen. Ann. Rev. Earth Planet. Sci., 28: 211-280
    Yin J, Xu J, Liu C, et al., 1988, The Tibetan plateau, Regional stratigraphic context and previous work. Phil. Trans. R. Soc. Lond., A327: 5-52
    Zachmann DW, 1988, Matrix effects in the separation of rare earth elements, scandium and yttrium and their determination by inductively coupled optical plasma emission spectrometry.Ann. Chem., 60: 420-427
    Zhang HF, Harris N, Parrish A, et al., 2006, Association of granitic magmatism in the Songpan-Garze fold belt, eastern Tibet Plateau: Implication for lithospheric. Geology, 20: 5-30
    Zhang KJ, 1997, The North and South China collision along the eastern and southern North China margins. Tectonophysics, 270: 245-256
    Zhang KJ, 1998, The Changning-Menglian suture zone: a segment of the major Cathaysian-Gondwanan divide in Southeast Asia - Comment. Tectonophysics, 290: 319-321
    Zhang KJ, 1999, The North and South China collision along the eastern and southern North China margins - Reply. Tectonophysics, 312: 363-366
    Zhang KJ, 2000, Cretaceous paleogeography of Tibet and adjacent areas (China): tectonic implications. Cretaceous Res., 21: 23-33
    Zhang KJ, 2001a, Blueschist - bearing metamorphic core complexes in the Qiangtang terrain reveal deep crustal structure of northern Tibet: Comment. Geology, 29: 90
    Zhang KJ, 2001b, Is the Songpan-Ganzi terrain (central China) really underlain by oceanic crust? Geol. Soc. India, 57: 223-230
    Zhang KJ, 2002, Escape hypothesis for North and South China collision and tectonic evolution of Qinling orogen, eastern Asia. Ecol. geol. Helv., 95: 237-247
    Zhang KJ, 2004, Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth Planet. Sci. Lett., 229: 73-89
    Zhang KJ, Cai JX, Zhang YX, et al., 2006a, Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth Planet. Earth Planet. Sci. Lett., 245(1-2): 722-729
    Zhang KJ, Wei RZ, Zhang YX, et al., 2007b, Western Qiangtang Early Permian flood basalts (north Tibet, China): A mantle plume model for the rifting of northern Gondwanaland Geol., in press
    Zhang KJ, Xia BD, Liang XW, et al., 2002, Mesozoic and Paleogene sedimentary facies and paleogeography of Tibet: Tectonic implications. Geol. J., 37: 217-246
    Zhang KJ, Xia BD, Wang GM, et al., 2004, Early Cretaceous stratigraphy, depositional environment, sandstone provenance, and tectonic setting of central Tibet, western China.Geol. Soc. Am. Bull., 116: 1 202-1 222
    Zhang KJ, Zhang YJ, Xia BD, 1998, Did the Indo - Asian collision alone create the Tibetan plateau? - Comment. Geology., 26: 1 098-1 099
    Zhang KJ, Zhang YX , Xie YW, 2007c, "HUP" rocks in Bangong-Nujiang suture zone and it's the tectonic implications. Geology, in review Zhang KJ, Zhang YX, Li B, 2007d, The structure and evolution of Bangong - Nujiang suture (Gaize, central Tibet), Tectonics, in review
    Zhang KJ, Zhang YX, Li B, et al., 2006b, The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical correlating studies with the Jinsa suture. Geology, 34 (6): 493-496
    Zhang KJ, Zhang YX, Li B, et al., 2007a, Nd isotopes of siliciclastic rocks from Tibet, western China: Constraints on provenance and pre-Cenozoic tectonic evolution, Earth Planet. Sci. Lett., 256: 604-616
    Zhang KJ, Zhang YX, Xia BD, et al., 2006c, Temporal variations of the Mesozoic sandstone composition in the Qiangtang block, northern Tibet (China): Implications for provenance and tectonic setting. J. Sediment. Res., 76: 1 035-1 048
    Zhang Q, Wang Y, Zhou GQ, et al., 2003, Ophiolites in China: their distribution, ages and tectonic settings. Dilek Y, Robinson PT, Ophiolites in Earth History. Geol. Soc, Lond., Spec. Pub., 218:541-566
    Zhang Q, Yang Ruiying, 1985, Boninitic rocks in the Dingqing ophiolite, Xizang ang their geological significance. Chinese Sci. Bull., 30(16): 1 234~1 245 (in Chinese)
    Zhang Q, Zhou D, Zhao D, 1994, Ophiolites of the Hengduan mountains, China: Characterisitcs and tectonic setting. J. Southerneast Asia Geol., 9: 335-344
    Zhang Q, Zhou DJ, Shen LP, et al., 1992, Pb isotopic anomaly in ophiolite and oceanic island basalts, Western Yunnan. In: Memory of Lithosphere and Tectonic Evolution Research, Beijing: Sci. Press, 1: 102-105
    Zhang SQ, Mahoney JJ, Mo XX, et al., 2005, Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics. J. Petrol., 46(4): 829~858
    Zhang YX , Li B, Wei QG, et al., 2006, Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks: Comment. Geology, e107, doi: 10.1130/G22944.1
    Zhang YX, Zhang KJ, Li B, et al., 2007, Zircon SHRIMP U-Pb dating and petrogenesis of plagiogranite from Lagkor Lake ophiolite, Gerze, Xizang, China. Chinese Sci. Bull., 52(5): 651-659
    Zhang, KJ, 2001, Is the Songpan-Ganzi terrane (central China) really underlain by oceanic crust? J. Geol. Soc. India, 57: 223-230
    Zhao WJ, Mechie J, Brown LD, et al., 2001, Crustal structure of central Tibet as derived from project INDEPTH wide - angle seismic data. Geophys. J. Int., 145:486-498
    Zhou D, Graham SA, 1996, Songpan-Ganzi complex of west Qinling Shan as Triassic remnant ocean basin fill trapped during the Mesozoic tectonic amalgamation of China. In: Yin A, Harrison TM (eds), Tectonic Evolution of Asia. Cambridge Univ. Press, 281-290
    Zhou JB, Li XH, 2005, GeoPlot: An Excel VBA program for geochemical data plotting. Computers Geosci., 32: 554-560
    Zhou MF, Malpas J, Robinson PT, et al., 1997, The deynamothermal aureole of the Donqiao ophiolite, northern Tibet. Can. J. Earth Sci., 34: 59-65
    Zhou MF, Robinson PT, Malpas J, et al., 1996, Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt - rock interaction and chromite segregation in the upper mantle. J. Petrol., 37: 3-21
    
    Zindler A, Hart SR, 1986, Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14: 493-571
    Zyabrev SV, Aitchison JC, Badengzhu, et al., 2002, Radiolarian biostratigraphy of supra - ophiolites sequences in the Xigaze area Yarlung - Tsangpo suture, southern Tibet (preliminary report). Radiolaria, 17: 13-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700