用户名: 密码: 验证码:
粘弹性聚合物熔体注射成型模型化理论与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注射成型是聚合物的主要成型加工方法之一,成型过程中聚合物要经历熔体流动和固化等非等温、非平衡过程,由于聚合物的粘弹性,流动过程中建立的剪切应力、法向应力和大弹性形变在固化过程中不能完全松弛,在制品中形成残余应力和取向,对制品的机械和光学性能有着重要影响。为构造能够描述注射成型中聚合物所受热机历史与微观形态结构变化的物理和数学模型,预测残余应力和取向的变化及形成规律,本文对粘弹性聚合物熔体注射成型的模型化理论和数值模拟方法进行了研究,主要工作如下:
     1.根据连续介质力学的基本概念和非平衡不可逆热力学基本理论,推导出可描述粘弹性流体大弹性形变、非等温和可压缩流动的Leonov本构模型,重点对不同条件下的Leonov模型进行了分析,建立了适用于不同情况的Leonov模型,并给出了确定模型参数的方法。
     2.基于不同温度下松弛时间谱可以通过水平和垂直移动进行叠加的假设,建立了一种由动态流变数据计算水平活化能及垂直活化能,通过对动态流变曲线进行水平、垂直移动生成动态流变主曲线的方法,较采用经典时温叠加(只进行水平移动)生成主曲线的方法具有更广泛的适用性。
     3.采用循环平均假设,忽略模壁温度的周期变化,将模具的传热简化为三维稳态热传导问题,考虑到注射模的结构特点(型腔为狭缝面,冷却孔细长),建立了注射模三维温度场的边界积分方程及数值求解方法,开发出注射模三维温度场边界元计算软件。
     4.建立了求解粘弹性聚合物熔体在薄壁型腔中充模/保压过程的数学模型,实现了注射成型过程中流动应力和分子取向建立及松弛过程的数值模拟,研究了熔体温度、模具温度和注射速率等工艺条件对分子冻结取向的影响,取得了与实验相符的结果。
     本文研究工作得到国家“863”计划项目(2002AA336120)“基于模拟仿真的聚合物成型加工—微观结构演化—制品质量控制的研究”资助。
Injection molding is one of the most widely employed method of polymer processing. The flow of polymer melts in a cold cavity is a typical example of an unsteady, non-isothermal flow of viscoelastic fluids. Every particle in the material experiences a complex thermo-mechanic history which is important since the viscoelastic nature of the polymer results in development of shear stress and normal stress and large elastic deformation during flow with subsequent incomplete relaxation during the cooling stage. The resultant residual stresses, which determine the orientation in the final molded part, the orientation is important since it influences the mechanical and optical performance of the molded part. Because of the complexity of the process, numerical simulation is essential to understand the mechanism behind orientation. The objective of this thesis is to develop a numerical simulation model for the buildup and relaxation of stresses and molecular orientation in injection molding process of amorphous polymer. The following works have been finished:
    1. In terms of continuum mechanics and nonequilibrium irreversible thermodynamics theories, compressible Leonov constitutive model is derived to describe large recoverable elastic strain development in non-isothermal flow of compressible viscoelastic melts. It is tempting to specify the model and then compare it to basic rheological tests in the hope that such a model will yield a good description of the nonlinear viscoelasticity of polymer melts. This sort of preliminary attempt was made for steady and small-amplitude oscillatory shear flow and stress relaxation following cessation of steady shear flow.
    2. A unified method for handing the temperature dependent of both dynamic and steady rheological data is presented. Based on assumption that relaxation spectra derived from data at different temperature can be made to superimpose by vertical and horizontal shifts, vertical and horizontal activation energies are estimated independently from dynamic rheological data, then using the estimated activation energies, shift the raw data to reference temperature for extracting the temperature dependence.
    3. An efficient numerical simulation has been developed for predicting 3D temperature profile of injection mold. In the simulation, the fluctuating component of mold wall temperature is considered to be negligibly small and mold heat transfer is reduced as three-dimensional static heat conduction; heat transfer within the molded-part is treated as transient one-dimensional heat
    
    conduction. An modified three-dimensional boundary element method is used for solving cyclic-averaged temperature of the mold containing complex and thin cavity and circular cooling channels.
    4. To simulate buildup and relaxation of flow-induced stresses and molecular orientation in injection molding process, A mathematical model is derived that describes the unsteady and non-isothermal flow of viscoelastic polymer melts in the thin wall mold cavity on the base of thin film approximation. By means of numerical simulation, the results are given in terms of residual stresses and associated birefringence in the molded part, as influenced by the processing conditions. The result indicates that, for a given polymer, the main factors affecting residual stresses and associated birefringence are flow rate and melt temperature.
    This work is supported by the project of Research on the Polymer Processing volution of Micro structureart Quality Control Eased on Numerical Simulation, supported by The National High Technology Research and Development Program (863 Program,2002AA336120).
引文
1. H.L.Toor, R.L.Ballman and L.Cooper, Prediction mold flow by electronic computer, Modern Plastics, 1960, 38(1) :117
    2. D.H.Harry, R.GParrott, Polym. Eng. Sci., 1970,10:209
    3. J.Rothe, Kunstoffe, 1972, 61:142
    4. M.R.Kamal and S.Kenig, The injection molding of thermoplastics(1) , Polym. Eng. Sci., 1972,12:294
    5. J.L.Berger and C.G.Gogos, Polym, Eng. Sci., 1974, 14:223
    6. G.William and A.Lord, Mold-filling studies for the injection molding of thermoplastic material(Part 1) , Polym. Eng.Sci.,1975,15:553
    7. G William and A.Lord, Mold-filling studies for the injection molding of thermoplastic material(Part 2) , Polym. Eng.Sci.,1975, 15:596
    8. Hele-Shaw, The Flow of Water, Nature, 1898, 34
    9. E.Broyer, C.Gutfinger and Z.Tadmor, A theoretical model for the cavity filling process in injection molding. Trans, of the Society of Rheo., 1975,19(3) :423
    10. M.R.Kamal, Y.Kuo and P.H.Doan, The injection molding behavior of thermoplastics in thin rectangular cavities, Polym.Eng.Sci., 1975,15(12) :863
    11. C.A.Hieber and S.F.Shen, A finite element/finite difference simulation of the injection molding filling process, J. of Non-Newtonian Fluid Mech, 1980, 7:1
    12. V.W.Wang, C.A.Hiber and K.K.Wang, Dynamic simulation and graphics for the injection molding of three-dimensional thin parts, J. Polym.Eng.Sci., 1986, 7:21
    13. R.S.Spencer and GD.Gilmore, J. Collid Sci.,1951,15:12
    14. M.R.Kamal and S.Kenig, The injection molding of thermoplastics(2) , Polym. Eng. Sci., 1972,12:302
    15. J.Greener, General consequences of the packing phase in injection molding, Polym. Eng. Sci., 1985,25(12) :886
    16. T.S.Chung, Pressure build-up during packing stage of injection molding, Polym. Eng. Sci., 1986,26(11) :772
    17. H.H.Chiang, C.A.Hieber and K.K.Wang, A unified simulation of the filling and postfilling stages in injection molding Part 1: Formulation, Polym. Eng. Sci., 1991,31(2) :116
    18. H.H.Chiang, C.A.Hieber and K.K.Wang, A unified simulation of the filling and
    
    postfilling stages in injection molding Part 2: Experimental Verification, Polym. Eng.Sci., 1991,31(2) :125
    19. B.S.Chen and W.H.Liu, Numerical simulation of the postfilling stage in injection molding with a two-phase model, Polym. Eng. Sci., 1994,34(10) :835
    20. D.Huilier, C.Lenfant and J.Terrisse, Modeling the packing stage in injection molding of thermoplastics, Polym. Eng. Sci., 1988,28(24) : 1637
    21. P.A.Tanguy and J.M.Grygiel, A slight compressible transient finite element model of the packing phase in injection molding, Polym. Eng. Sci., 1993,33(19) :1229
    22. R.Y. Chang and B.D.Tsaur, Experiments and theoretical studies of shrinkage,warpage and sink marks of crystalline polymer injection molded parts, Polym. Eng. Sci., 1995,35(15) :1222
    23. P.G.Lafleur and MR. Kamal, A structure-oriented computer simulation of the injection molding of viscoelastic crystalline polymer Part 1: Model with fountain flow, packing,solidification, Polym. Eng. Sci., 1986,26(1 ):92
    24. K.Tnguyen and M.R.Kamal, Analysis of the packing stage of a viscoelastic melts, Polym. Eng. Sci., 1993,33(11) :665
    25. 黄峡宏,周持兴,高分子粘弹性熔体注射成型非等温保压过程的模拟,上海交通大学学报, 1999, 33 (2) : 214
    26. X.H.Huang and C.X.Zhou, Postfilling analysis of viscoelastic polymers with internal structure parameter, Polym. Eng. Sci.,1999,39(11) :2313
    27. A.I.Isayev ed. Injection and compression Molding Fundamentals, Marcel Dekker,Inc.,New York, 1987
    28. A.I.Leonov and A.N.Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Champan&Hall,LonDon,1994
    29. C.D.韩,聚合物加工流变学,科学出版社,北京, 1985
    30. C.L.Tucker III. Computer Modeling for Polymer Processing, Hanser Publishers, New York, 1989
    31. J.L. White and A.B. Metzner, Development of constitutive equations for Polymeric melts and solution, J.Appl.Polym.Sci, 1963, 7:1867
    32. N.Phan Thien and R.I.Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mesh ,1977,2:353
    33. N.Phan Thien, A nonlinear network viscoelastic model,J.Rheol.,1978,22:259
    34. H.Giesekus, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent molecular mobility,
    
    Rheol.Acta, 1982,21:366
    35. H.Giesekus, A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility. J. Non-Newtonian Fluid Mech., 1982,11:69
    36. Kaye, Non-Newtonian flow in incompressible fluids, Part I; A general rheological equation of state, Part II; some problem in steady flow. College of Aeronautics, Crawford, UK, Note No. 134,1962
    37. Berstein, E.A.Kersleg and L.J.zapas, A study of stress relaxation with finite strain. Trans.Soc.Rheol.,1963, 7:391
    38. M.H.Wanger, T.Raible and J.Meissner, Tensile stress overshoot in uniaxial extension of LDPE melt. Rheol. Acta, 1979,18:427
    39. M.H.Wanger and A.Dermamels, A constitutive analysis of extensional flows of polyisobutylene. J. Rheol., 1990, 34:943
    40. R.I. Tanner, Engineering Rheology. Oxford: Clarendon, 1985
    41. R.I. Tanner, From a to (BK) z in constitutive relation, J.Rheol., 1988, 32(7) :673
    42. R.Ahmed, R.F.Liang and M.R.Mackley. The experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylene. J. Non-Newtonian Fluid Mech., 1995, 59:129
    43. Goublomme, B.Draily and M.J. Crochet, Numerical prediction of extrudate swell of a High-Density polyethylene. Non-Newtonian Fluid Mech., 1992,44:171
    44. G.Barakos and E.Mitsoulis, Numerical of extrusion through orifice and prediction of Bagley correction for an IUPAC-LDPE melts. J. Rheol., 1995, 39(1) :193
    45. J.S.Yu, A.H.Wanger and D.M. Kalyon, Simulation of Microstructure Development in Injection Molding of Engineering Plastics. J. Appl. Polym. Sci., 1992,44:477
    46. L.F.A.Douven, Towards the Computation of Properties of Injection Moulded Products: flow and thermally induced stresses in amorphous thermoplastics. PhD thesis, Eindhoven Universty of Technology, 1995
    47. J.G Oldroyd, On the formulation of Theological equation of state. Proc. Roy. Soc., 1950,A200:415
    48. J.G.Oldroyd, Non-Newtonian effects in steady motion of some idealized elastic-viscous liquids. Proc. Roy. Soc., 1958, A245:278
    49. R.B.Bird. C.F.Curtiss, R.C.Armstrong and O.Hassager, Dynamic of Polymeric Liquids. Vol.11: Kinetic Theory. 2nd Ed. New York: Wiley Interscience, 1987
    50. R.B.Bird. Constitutive equation for polymeric liquids. Annu. Rev. Fluid Mech., 1995,27:169
    
    
    51. M.J.Crochet, Numerical simulation of viscoelastic flow: a review, Rubber Chemistry and Technology, 1988, 62(3):426
    52.殷敬华,莫志深.现代高分子物理学(下册).科学出版社,2001
    53. M.Avrami, Kinetics of Phase Change Ⅰ, J. Chem., Phys.,1939,7:1103
    54. M.Avrami, Kinetics of Phase Change Ⅱ, J. Chem., Phys.,1940,8:212
    55. M.Avrami, Kinetics of Phase Change Ⅲ, J. Chem., Phys., 1940,9:177
    56.殷敬华,莫志深.现代高分子物理学(上册).科学出版社,2001
    57.齐力,林云青,王佛松.高聚物非等温结晶动力学.化学研究与应用,1995,7(2):111
    58.张志英.测定高聚物结晶动力学参数的非等温理论和方法.高分子通报,1994,(3):167
    59. M.Burger, V.Capasso. Mathematical Modeling and Simulation of Nonisothermal Polymer Crystallization, Math. Models and Methods in Appl. Science, 2001 ,(6): 1
    60. K.Nakamura, T.Watanable, K.Katayama and T.Amano. Some Aspects of Nonisothermal Crystallization of Polymers. Ⅰ. Relation between crystallization temperature, crystallinity, and cooling conditions. J. of Appl. Polym. Sci., 1972,16:1077
    61. C.A.Hieber, Correlations for the quiescent crystallization kinetics of isotactic polypropylene and poly(ethylene terephthalate), 1995, Polymer,
    62. W.Schneider, A.Kppl and J.Berger. Non-isothermal crystallization, crystallization of polymer. International Polymer Processing Ⅱ, 1988, 3(4): 151
    63. G. Eder. H.Janeschitz-kriegl and G.Krobath. Shear induced crystallization, a relaxation phenomenon in polymer melts. Progress in Colloid & Polym. Sci., 1989,80:1
    64. G. Eder, H.Janeschitz-Kriegl and S.Liedauer. Crystallization processes in quiescent and moving polymer melts under Heat transfer condition. Progress in Polym. Sci. 1990,15:629
    65. T.W.Chan and A.I.Isayev, Quiescent Polymer Crystallization: Modeling and Measurement, Polym. Eng. Sci., 1994,34(6):461
    66. A.I.Isayev, T.W.Chan, M.Gmerek and K.Shimojo, Injection Molding of Semi-crystalline Polymer: Characterization and Modeling, ANTEC 1/94,587
    67. X.Guo, A.I.Isayev and L.Guo, Crystallinity and Microstructure in Injection Moldings of Isotactic Polypropylenes. Part Ⅰ: A New Approach to Modeling and Model Parameters, Polym. Eng. Sci., 1999,39(10):2096
    68. H.zuidema, Flow Include Crystallization of Polymer, Ph.D Thesis, University of
    
    Technology Eindhoven, the Netherlands,2000
    69. R.M.Patel and J.E.Spruiel. Polym. Eng. Sci., 1991,31:730
    70. J.D.Hoffman, GT.Davis and S.I. Lauritzen, in Treatise on Solid State Chemistry: Crystalline and Non-crystalline Solids, vol.3, N.B.Hannay, ed., Plenum, New York, 1976
    71. T.Huang and R.Kamal, Morphological Modeling of Polymer Solidification, Polym. Eng. Sci., 2000,40(8) : 1796
    72. GTitomanlio, V.Speranza and Brucato, On the Simulation of Thermoplastic Injection Molding Process. Intern. Polym. Process., 1995,10(1) :55
    73. C.M.Hsiung and M.Cakmark. Effect of Injection-molding Condition on the Crystallinity, Orientation Gradient, and Mechanical Properties on Poly(aryl-ether-ketone). ii. Large Dumbbell Parts. J. of Applied Polym. Sci., 1993,47:149
    74. C.A.Hiber, Modeling/Simulation the Injection Molding of Isotactic Polypropylene, Polym. Eng. Sci., 2002,42(7) : 1387
    75. X.Guo, A.I.Isayev and L.Guo, Crystallinity and Microstructure in Injection Moldings of Isotactic Polypropylenes.Part II. Simulation and Experiment, Poly. Eng. Sci., 1999,39(10) :2132
    76. A.I.Isayev and L.Crouthamel, Residual stress development in the injection molding of polymers,Polym.Plast.Technol.Eng.,1984,22(2) :177
    77. Z.Tadmor, Molecular orientation in injection molding, J.Appl.Polym.Sci., 1974,18:1753
    78. H.J.Janeschitz-Kriegl, Injection molding of plastics: some ideals about the relationship between mould filling and birefringence. Rheol. Acta,1977,16:327
    79. W.Dietz, J.l.White and E.S.Clark, Orientation development and relaxation in injection molding of amorphous. Polym. Eng. Sci.,1978,18:273
    80. J.Greener,R.Kesel and B.Contestable, The birefringence problem in optical disk substractes:A modeling approach, AICHE J., 1989,35:449
    81. Marucci, Testing of a constitutive equation for entangled networks by elongational and shear data of polymer melts, Rheol. Acta,1973,12:269
    82. A.I.Isayev and C.A.Hieber. Toward a viscoelastic modeling of the injection molding of polymers.Rheol.Acta,1980,19:168
    83. M.Sobhanie and A.I.Isayev, Two-Dimensional viscoelastic simulation of injection molding of thermoplastic materials, ANTEC 1989,286
    84. H.Mavridis,A.N.hryinak and J.Vlachopoulos, The effect of fountain flow on molecular orientation in injection molding, J.Rheol.,1988,32:639
    
    
    85. J.S.Yu,A.H.Wanger and D.M.Kalyon, Simulation of microstructure development in injection molding of engineering plastics,J. Appl.Polym.Sci., 1992,44:477
    86. F.P.T.Baaijens, Calculation of residual stresses in injection molded products,Rheol. Acta,1991,30:284
    87. M. Flaman, Buildup and Relaxation of Molecular Orientation in Injection Molding. Part 1: Formulation, Polym. Eng. Sci., 1993, 33(4) : 193
    88. A. M. Flaman, Buildup and Relaxation of Molecular Orientation in Injection Molding. Part 2: Experimental and verification, Polym. Eng. Sci., 1993, 33(4) :202
    89. Friedrichs, M.Horie and Y.Yamaguchi,J.Materials Processing & Manuf. Sci.,1996,5:95
    90. H.Kim, S. J. Park, S. T. Chung, and T. H. Kwon, Numerical Modeling of Injection/Compression Molding for Center-Gated Disk. Part 1: injection Molding with Viscoelastic Compressible Fluid Model, Polym. Eng. Sci., 1999, 39(10) :1930
    91. H.Kim, S. J. Park, S. T. Chung, and T. H. Kwon, Numerical Modeling of Injection/Compression Molding for Center-Gated Disk. Part 2: Effect of compression stage, Polym. Eng. Sci., 1999, 39(10) : 1943
    92. Y.B.Lee,t.H.Kwon and K.Yoon, Numerical prediction of residual stress and birefringence in injection/compression molded center-gated disk.Part 1:Basic modeling and results for injection molding, Polym. Eng. Sci., 2002, 42(11) :2246
    93. Y.B.Lee,t.H.Kwon and K.Yoon, Numerical prediction of residual stress and birefringence in injection/compression molded center-gated disk. Part 2: Effect of processing conditions, Polym. Eng. Sci., 2002, 42(11) :2273
    94. F.Boitout, J.F.Agassant and M.Vincent, Elastic calculation of residual stresses in injection mold. Intern. Polym. Processing, 1995,10(3) :237
    95. G. Titomanlio and K.M.B.Jansen, In-Mold shrinkage and stress prediction in injection molding, Polym. Eng. Sci., 1996, 36(15) :2041
    96. Bushko and V. K. Stokes, Solidification of Thermoviscoelastic Melts. Part 1: Formulation of Model Problem, Polym. Eng. Sci., 1995, 35(4) :351
    97. Bushko and V. K. Stokes, Solidification of Thermoviscoelastic Melts. Part 2: Effects of processing conditions on shrinkage and residual stresses, Polym. Eng. Sci., 1995, 35(15) :365
    98. C. Bushko and V. K. Stokes, Solidification of Thermoviscoelastic Melts. Part 3: Effects of mould surface temperature differences on shrinkage and residual stresses, Polym. Eng. Sci., 1996, 36(4) :322
    
    
    99. C. Bushko and V. K. Stokes, Solidification of Thermoviscoelastic Melts. Part 4: Effects of boundary conditions on shrinkage and residual stresses, Polym. Eng. Sci., 1996, 36(15):658
    100. S. J. Liu, Modeling and Simulation of Thermally Induced Stress and Warpage in Injection Molded Thermoplastics, Polym. Eng. Sci., 1996, 36(6):907
    101. Kabanemi K K, Crochet M J.Thermoviscoelastic calculation of residual stresses and residual shapes of injection molded parts. Intern. Polym. Processing, 1992,7(1):60
    102. K. K. Kabanemi, H.Vaillancourt, H. Wang and G. Salloum, Residual Stresses, Shrinkage, and Warpage of Complex Injection Molded Proucts: Numerical Simulation and Experimental Validation, Polym. Eng. Sci., 1998, 38(1):21
    103. R. Zheng, P. Kennedy, N. Phan-Thien and X. J. Fan, Thermoviscoelastic Simulation of Thermally and Pressure-induced Stresses in Injection Molding for the Prediction of Shrinkage and Warpage for Fiber-Reinforced Thermoplastics, J. Non- Newtonian Fluid Mech., 1999, 84:159
    104. W. F. Zoetelife, L. F. A. Douven and A. J. Ingen Housz, Residual Thermal Stresses in Injection Molded Products, Polym. Eng. Sci., 1996, 36(14):1886
    105.李海梅,顾元宪,申长雨,注塑件残余热应力的数值计算,化工学报,2000,51(3):308
    106.卢义强,陈兴,李德群,注塑冷却过程中塑料制品的热应力计算公式,科学通报,1995,40:1815
    107. A.I.Leonov, Nonequilibrium thermodynamic and rheology of viscoelastic polymer media, Rheol. Acta, 1976,15(2):85
    108. A.I.Leonov, E.H.Lipkina, E.D.Paskin and A.N. Prokunin, Theoretical and experimental investigation of shearing in elastic polymer liquids, Rheol. Acta, 1976,15(7/8):411
    109. A.I.Leonov, On a class of constitutive equations for viscoelastic liquids, J. of Non-Newtonian Fluid Mechanics,1987,25:1
    110. J.C.Simo, On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Computer Method in Applied Mechanics and Eng., 1987,60:153
    111. www.rheosci.com/library/applications/index.asp
    112. J.M.Verhelst, Model evaluation and dynamics of a viscoelastic fluid in a complex flow. Ph.D Thesis, Delft University, the Netherlands,2001
    113. J.Honerkamp and J.Weese. A nonlinear regularization method for the calculation
    
    of relaxation spectra. Rheologica Acta, 1993,25:65
    114. M.Baumgaertel and H.H.Winter. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheologica Acta,1989,28:511.
    115. T.H.Kwon, Mold Cooling System Design Using Boundary Element Method,. Journal of Engineering for Industry. 1988, 110:384~394
    116. L.S Turng.and K.K.Wang,. A Computer-Aided Cooling-Line Design System for Injection Molds. Journal of Engineering for Industry., 1990,112:161-167
    117. M. Rezayat and T.E.Burton, A Boundary-Integral Formulation for Complex Three-Dimensional Geometries. International Journal for Numerical Methods in Engineering. 1990,29:263-273
    118. K.Himasekhar, J. Lottey and K.K.Wang, CAE of Mold Cooling in Injection Molding Using a Three-Dimensional Numerical Simulation. Journal of Engineering for Industry. 1992, 114:213~221
    119. M.R.Barone and D.A.Caulk, Special Boundary Intergal Equations for Approximate Solution of Laplace's Equation in Two Dimensional Regions with Circular Holes, Quart. J. Mech. Appl. Math., 1981,34:265-286
    120. C.A.Brebbia, J.C.F.Telles and L.C.Wrobel, Boundary Element Techniques-Theory and Application in Engineering. Springer-Verlag, New York, 1984.
    121. M.Abramowitz and I.A.Stegun (Eds.), Handbook of Mathematical Function, Dover, New York, 1965
    122.匡震邦,非线性连续介质力学基础,西安交通大学出版社,西安,1989
    123.黄克智,黄永刚,固体本构关系,清华大学出版社,北京,1999
    124.郭仲衡,非线性弹性理论,科学出版社,北京,1980
    125.陈文芳,非牛顿流体力学,科学出版社,北京,1984
    126.许元泽,高分子结构流变学,四川教育出版社,成都,1988
    127.古大治,高分子流体动力学,四川教育出版社,成都,1988
    128.吴子牛,计算流体力学基本原理,科学出版社,北京,2001
    129.瞿金平,胡汉杰,聚合物成型原理及成型技术,化学工业出版社,北京,2001
    130.冯康等,数值计算方法,国防工业出版社,北京,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700