用户名: 密码: 验证码:
脱氧雪腐镰刀菌烯醇(DON)在面制品加工中的变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧雪腐镰刀菌烯醇(DON)属B族单端孢霉烯族毒素,主要由禾谷镰刀菌和黄色镰刀菌产生,是世界上分布最广泛的真菌毒素之一,因其具有急性毒性、慢性毒性、细胞毒性、免疫毒性等多种毒性作用而严重影响人和牲畜的健康。DON毒素可通过污染的小麦、大麦、玉米等原料进入食品和饲料中。另外,家畜和家禽食用污染的饲料会使DON毒素少量进入牛奶、肉和蛋中从而间接影响人类健康。因此,分析食品加工中DON毒素含量的变化规律,探讨合理的加工方法降低DON毒素的含量,成为降低DON毒素危害的重要方法及合理评估其危害的重要手段。
     1.采用9个不同污染程度(DON)的小麦面粉为材料加工及煮制挂面,和面时分别添加0、0.3%、1.0%碳酸钠,检测湿挂面、干挂面及煮制后DON含量。结果表明挂面煮制可有效去除DON,无碱及碳酸钠为0.3%时,两种挂面加工及煮制DON毒素的去除效果均无显著差异,DON毒素的去除只发生在煮制过程,主要原因为DON毒素在汤中的溶解;碳酸钠添加量为1.0%时,干燥及煮制对DON毒素有去除效果,其DON的去除率高于其余两种挂面,主要为DON毒素在汤中溶解及热和碱的作用导致降解。通过DON标准品与碳酸钠溶液的加热反应,通过HPLC和Q-TOF检测发现DON毒素在碳酸钠溶液中可产生6种已知产物C15H20O6(iso DON, lactone DON)、C15H20O5(nor DON D)、C14H18O5(norDONA, B, C),其毒性显著降低。
     2.分别采用0-1.0%的碳酸钠添加量及40℃、50℃、60℃、70℃温度下对湿挂面进行干燥及挂面煮制,分析DON的去除效果,结果表明:1%碳酸钠添加量,70℃干燥的挂面加工及煮制,其DON毒素的去除效果远高于低温或无碱挂面加工及煮制的挂面。1%碳酸钠,70℃条件干燥挂面可将DON毒素由1.92mg/kg降至国家标准(1mg/kg);干燥后再煮制可将DON毒素由4.50mg/kg降至国家标准。添加1%碳酸钠,高温干燥显著增加了挂面干燥及煮制对DON毒素的去除效果。
     3.通过采用不同碱含量加工DON毒素污染的面条并蒸制,分析DON毒素去除效果,水分含量为38%,加碱量为0.35%时,蒸制后DON毒素含量预测曲线为y=0.8203x-0.0982,R2=0.9947,可将DON毒素含量由1.34mg/kg降至国家标准;碱的加入在一定程度上促进了DON毒素的降解,优于无碱挂面蒸制。
     4.通过煮制水中加入碳酸钠判断对DON毒素去除效果,0.25%碳酸钠浓度煮制挂面对熟挂面无显著不良影响,且具有一定的毒素去除作用。水中加入0.25%碳酸钠煮制挂面后,获得DON毒素去除的预测曲线y=0.4546x-0.0377,R2=0.9605,通过曲线可知,加碱煮制面条可将DON毒素含量由2.30mg/kg降至国家标准,显著了的增加了煮制对DON毒素的去除效果。
     5.通过采用自然污染DON的小麦面粉进行面包加工,分析面包加工过程及还原性添加剂对DON毒素的影响,结果发现:发酵结束后,面团中DON毒素含量与原始面粉相比变化不显著;烘烤结束后,面包皮中DON毒素的含量降低7.9%-15.1%,面包囊中DON毒素的含量降低7.4%-17.1%,但面包皮与面包囊中DON毒素含量无显著差异,证明美拉德反应对DON毒素无显著降解作用;面包加工中添加抗坏血酸(200mg/kg)、L-半胱氨酸(60mg/kg)、L-谷胱甘肽(60mg/kg)后,还原性添加剂在面包发酵过程及烘烤过程中对DON毒素均无显著降解作用。
Deoxynivalenol (DON) is a natural-occurring mycotoxin which belongs to a wide family ofmycotoxins known as trichothecenes produced by several Fusarium species, mainly F. graminearumand F. culmorum. It is a significant contaminant due to its frequent occurrence in toxicologicallyrelevant concentrations worldwide. DON affects animal and human health causing acute toxicity andimmunotoxicity. In addition, livestock and poultry consumption of the DON contaminated feed, it ispresent in small amount in the milk, meat and eggs and thus indirectly affect human health. Since therate of the occurrence of DON in wheat is high, effective procedures to remove or eliminate DON fromfood products is essential to minimize exposures in those who consume large amounts of wheat.
     1. The present study analyzed the level of DON removal in different noodle making processes andits content was determined in the processed and cooked noodles. Nine different DON contaminatedwheat flours were used as raw materials in the noodle making process. During the kneading of thedough, sodium carbonate was added at0,0.3%and1%, and the level of DON was detected in wet, dryand cooked noodle. The results showed that cooking is a effective way of removing DON, reduction ofDON content in1%sodium carbonate was higher than the other two kinds of noodle. No significantdifference in the non-alkaline and0.3%alkaline noodle. Presence of1%sodium carbonate in the wetand dry noodle had brought some changes in DON concentration. Boiling DON in0.3%sodiumcarbonate solution could generate a new product and its molecular structure needs further evaluation.
     2. To analyze the reduction of DON in the dried noodles and cooked noodles by different sodiumcarbonate concentration and different drying temperature. The results showed that the reduction of DONin the noodles processing and cooking by1%sodium carbonate added and dried at70°C was higherthan low temperature dried noodles and no alkaline noodles and the content of DON in the dried noodlecan be reduced from1.92mg/kg to the maximum tolerable limits of DON in China. After noodles werecooked, DON can be reduced from4.50mg/kg to national standards. Added1%content sodiumcarbonate and dried by high-temperature significantly increased reduction of DON.
     3. To analyze the reduction of DON after noodles steamed by using different processing of DONcontamination. The results showed that if the alkaline content was0.35%and the water content was38%, The prediction curve of DON in steamed cooked noodles was y=0.8203x-0.0982, R2=0.9947.The DON content reduced from1.34mg/kg to the maximum tolerable limits of DON in China aftersteaming. The alkaline condition played an important role in the reduction of DON.
     4. To determine of reduction of DON, contaminated noodles was cooked by alkali water. TheDON content predicted curve by the0.25%sodium carbonate cooked was y=0.4546x-0.0377, R2=0.9605. From the curve, the DON can be reduced from2.30mg/kg to the maximum tolerable limits ofDON in China after noodles was cooked in alkali water. The alkaline significant increased the reductionof DON.
     5. Deoxynivalenol (DON) contaminated wheat was used in making bread and the role of breadprocessing and bread additives on deoxynivalenol reduction was analyzed. The results showed that afterfermentation, no significantly difference in the DON content from the original flour was observed. Afterbaking, the DON reduction in bread crust is7.95%to15.08%, and the DON reduction in inner parts ofbread is7.39%to17.06%. The content of DON in bread crust had no significant difference from innerparts of bread. Maillard reaction had no significant influence on the reduction of DON content. Theadditives Vc (200mg/kg), L-cysteine hydrochloride (60mg/kg), and glutathione (60mg/kg) had nosignificant impact on the DON reduction in bread fermentation and baking process.
引文
1.李峻媛,万丽,杨美华.真菌毒素限量标准及其在中药中的研究进展[J].中草药,2011,42(3):602-609.
    2.李萌萌,关二旗,卞科,等.真菌毒素的辐照降解及产物解析研究进展[J].粮食与饲料工业,2013(1):14-18.
    3.施润淋,王晓东.高温烘干-挂面干燥新技术[J].面粉通讯,2005,(2):33-38.
    4.徐剑宏,祭芳,王宏杰,王建伟,林凡云,史建荣.脱氧雪腐镰刀菌烯醇降解菌的分离和鉴定[J].中国农业科学,2010,43(22):4635-4641.
    5.高飞.挂面高温干燥系统工艺参数控制及挂面品质研究[高飞硕士学位论文].河南:河南工业大学,2010.
    6.戴学敏,何学超.赤霉病毒素(DON)去毒技术的研究[J].粮食储藏,1992,4:36-40.
    7.张慧杰,王步军.真菌毒素在小麦类食品加工过程中的消解与转移[J].农产品质量与安全,2012,(3):59-64.
    8.纪莉景.中国不同生态地区禾谷镰刀菌种群分化及遗传多样性分析[纪莉景博士学位论文].河北农业大学,2007.
    9.苏福荣,王松雪,孙辉,刘焓.国内外粮食中真菌毒素限量标准制定的现状与分析[J].粮油食品科技,2008,15(6):57-59.
    10.邹忠义,贺稚非,李洪军,邹程焓,韩鹏飞,杨佳艺.单端孢霉烯族毒素转化降解研究进展[J].食品科学,2010,31(19):443-448.
    11.陆刚,高永清,薛英.“分层碾磨”制粉法去除小麦中“致吐毒素”的研究[J].中国粮油学报,1996,5.
    12.陈飞.加工工艺去除小麦中脱氧雪腐镰刀菌烯醇(DON)的研究[陈飞硕士学位论文].北京:中国农业科学院,2012.
    13.侯国泉.亚洲面条加工技术介绍[J].农产品加工:创新版,2010(5):13-17.
    14. GB.(2011).食品中真菌毒素限量[S].
    15. Abbas H., Mirocha C., Rosiles R., Carvajal M. Decomposition of zearalenone and deoxynivalenol in theprocess of making tortillas from corn[J]. Cereal Chemistry,1988,65:15-19.
    16. Abbas H. K., Mirocha C. J., Pawlosky R. J., Pusch D. J. Effect of cleaning, milling, and baking ondeoxynivalenol in wheat[J]. Applied&Environmental Microbiology,1985,50(2):482-486.
    17. Abramson D., House J. D., Nyachoti C. M. Reduction of deoxynivalenol in barley by treatment withaqueous sodium carbonate and heat[J]. Mycopathologia,2005,160(4):297-301.
    18. Accerbi M, Rinaldi V E A, Ng P K W. Utilization of highly deoxynivalenol-contaminated wheat viaextrusion processing[J]. Journal of Food Protection,1999,62(12):1485-1487.
    19. Alegakis A., Tsatsakis A., Shtilman M., Lysovenko D., Vlachonikolis I. Deactivation of mycotoxins. I.An in vitro study of zearalenone adsorption on new polymeric adsorbents[J]. Journal of EnvironmentalScience&Health Part B,1999,34(4):633-644.
    20. Avantaggiato G., Havenaar R., Visconti A. Evaluation of the intestinal absorption of deoxynivalenol andnivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and otheradsorbent materials[J]. Food and Chemical Toxicology,2004,42(5):817-824.
    21. Avantaggiato G., Solfrizzo M., Visconti A. Recent advances on the use of adsorbent materials fordetoxification of Fusarium mycotoxins[J]. Food Additive and Contaminants,2005,22(4):379-388.
    22. Awad W. A., Ghareeb K., Bohm J., Zentek J. Decontamination and detoxification strategies for theFusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation[J].Food Additive and Contaminants Part A-Chemistry Analysis Control Exposure Risk Assess,2010,27(4):510-520.
    23. Aziz N., Attia E. S., Farag S. Effect of gamma‐irradiation on the natural occurrence of Fusariummycotoxins in wheat, flour and bread[J]. Food/Nahrung,1997,41(1):34-37.
    24. Baiano A., Conte A., Del Nobile M. Influence of drying temperature on the spaghetti cooking quality[J].Journal of food engineering,2006,76(3):341-347.
    25. Balcerowska G., Siuda R., Skrzypczak J., ukanowski A., Sadowski C. Effect of particle size andspectral sub-range within the UV-VIS-NIR range using diffuse reflectance spectra on multivariatemodels in evaluating the severity of fusariosis in ground wheat[J]. Food Additives and Contaminants,2009,26(5):726-732.
    26. Banu I., Dragoi L., Aprodu I. From wheat to sourdough bread: a laboratory scale study on the fate ofdeoxynivalenol content[J]. Quality Assurance and Safety of Crops&Foods,2014,6(1):53-60.
    27. Berardo N., Pisacane V., Battilani P., Scandolara A., Pietri A., Marocco A. Rapid detection of kernel rotsand mycotoxins in maize by near-infrared reflectance spectroscopy[J]. Journal of Agricultural and FoodChemistry,2005,53(21):8128-8134.
    28. Bergamini E., Catellani D., Dall'asta C., Galaverna G., Dossena A., Marchelli R., et al. Fate of Fusariummycotoxins in the cereal product supply chain: the deoxynivalenol (DON) case within industrialbread-making technology[J]. Food Additives and Contaminants Part A-Chemistry Analysis ControlExposure&Risk Assessment,2010,27(5):677-687.
    29. Berthiller F., Crews C., Dall'Asta C., Saeger S. D., Haesaert G., Karlovsky P., et al. Masked mycotoxins:A review[J]. Molecular Nutrition&Food Research,2013,57(1):165-186.
    30. Berthiller F., Dall'Asta C., Schuhmacher R., Lemmens M., Adam G., Krska R. Masked mycotoxins:determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquidchromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2005,53(9):3421-3425.
    31. Berthiller F., Lemmens M., Werner U., Krska R., Hauser M., Adam G., et al. Short review: Metabolismof theFusarium mycotoxins deoxynivalenol and zearalenone in plants[J]. Mycotoxin Research,2007,23(2):68-72.
    32. Binder E., Heidler D., Schatzmayr G., Thimm N., Fuchs E., Schuh M., et al.(2000). Mycotoxins andphycotoxins in perspective at the turn of the millennium. In10th International IUPAC Symposium onMycotoxins and Phycotoxins, Guarujá, Brazil.
    33. Bony S., Olivier-Loiseau L., Carcelen M., Devaux A. Genotoxic potential associated with low levels ofthe Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line[J]. Toxicology inVitro,2007,21(3):457-465.
    34. Boyacio lu D., Heltiarachchy N. S., D'appolonia B. L. Additives affect deoxynivalenol (vomi toxin)flour during breadbaking[J]. Journal of food science,1993,58(2):416-418.
    35. Brera C., Peduto A., Debegnach F., Pannunzi E., Prantera E., Gregori E., et al. Study of the influence ofthe milling process on the distribution of deoxynivalenol content from the caryopsis to cooked pasta[J].Food Control,2013,32(1):309-312.
    36. Bretz M., Beyer M., Cramer B., Knecht A., Humpf H. U. Thermal degradation of the Fusariummycotoxin deoxynivalenol[J]. Journal of Agricultural and Food Chemistry,2006,54(17):6445-6451.
    37. Bretz M., Knecht A., Gockler S., Humpf H. U. Structural elucidation and analysis of thermal degradationproducts of the Fusarium mycotoxin nivalenol[J]. Molecular Nutrition&Food Research,2005,49(4):309-316.
    38. Bueno D. J., Casale C. H., Pizzolitto R. P., Salvano M. A., Oliver G. Physical adsorption of aflatoxin B1by Lactic Acid Bacteria and S accharomyces cerevisiae: a theoretical model[J]. Journal of FoodProtection,2007,70(9):2148-2154.
    39. Bueno D. J., di Marco L., Oliver G., Bardón A. In vitro binding of zearalenone to different adsorbents[J].Journal of Food Protection,2005,68(3):613-615.
    40. Bullerman L. B., Bianchini A. Stability of mycotoxins during food processing[J]. International Journal ofFood Microbiology,2007,119(1-2):140-146.
    41. Burel S. D., Favrot m.-C., FREMY J.-M., Massimi C., Prigent P., Debongnie L. P., et al. Review ofmycotoxin-detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. In:EFSA-Q-2009-00839, EFSA J.8-Dec.-2009.
    42. Castells M., Marin S., Sanchis V., Ramos A. Fate of mycotoxins in cereals during extrusion cooking: areview[J]. Food Additives and Contaminants,2005,22(2):150-157.
    43. Cavret S., Laurent N., Videmann B., Mazallon M., Lecoeur S. Assessment of deoxynivalenol (DON)adsorbents and characterisation of their efficacy using complementary in vitro tests[J]. Food Additiveand Contaminants Part A-Chemistry Analysis Control Exposure Risk Assess,2010,27(1):43-53.
    44. Cazzaniga D., Basilico J. C., Gonzalez R. J., Torres R. L., de Greef D. M. Mycotoxins inactivation byextrusion cooking of corn flour[J]. Letters in Applied Microbiology,2001,33(2):144-147.
    45. Cenkowski S., Pronyk C., Zmidzinska D., Muir W. Decontamination of food products with superheatedsteam[J]. Journal of food engineering,2007,83(1):68-75.
    46. Cetin Y., Bullerman L. B. Confirmation of reduced toxicity of deoxynivalenol in extrusion-processedcorn grits by the MTT bioassay[J]. Journal of Agricultural and Food Chemistry,2006,54(5):1949-1955.
    47. Chakrabarti D. K., Ghosal S. Occurrence of free and conjugated12,13-epoxytrichothecenes andzearalenone in banana fruits infected with Fusarium moniliforme[J]. Applied&EnvironmentalMicrobiology,1986,51(1):217-219.
    48. Cheng B. C., Wan C. X., Yang S. L., Xu H. Y., Wei H., Liu J. S., et al. Detoxification of Deoxynivalenolby Bacillus Strains[J]. Journal of Food Safety,2010,30(3):599-614.
    49. Cho S. Y., Lee J. W., Rhee C. The cooking qualities of microwave oven cooked instant noodles[J].International journal of food science&technology,2010,45(5):1042-1049.
    50. Commission E., No R.2006of19December2006, Setting Maximum Levels for certain Contaminants inFoodstuffs[J]. Official Journal of the European Union,2006.
    51. Collins G J, Rosen J D. Distribution of T-2toxin in wet-milled corn products[J]. Journal of food science,1981,46(3):877-879.
    52. Cubadda R. E., Carcea M., Marconi E., Trivisonno M. C. Influence of gluten proteins and dryingtemperature on the cooking quality of durum wheat pasta[J]. Cereal Chemistry,2007,84(1):48-55.
    53. D nicke S., Kersten S., Valenta H., Breves G. Inactivation of deoxynivalenol-contaminated cereal grainswith sodium metabisulfite: a review of procedures and toxicological aspects[J]. Mycotoxin Research,2012,28(4):199-218.
    54. Danicke S., Hegewald A. K., Kahlert S., Kluess J., Rothkotter H. J., Breves G., et al. Studies on thetoxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DONfor porcine peripheral blood mononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1and IPEC-J2, and on effects of DON and DONS on piglets[J]. Food and Chemical Toxicology,2010,48(8-9):2154-2162.
    55. Danicke S., Pahlow G., Beyer M., Goyarts T., Breves G., Valenta H., et al. Investigations on the kineticsof the concentration of deoxynivalenol (DON) and on spoilage by moulds and yeasts of wheat grainpreserved with sodium metabisulfite (Na2S2O5, SBS) and propionic acid at various moisture contents[J].Archives of Animal Nutrition,2010,64(3):190-203.
    56. Danicke S., Valenta H., Gareis M., Lucht H. W., von Reichenbach H. On the effects of a hydrothermaltreatment of deoxynivalenol (DON)-contaminated wheat in the presence of sodium metabisulphite(Na2S2O5)on DON reduction and on piglet performance[J]. Animal feed science and technology,2005,118(1-2):93-108.
    57. Danicke S., Valenta H., Kersten S. Humic substances failed to prevent the systemic absorption ofdeoxynivalenol (DON) and its adverse effects on piglets[J]. Mycotoxin Research,2012,28(4):253-260.
    58. De Girolamo A., Lippolis V., Nordkvist E., Visconti A. Rapid and non-invasive analysis ofdeoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR)spectroscopy[J]. Food Additives and Contaminants,2009,26(6):907-917.
    59. Delwiche S. R., Hareland G. A. Detection of scab-damaged hard red spring wheat kernels bynear-infrared reflectance[J]. Cereal Chemistry,2004,81(5):643-649.
    60. Devreese M., Osselaere A., Goossens J., Vandenbroucke V., De Baere S., Eeckhout M., et al. New bolusmodels for in vivo efficacy testing of mycotoxin-detoxifying agents in relation to EFSA guidelines,assessed using deoxynivalenol in broiler chickens[J]. Food Additive and Contaminants Part A-ChemistryAnalysis Control Exposure Risk Assess,2012,29(7):1101-1107.
    61. Dexter J., Marchylo B., Clear R., Clarke J. Effect of Fusarium Head Blight on Semolina Milling andPasta-Making Quality of Durum Wheat1[J]. Cereal Chemistry,1997,74(5):519-525.
    62. Dodd J. G., Vegi A., Vashisht A., Tobias D., Schwarz P., Wolf-Hall C. E. Effect of ozone treatment on thesafety and quality of malting barley[J]. Journal of Food Protection,2011,74(12):2134-2141.
    63. Doll S., Danicke S., Valenta H., Flachowsky G. In vitro studies on the evaluation of mycotoxindetoxifying agents for their efficacy on deoxynivalenol and zearalenone[J]. Archives of Animal Nutrition,2004,58(4):311-324.
    64. Dowell F., Ram M., Seitz L. Predicting scab, vomitoxin, and ergosterol in single wheat kernels usingnear-infrared spectroscopy[J]. Cereal Chemistry,1999,76(4):573-576.
    65. Dvo á ek V., Prohasková A., Chrpová J., to ková L. Near infrared spectroscopy for deoxynivalenolcontent estimation in intact wheat grain[J]. Plant&Soil Environment,2012,58(4):196-203.
    66. El-Nezami H., Chrevatidis A., Auriola S., Salminen S., Mykk nen H. Removal of common Fusariumtoxins in vitro by strains of Lactobacillus and Propionibacterium[J]. Food Additives&Contaminants,2002,19(7):680-686.
    67. El-Nezami H., Polychronaki N., Lee Y. K., Haskard C., Juvonen R., Salminen S., et al. Chemicalmoieties and interactions involved in the binding of zearalenone to the surface of Lactobacillusrhamnosus strains GG[J]. Journal of Agricultural and Food Chemistry,2004,52(14):4577-4581.
    68. El Banna A., Lau P., Scott P. Fate of mycotoxins during processing of foodstuffs. II. Deoxynivalenol(vomitoxin) during making of Egyptian bread[J]. Journal of Food Protection,1983.
    69. Fazeli M. R., Hajimohammadali M., Moshkani A., Samadi N., Jamalifar H., Khoshayand M. R., et al.Aflatoxin B1binding capacity of autochthonous strains of lactic acid bacteria[J]. Journal of FoodProtection,2009,72(1):189-192.
    70. Frisvad J C, Thrane U, Samson R A, et al. Important mycotoxins and the fungi which producethem[M]//Advances in food mycology. Springer US,2006:3-31.
    71. Frobose H., Hansen E., Tokach M. D., DeRouchey J. M., Goodband R. D., Nelssen J. L., et al.Evaluating the effects of pelleting, corn dried distillers grains with solubles source, and supplementingsodium metabisulfite in nursery pig diets contaminated with deoxynivalenol[J]. Report of progress(Kansas State University. Agricultural Experiment Station and Cooperative Extension Service);1056,2012:96-104.
    72. Fu B. X. Asian noodles: History, classification, raw materials, and processing[J]. Food researchinternational,2008,41(9):888-902.
    73. Fuchs E., Binder E. M., Heidler D., Krska R. Structural characterization of metabolites after themicrobial degradation of type A trichothecenes by the bacterial strain BBSH797[J]. Food Additive andContaminants,2002,19(4):379-386.
    74. Galvano F., Pietri A., Bertuzzi T., Piva A., Chies L., Galvano M. Activated carbons: in vitro affinity forochratoxin A and deoxynivalenol and relation of adsorption ability to physicochemical parameters[J].Journal of Food Protection,1998,61(4):469-475.
    75. Garda-Buffon J., Badiale-Furlong E. Kinetics of Deoxynivalenol Degradation by Aspergillus oryzae andRhizopus oryzae in Submerged Fermentation[J]. Journal of the Brazilian Chemical Society,2010,21(4):710-714.
    76. Gardiner S. A., Boddu J., Berthiller F., Hametner C., Stupar R. M., Adam G., et al. Transcriptomeanalysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenoldetoxification[J]. Molecular Plant-Microbe Interactions,2010,23(7):962-976.
    77. Giménez I., Blesa J., Herrera M., Ari o A. Effects of Bread Making and Wheat Germ Addition on theNatural Deoxynivalenol Content in Bread[J]. Toxins (Basel),2014,6(1):394-401.
    78. Giménez I., Herrera M., Escobar J., Ferruz E., Lorán S., Herrera A., et al. Distribution of deoxynivalenoland zearalenone in milled germ during wheat milling and analysis of toxin levels in wheat germ andwheat germ oil[J]. Food Control,2013,34(2):268-273.
    79. Girgis G. N., Barta J. R., Girish C. K., Karrow N. A., Boermans H. J., Smith T. K. Effects of feed-borneFusarium mycotoxins and an organic mycotoxin adsorbent on immune cell dynamics in the jejunum ofchickens infected with Eimeria maxima[J]. Vet Immunol Immunopathol,2010,138(3):218-223.
    80. Gonzalez-Osnaya L., Cortes C., Soriano J. M., Molto J. C., Manes J. Occurrence of deoxynivalenol andT-2toxin in bread and pasta commercialised in Spain[J]. Food chemistry,2011,124(1):156-161.
    81. Goyarts T., D nicke S., Valenta H., Uebersch r K.-H. Carry-over of Fusarium toxins (deoxynivalenoland zearalenone) from naturally contaminated wheat to pigs[J]. Food Additives and Contaminants,2007,24(4):369-380.
    82. Gray J. S., Pestka J. J. Transcriptional regulation of deoxynivalenol-induced IL-8expression in humanmonocytes[J]. Toxicological Sciences,2007,99(2):502-511.
    83. Greenhalgh R, Gilbert J, King R R, et al. Synthesis, characterization, and occurrence in bread and cerealproducts of an isomer of4-deoxynivalenol (vomitoxin)[J]. Journal of agricultural and food chemistry,1984,32(6):1416-1420.
    84. Guan D., Plotka V. C., Clark S., Tang J. Sensory evaluation of microwave treated macaroni and cheese[J].Journal of Food Processing and Preservation,2002,26(5):307-322.
    85. Guan S., Gong M., Yin Y., Huang R., Zhou T., Xie M. Occurrence of mycotoxins in feeds and feedingredients in China[J]. Journal of Food Agriculture and Environment,2011,9:163-167.
    86. Guan S., He J., Young J. C., Zhu H., Li X.-Z., Ji C., et al. Transformation of trichothecene mycotoxins bymicroorganisms from fish digesta[J]. Aquaculture,2009,290(3-4):290-295.
    87. Hart L. P., Braselton W. E., Jr. Distribution of vomitoxin in dry milled fractions of wheat infected withGibberella zeae[J]. Journal of Agricultural and Food Chemistry,1983,31(3):657-659.
    88. Haskard C., Binnion C., Ahokas J. Factors affecting the sequestration of aflatoxin byLactobacillusrhamnosus strain GG [J]. Chemico-biological Interactions,2000,128(1):39-49.
    89. Haskard C. A., El-Nezami H. S., Kankaanp P. E., Salminen S., Ahokas J. T. Surface binding ofaflatoxin B1by lactic acid bacteria[J]. Applied&Environmental Microbiology,2001,67(7):3086-3091.
    90. Hassan M. Efficacy of some adsorbent materials against deoxynivalenol toxicity in laboratory animals[J].2011.
    91. Hasunuma H., Takagi M., Shiga S., Uno S., Kokushi E., Mukai S., et al. Monitoring natural feedcontamination in beef cattle by measurements of urinary zearalenone concentrations after oraladministration of mycotoxin adsorbents as a top dressing[J]. Journal of Applied Animal Research,2011,39(3):292-295.
    92. Hazel C. M., Patel S. Influence of processing on trichothecene levels[J]. Toxicology Letters,2004,153(1):51-59.
    93. He C., Fan Y., Liu G., Zhang H. Isolation and identification of a strain of Aspergillus tubingensis withdeoxynivalenol biotransformation capability[J]. International Journal of Molecular Science,2008,9(12):2366-2375.
    94. He J., Zhou T., Young J. C., Boland G. J., Scott P. M. Chemical and biological transformations fordetoxification of trichothecene mycotoxins in human and animal food chains: a review[J]. Trends inFood Science&Technology,2010,21(2):67-76.
    95. Hooshmand H., Klopfenstein C. Effects of gamma irradiation on mycotoxin disappearance and aminoacid contents of corn, wheat, and soybeans with different moisture contents[J]. Plant foods for humannutrition,1995,47(3):227-238.
    96. Hou, Gary G., ed. Asian noodles: Science, technology, and processing[M]. John Wiley&Sons,2011.
    97. Hsia C. C., Wu Z. Y., Li Y. S., Zhang F., Sun Z. T. Nivalenol, a main Fusarium toxin in dietary foodsfrom high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignanttumors in mice[J]. Oncology reports,2004,12(2):449-456.
    98. Huwig A., Freimund S., Kappeli O., Dutler H. Mycotoxin detoxication of animal feed by differentadsorbents[J]. Toxicology Letters,2001,122(2):179-188.
    99. Islam R., Zhou T., Young J. C., Goodwin P. H., Pauls K. P. Aerobic and anaerobic de-epoxydation ofmycotoxin deoxynivalenol by bacteria originating from agricultural soil[J]. World Journal ofMicrobiology and Biotechnology,2012,28(1):7-13.
    100.Iverson F., Armstrong C., Nera E., Truelove J., Fernie S., Scott P., et al. Chronic feeding study ofdeoxynivalenol in B6C3F1male and female mice[J]. Teratogenesis Carcinogenesis and Mutagenesis,1995,15(6):283-306.
    101.Jard G., Liboz T., Mathieu F., Guyonvarc'h A., Lebrihi A. Review of mycotoxin reduction in food andfeed: from prevention in the field to detoxification by adsorption or transformation[J]. Food Additivesand Contaminants Part A-Chemistry Analysis Control Exposure&Risk Assessment,2011,28(11):1590-1609.
    102.Joint F. WHO Food Standards Programme. Codex Committee on Contaminants in Food[J]. First Session,Beijing, China,2011:16-20.
    103.Jouany J. P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins infeeds[J]. Animal feed science and technology,2007,137(3):342-362.
    104.Kabak B. The fate of mycotoxins during thermal food processing[J]. J Sci Food Agric,2009,89(4):549-554.
    105.Karim R., Soraya A., Muhammad S., Kharidah S., Mohamad Ghazali F., Mat Hashim D., et al.Optimisation of the quality of yellow alkaline noodles using a combination of microwave and pulsed-uvtechnologies[J].2012.
    106.Karlovsky P. Biological detoxification of the mycotoxin deoxynivalenol and its use in geneticallyengineered crops and feed additives[J]. Applied Microbiology and Biotechnology,2011,91(3):491-504.
    107.Keese C., Meyer U., Valenta H., Schollenberger M., Starke A., Weber I. A., et al. No carry over ofunmetabolised deoxynivalenol in milk of dairy cows fed high concentrate proportions[J]. MolecularNutrition&Food Research,2008,52(12):1514-1529.
    108.Kishk Y. F., Elsheshetawy H. E., Mahmoud E. A. Influence of isolated flaxseed mucilage as anon‐starch polysaccharide on noodle quality[J]. International journal of food science&technology,2011,46(3):661-668.
    109.Kolf-Clauw M., Castellote J., Joly B., Bourges-Abella N., Raymond-Letron I., Pinton P., et al.Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxindeoxynivalenol: Histopathological analysis[J]. Toxicology in Vitro,2009,23(8):1580-1584.
    110.Kos G., Lohninger H., Krska R. Development of a method for the determination of Fusarium fungi oncorn using mid-infrared spectroscopy with attenuated total reflection and chemometrics[J]. AnalyticalChemistry,2003,75(5):1211-1217.
    111.Kos G., Lohninger H., Mizaikoff B., Krska R. Optimisation of a sample preparation procedure for thescreening of fungal infection and assessment of deoxynivalenol content in maize using mid-infraredattenuated total reflection spectroscopy[J]. Food Additives and Contaminants,2007,24(7):721-729.
    112.Kostelanska M., Dzuman Z., Malachova A., Capouchova I., Prokinova E., Skerikova A., et al. Effects ofmilling and baking technologies on levels of deoxynivalenol and its masked formdeoxynivalenol-3-glucoside[J]. Journal of Agricultural and Food Chemistry,2011,59(17):9303-9312.
    113.Kostelanska M., Hajslova J., Zachariasova M., Malachova A., Kalachova K., Poustka J., et al.Occurrence of deoxynivalenol and its major conjugate, deoxynivalenol-3-glucoside, in beer and somebrewing intermediates[J]. Journal of Agricultural and Food Chemistry,2009,57(8):3187-3194.
    114.Kottapalli B., Wolf-Hall C. E., Schwarz P. Effect of electron-beam irradiation on the safety and qualityofFusarium-infected malting barley [J]. International Journal of Food Microbiology,2006,110(3):224-231.
    115.Kushiro M. Effects of Milling and Cooking Processes on the Deoxynivalenol Content in Wheat[J].International Journal of Molecular Science,2008,9(11):2127-2145.
    116.Lancova K., Hajslova J., Kostelanska M., Kohoutkova J., Nedelnik J., Moravcova H., et al. Fate oftrichothecene mycotoxins during the processing: Milling and baking[J]. Food Additives andContaminants Part A-Chemistry Analysis Control Exposure&Risk Assessment,2008,25(5):650-659.
    117.Lancova K., Hajslova J., Poustka J., Krplova A., Zachariasova M., Dostálek P., et al. Transfer ofFusarium mycotoxins and ‘masked’deoxynivalenol (deoxynivalenol-3-glucoside) from field barleythrough malt to beer[J]. Food Additives and Contaminants,2008,25(6):732-744.
    118.Lauren D., Smith W. Stability of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone inground maize under typical cooking environments[J]. Food Additives&Contaminants,2001,18(11):1011-1016.
    119.Lauren D. R., Ringrose M. A. Determination of the fate of three Fusarium mycotoxins throughwet-milling of maize using an improved HPLC analytical technique[J]. Food Additives andContaminants,1997,14(5):435-443.
    120.Le nik M., Cenci A., Vajs S., Simon i A. Milling and bread baking techniques significantly affect themycotoxin (deoxynivalenol and nivalenol) level in bread[J]. Acta Alimentaria,2008,37(4):471-483.
    121.Lippolis V., Pascale M., Cervellieri S., Damascelli A., Visconti A. Screening of deoxynivalenolcontamination in durum wheat by MOS-based electronic nose and identification of the relevant patternof volatile compounds[J]. Food Control,2014,37:263-271.
    122.Liu Y., Delwiche S., Dong Y. Feasibility of FT-Raman spectroscopy for rapid screening for DON toxin inground wheat and barley[J]. Food Additives and Contaminants,2009,26(10):1396-1401.
    123.Liu Y., Walker F., Hoeglinger B., Buchenauer H. Solvolysis procedures for the determination of boundresidues of the mycotoxin deoxynivalenol in Fusarium species infected grain of two winter wheatcultivars preinfected with barley yellow dwarf virus[J]. Journal of Agricultural and Food Chemistry,2005,53(17):6864-6869.
    124.McKenzie K., Sarr A., Mayura K., Bailey R., Miller D., Rogers T., et al. Oxidative degradation anddetoxification of mycotoxins using a novel source of ozone[J]. Food and Chemical Toxicology,1997,35(8):807-820.
    125.Meeting J. F. W. E. C. o. F. A., Organization W. H. Safety evaluation of certain mycotoxins in food (2001:Vol.74): Food&Agriculture Org.
    126.Mishra S., Dixit S., Dwivedi P. D., Pandey H. P., Das M. Influence of temperature and pH on thedegradation of deoxynivalenol (DON) in aqueous medium: comparative cytotoxicity of DON anddegraded product[J]. Food Additive and Contaminants Part A-Chemistry Analysis Control ExposureRisk Assess,2014,31(1):121-131.
    127.Moazami F., Jinap S., Mousa W., Hajeb P. Effect of Food Additives on Deoxynivalenol (DON)Reduction and Quality Attributes in Steamed-and-Fried Instant Noodles[J]. Cereal Chemistry,2014,91(1):88-94.
    128.Moazami Farahany E., Jinap S. Influence of noodle processing (industrial protocol) on deoxynivalenol[J].Food Control,2011,22(11):1765-1769.
    129.Murata H., Mitsumatsu M., Shimada N. Reduction of feed-contaminating mycotoxins by ultravioletirradiation: an in vitro study[J]. Food Additives and Contaminants Part A-Chemistry Analysis ControlExposure&Risk Assessment,2008,25(9):1107-1110.
    130.Murata H., Yamaguchi D., Nagai A., Shimada N. Reduction of deoxynivalenol contaminating corn silageby short-term ultraviolet irradiation: a pilot study[J]. The Journal of veterinary medical science/theJapanese Society of Veterinary Science,2011,73(8):1059-1060.
    131.Mylona K. Fusarium species in grains: dry matter losses, mycotoxin contamination and control strategiesusing ozone and chemical compounds[doctoral thesis]. UK:Cranfield University,2012.
    132.Neira M. S., Pacin A. M., Martinez E. J., Molto G., Resnik S. L. The effects of bakery processing onnatural deoxynivalenol contamination[J]. International Journal of Food Microbiology,1997,37(1):21-25.
    133.Niderkorn V., Boudra H., Morgavi D. Binding of Fusarium mycotoxins by fermentative bacteria invitro[J]. J Appl Microbiol,2006,101(4):849-856.
    134.Nowicki T., Gaba D., Dexter J., Matsuo R., Clear R. Retention of the Fusarium mycotoxindeoxynivalenol in wheat during processing and cooking of spaghetti and noodles[J]. Journal of CerealScience,1988,8(2):189-202.
    135.Numanoglu E., Gokmen V., Uygun U., Koksel H. Thermal degradation of deoxynivalenol during maizebread baking[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure&RiskAssessment,2012,29(3):423-430.
    136.O'connell T. W.(2011). Apparatus and method for treating stored crops infected with toxins. In: GooglePatents.
    137.O'neill K., Damoglou A., Patterson M. The stability of deoxynivalenol and3‐acetyI deoxynivalenol togamma irradiation[J]. Food Additives&Contaminants,1993,10(2):209-215.
    138.Oatley J. T., Rarick M. D., Ji G. E., Linz J. E. Binding of aflatoxin B1to bifidobacteria in vitro[J].Journal of Food Protection,2000,63(8):1133-1136.
    139.Omurtag G. Z., Beyo lu D. Occurrence of deoxynivalenol (vomitoxin) in beer in Turkey detected byHPLC[J]. Food Control,2007,18(2):163-166.
    140.Pacin A., Bovier E. C., Cano G., Taglieri D., Pezzani C. H. Effect of the bread making process on wheatflour contaminated by deoxynivalenol and exposure estimate[J]. Food Control,2010,21(4):492-495.
    141.Papadopoulou-Bouraoui A., Vrabcheva T., Valzacchi S., Stroka J., Anklam E. Screening survey ofdeoxynivalenol in beer from the European market by an enzyme-linked immunosorbent assay[J]. FoodAdditives and Contaminants,2004,21(6):607-617.
    142.Papou ková L., Capouchová I., Kostelanská M., ke íková A., Prokinová E., Haj lová J., et al. Changesin baking quality of winter wheat with different intensity of Fusarium spp. contamination detected bymeans of new rheological system[J]. Czech Journal of Food Sciences,2011,29(4):420-429.
    143.Park B. J., Takatori K., Sugita-Konishi Y., Kim I.-H., Lee M.-H., Han D.-W., et al. Degradation ofmycotoxins using microwave-induced argon plasma at atmospheric pressure[J]. Surface and CoatingsTechnology,2007,201(9):5733-5737.
    144.Patey A L, Gilbert J. Fate of Fusarium mycotoxins in cereals during food processing and methods fortheir detoxification[J]. Topics in Secondary Metabolism,1989.
    145.Patterson R., Young L. Efficacy of hydrated sodium calcium aluminosilicate, screening and dilution inreducing the effects of mold contaminated corn in pigs[J]. Canadian Journal of Animal Science,1993,73(3):615-624.
    146.Pestka J. J. Deoxynivalenol: toxicity, mechanisms and animal health risks[J]. Animal feed science andtechnology,2007,137(3):283-298.
    147.Pestka J. J., Smolinski A. T. Deoxynivalenol: toxicology and potential effects on humans[J]. Journal ofToxicology and Environmental Health, Part B,2005,8(1):39-69.
    148.Petitot M., Brossard C., Barron C., Larré C., Morel M.-H., Micard V. Modification of pasta structureinduced by high drying temperatures. Effects on the in vitro digestibility of protein and starch fractionsand the potential allergenicity of protein hydrolysates[J]. Food chemistry,2009,116(2):401-412.
    149.Pettersson H., berg L. Near infrared spectroscopy for determination of mycotoxins in cereals[J]. FoodControl,2003,14(4):229-232.
    150.Poji M. M., Mastilovi J. S. Near Infrared Spectroscopy-Advanced Analytical Tool in Wheat Breeding,Trade, and Processing[J]. Food and Bioprocess Technology,2013,6(2):330-352.
    151.Prelle A., Spadaro D., Garibaldi A., Gullino M. Use of atmospheric plasma and microwave for thedecontamination of aflatoxin in hazelnut and deoxynivalenol in wheat[J]. Protezione delle Colture,2013,(2):111-112.
    152.Pronyk C., Cenkowski S., Abramson D. Superheated steam reduction of deoxynivalenol in naturallycontaminated wheat kernels[J]. Food Control,2006,17(10):789-796.
    153.Qiang Z., Truong M., Meynen K., Murphy P. A., Hendrich S. Efficacy of a mycotoxin binder againstdietary fumonisin, deoxynivalenol, and zearalenone in rats[J]. Journal of Agricultural and FoodChemistry,2011,59(13):7527-7533.
    154.Raila A., Lugauskas A., Steponavicius D., Railiene M., Steponaviciene A., Zvicevicius E. Application ofozone for reduction of mycological infection in wheat grain[J]. Annals of Agricultural andEnvironmental Medicine,2006,13(2):287-294.
    155.Rempe I., Brezina U., Kersten S., Danicke S. Effects of a Fusarium toxin-contaminated maize treatedwith sodium metabisulphite, methylamine and calcium hydroxide in diets for female piglets[J]. Archivesof Animal Nutrition,2013,67(4):314-329.
    156.Rodrigues I., Naehrer K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffsand feed[J]. Toxins (Basel),2012,4(9):663-675.
    157.Sabater-Vilar M., Malekinejad H., Selman M. H., van der Doelen M. A., Fink-Gremmels J. In vitroassessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses[J].Mycopathologia,2007,163(2):81-90.
    158.Samar M., Resnik S., González H., Pacin A., Castillo M. Deoxynivalenol reduction during the fryingprocess of turnover pie covers[J]. Food Control,2007,18(10):1295-1299.
    159.Samar M. M., Neira M. S., Resnik S. L., Pacin A. Effect of fermentation on naturally occurringdeoxynivalenol (DON) in Argentinean bread processing technology[J]. Food Additives andContaminants,2001,18(11):1004-1010.
    160.Santos R. R., Vermeulen S., Haritova A., Fink-Gremmels J. Isotherm modeling of organic activatedbentonite and humic acid polymer used as mycotoxin adsorbents[J]. Food Additive and ContaminantsPart A-Chemistry Analysis Control Exposure Risk Assess,2011,28(11):1578-1589.
    161.Sasanya J., Hall C., Wolf-Hall C. Analysis of deoxynivalenol, masked deoxynivalenol, and Fusariumgraminearum pigment in wheat samples, using liquid chromatographyuvmass spectrometry[J]. Journal ofFood Protection,2008,71(6):1205-1213.
    162.Savard M. E. Deoxynivalenol fatty acid and glucoside conjugates[J]. Journal of Agricultural and FoodChemistry,1991,39(3):570-574.
    163.Schothorst R., Jekel A. Determination of trichothecenes in beer by capillary gas chromatography withflame ionisation detection[J]. Food chemistry,2003,82(3):475-479.
    164.Schwartz H. E., Hametner C., Slavik V., Greitbauer O., Bichl G., Kunz-Vekiru E., et al. Characterizationof three deoxynivalenol sulfonates formed by reaction of deoxynivalenol with sulfur reagents[J]. Journalof Agricultural and Food Chemistry,2013,61(37):8941-8948.
    165.Scott P. M., Kanhere S. R., Dexter J. E., Brennan P. W., Trenholm H. L. Distribution of the trichothecenemycotoxin deoxynivalenol (vomitoxin) during the milling of naturally contaminated hard red springwheat and its fate in baked products[J]. Food Additive and Contaminants,1984,1(4):313-323.
    166.Scudamore K. A., Hazel C. M., Patel S., Scriven F. Deoxynivalenol and other Fusarium mycotoxins inbread, cake, and biscuits produced from UK-grown wheat under commercial and pilot scaleconditions[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure&RiskAssessment,2009,26(8):1191-1198.
    167.Seeling K., D nicke S., Valenta H., Van Egmond H., Schothorst R., Jekel A., et al. Effects of Fusariumtoxin-contaminated wheat and feed intake level on the biotransformation and carry-over ofdeoxynivalenol in dairy cows[J]. Food Additives and Contaminants,2006,23(10):1008-1020.
    168.Signorini M., Gaggiotti M., Molineri A., Chiericatti C., Zapata de Basílico M., Basilico J., et al.Exposure assessment of mycotoxins in cow’s milk in Argentina[J]. Food and Chemical Toxicology,2012,50(2):250-257.
    169.Sobrova P., Adam V., Vasatkova A., Beklova M., Zeman L., Kizek R. Deoxynivalenol and its toxicity[J].Interdisciplinary Toxicology,2010,3(3):94-99.
    170.Stepanik T., Kost D., Nowicki T., Gaba D. Effects of electron beam irradiation on deoxynivalenol levelsin distillers dried grain and solubles and in production intermediates[J]. Food Additives andContaminants,2007,24(9):1001-1006.
    171.Streit E., Schatzmayr G., Tassis P., Tzika E., Marin D., Taranu I., et al. Current situation of mycotoxincontamination and co-occurrence in animal feed-Focus on Europe[J]. Toxins (Basel),2012,4(10):788-809.
    172.Stuknyt M., Cattaneo S., Pagani M. A., Marti A., Micard V., Hogenboom J., et al. Spaghetti from durumwheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility[J]. Foodchemistry,2014,149:40-46.
    173.Sugita-Konishi Y., Park B. J., Kobayashi-Hattori K., Tanaka T., Chonan T., Yoshikawa K., et al. Effect ofcooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products[J].Bioscience Biotechnology and Biochemistry,2006,70(7):1764-1768.
    174.Suman M., Manzitti A., Catellani D. A design of experiments approach to studying deoxynivalenol anddeoxynivalenol-3-glucoside evolution throughout industrial production of wholegrain crackersexploiting LC-MS/MS techniques[J]. World Mycotoxin Journal,2012,5(3):241-249.
    175.Sundstol Eriksen G., Pettersson H., Lundh T. Comparative cytotoxicity of deoxynivalenol, nivalenol,their acetylated derivatives and de-epoxy metabolites[J]. Food and Chemical Toxicology,2004,42(4):619-624.
    176.Swamy H., Smith T., Cotter P., Boermans H., Sefton A. Effects of feeding blends of grains naturallycontaminated with Fusarium mycotoxins on production and metabolism in broilers[J]. Poultry Science,2002,81(7):966-975.
    177.Sypecka Z., Kelly M., Brereton P. Deoxynivalenol and zearalenone residues in eggs of laying hens fedwith a naturally contaminated diet: Effects on egg production and estimation of transmission rates fromfeed to eggs[J]. Journal of Agricultural and Food Chemistry,2004,52(17):5463-5471.
    178.Tajima O., Schoen E. D., Feron V. K., Groten J. P. Statistically designed experiments in a tiered approachto screen mixtures of Fusarium mycotoxins for possible interactions[J]. Food and Chemical Toxicology,2002,40(5):685-695.
    179.Tiwari B. K., Brennan C. S., Curran T., Gallagher E., Cullen P. J., Donnell C. P. Application of ozone ingrain processing[J]. Journal of Cereal Science,2010,51(3):248-255.
    180.Tran S., Smith T. Determination of optimal conditions for hydrolysis of conjugated deoxynivalenol incorn and wheat with trifluoromethanesulfonic acid[J]. Animal feed science and technology,2011,163(2):84-92.
    181.Tran S., Smith T. A survey of free and conjugated deoxynivalenol in the2009,2010and2011cerealcrops in Australia[J]. Animal Production Science,2013,53(5):407-412.
    182.Tran S. T., Smith T. K., Girgis G. N. A survey of free and conjugated deoxynivalenol in the2008corncrop in Ontario, Canada[J]. Journal of the Science of Food and Agriculture,2012,92(1):37-41.
    183.Trigo-Stockli D. M., Sanchez-Marinez R. I., Cortez-Rocha M. O., Pedersen J. R. Comparison of thedistribution and occurrence of Fusarium graminearum and deoxynivalenol in hard red winter wheat for1993-1996[J]. Cereal Chemistry,1998,75(6):841-846.
    184.Valenta H., D nicke S. Study on the transmission of deoxynivalenol and de‐epoxy‐deoxynivalenolinto eggs of laying hens using a high‐performance liquid chromatography‐ultraviolet method withclean‐up by immunoaffinity columns[J]. Molecular Nutrition&Food Research,2005,49(8):779-785.
    185.Valle-Algarra F. M., Mateo E. M., Medina A., Mateo F., Gimeno-Adelantado J. V., Jimenez M. Changesin ochratoxin A and type B trichothecenes contained in wheat flour during dough fermentation andbread-baking[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure&RiskAssessment,2009,26(6):896-906.
    186.van Rensburg C. J., Van Rensburg C., Van Ryssen J., Casey N., Rottinghaus G. In vitro and in vivoassessment of humic acid as an aflatoxin binder in broiler chickens[J]. Poultry Science,2006,85(9):1576-1583.
    187.Vandenbroucke V., Croubels S., Verbrugghe E., Boyen F., De Backer P., Ducatelle R., et al. Themycotoxin deoxynivalenol promotes uptake of Salmonella Typhimurium in porcine macrophages,associated with ERK1/2induced cytoskeleton reorganization[J]. Vet Research,2009,40(6):64.
    188.Visconti A., Haidukowski E. M., Pascale M., Silvestri M. Reduction of deoxynivalenol during durumwheat processing and spaghetti cooking[J]. Toxicology Letters,2004,153(1):181-189.
    189.Voss K., Snook M. Stability of the mycotoxin deoxynivalenol (DON) during the production offlour-based foods and wheat flake cereal[J]. Food Additives&Contaminants: Part A,2010,27(12):1694-1700.
    190.Wagner M., Morel M.-H., Bonicel J., Cuq B. Mechanisms of heat-mediated aggregation of wheat glutenprotein upon pasta processing[J]. Journal of Agricultural and Food Chemistry,2011,59(7):3146-3154.
    191.Watts C., Chen Y., Ledoux D., Broomhead J., Bermudez A., Rottinghaus G. Effects of multiplemycotoxins and a hydrated sodium calcium aluminosilicate in poultry[J]. International Journal of PoultryScience,2003,2(6):372-378.
    192.Wilson S., Brasel T., Martin J., Wu C., Andriychuk L., Douglas D., et al. Efficacy of chlorine dioxide asa gas and in solution in the inactivation of two trichothecene mycotoxins[J]. International Journal ofToxicology,2005,24(3):181-186.
    193.Wolf C. E., Bullerman L. B. Heat and pH alter the concentration of deoxynivalenol in an aqueousenviroment[J]. Journal of Food Protection,1998,61(3):365-367.
    194.Wolf-Hall C E, Hanna M A, Bullerman L B. Stability of deoxynivalenol in heat-treated foods[J]. Journalof Food Protection,1999,62(8):962-964.
    195.Wu Q., Lohrey L., Cramer B., Yuan Z., Humpf H. U. Impact of physicochemical parameters on thedecomposition of deoxynivalenol during extrusion cooking of wheat grits[J]. Journal of Agricultural andFood Chemistry,2011,59(23):12480-12485.
    196.Xue C., Fukuoka M., Sakai N. Prediction of the degree of starch gelatinization in wheat flour doughduring microwave heating[J]. Journal of food engineering,2010,97(1):40-45.
    197.Xue C., Sakai N., Fukuoka M. Use of microwave heating to control the degree of starch gelatinization innoodles[J]. Journal of food engineering,2008,87(3):357-362.
    198.Yajima M.(2001). Method for cooking fresh noodles in a microwave oven. In: Google Patents.
    199.Young J. C. Reduction in levels of deoxynivalenol in contaminated corn by chemical and physicaltreatment[J]. Journal of Agricultural and Food Chemistry,1986a,34(3):465-467.
    200.Young J. C., Blackwell B. A., ApSimon J. W. Alkaline degradation of the mycotoxin4-deoxynivalenol[J].Tetrahedron letters,1986b,27(9):1019-1022.
    201.Young J. C., Fulcher R. G., Hayhoe J. H., Scott P. M., Dexter J. E. Effect of milling and baking ondeoxynivalenol (vomitoxin) content of eastern Canadian wheats[J]. Journal of Agricultural and FoodChemistry,1984,32(3):659-664.
    202.Young J. C., Subryan L. M., Potts D., McLaren M. E., Gobran F. H. Reduction in levels ofdeoxynivalenol in contaminated wheat by chemical and physical treatment[J]. Journal of Agriculturaland Food Chemistry,1986c,34(3):461-465.
    203.Young J. C., Zhu H., Zhou T. Degradation of trichothecene mycotoxins by aqueous ozone[J]. Food andChemical Toxicology,2006,44(3):417-424.
    204.Yuen G. Y., Schoneweis S. D. Strategies for managing Fusarium head blight and deoxynivalenolaccumulation in wheat[J]. International Journal of Food Microbiology,2007,119(1-2):126-130.
    205.Yumbe-Guevara B., Imoto T., Yoshizawa T. Effects of heating procedures on deoxynivalenol, nivalenoland zearalenone levels in naturally contaminated barley and wheat[J]. Food Additives and Contaminants,2003,20(12):1132-1140.
    206.Zheng Y., Hossen S. M., Sago Y., Yoshida M., Nakagawa H., Nagashima H., et al. Effect of milling onthe content of deoxynivalenol, nivalenol, and zearalenone in Japanese wheat[J]. Food Control,2014,40:193-197.
    207.Zhou B., He G.-Q., Schwarz P. B. Occurrence of Bound Deoxynivalenol in Fusarium HeadBlight–Infected Barley (Hordeum vulgare L.) and Malt as Determined by Solvolysis with TrifluoroaceticAcid[J]. Journal of Food Protection,2008,71(6):1266-1269.
    208.Zhou B., Li Y., Gillespie J., He G.-Q., Horsley R., Schwarz P. Doehlert matrix design for optimization ofthe determination of bound deoxynivalenol in barley grain with trifluoroacetic acid (TFA)[J]. Journal ofAgricultural and Food Chemistry,2007,55(25):10141-10149.
    209.Zhou B., Schwarz P., He G.-Q., Gillespie J., Horsley R. Effect of enzyme pretreatments on thedetermination of deoxynivalenol in barley[J]. Journal of the American Society of Brewing Chemists,2008,66(2):103-108.
    210.Zweifel C., Handschin S., Escher F., Conde-Petit B. Influence of high-temperature drying on structuraland textural properties of durum wheat pasta[J]. Cereal Chemistry,2003,80(2):159-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700