用户名: 密码: 验证码:
N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺对巨噬细胞分泌细胞因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炎症反应是具有血管系统的活体组织对各种损伤因子的刺激所发生的一种防御机制,适当的炎症反应有利于激活免疫系统清除病原体,并可促进组织愈合;反应不足导致免疫缺陷,这可能引起感染和癌症;反应过度会增加多种疾病的发病率和死亡率,如类风湿性关节炎、结节性肠炎等。
     脂多糖(1 ipopolysaccharide,LPS)作为革兰阴性细菌的细胞壁成分,可以刺激巨噬细胞、内皮细胞等产生一系列致炎因子如肿瘤坏死因子-(TNF-α)、白细胞介素-1(IL-1)、IL-6、IL-8等表达。大量实验表明,在LPS所致的炎症因子表达中,细胞内的一些信号通路如MAPK(mitogen-activated protein kinase)通路,NF-κB通路起重要作用。丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是生物体内重要的信号转导系统之一,参与介导细胞生长、分裂、分化、死亡以及细胞间的功能同步等多种生理过程。在细胞内以MAPKKK/MAPKK /MAPK为主干,再加上各种上游影响因子和下游作用底物,构成了一个功能多样、反应灵敏的信号转导网络。这些与细胞信号相关的酶把细胞外信号从细胞表面传递到细胞核,导致基因表达发生变化。而p38是MAPK通路中重要成员之一,与TNF-α、IL-1等致炎因子的诱生关系密切。研究发现,NF-κB是LPS介导的信号转导通路中最重要的下游通路,在多种炎症介质的表达调控中均具有重要作用。NF-κB的激活涉及IKB(NF-κB抑制剂)的磷酸化,而后者有赖于IKK(IκB激酶)的调控,IKK/IκB/NF-κB是一个有机联系的系统,该信号通路在机体发挥重要作用[17-20]。
     体液因素或细胞因子的自分泌和旁分泌影响抗炎或炎性介质释放,神经及其递质也有直接调节作用。2000年,Nature杂志报道乙酰胆碱(acetylcholine, ACh)与巨噬细胞上尼古丁受体结合能够抑制内毒素诱导的炎性因子TNF-α, IL-1β, IL-6, IL-18等分泌。进一步研究发现乙酰胆碱的作用主要是通过与巨噬细胞上的α7烟碱型乙酰胆碱(α7-nAChR)受体结合,通过细胞内一系列的信号传递,最终抑制了Jak2-STAT3和NF-κB信号的激活,从而抑制了炎性因子的产生。由于乙酰胆碱是迷走神经末梢分泌的主要神经递质,他们把这条通路命名为“胆碱能抗炎通路’'(cholinergic anti-inflammatory pathway, CAP)。有研究表明α7-nAChR在该通路中起关键作用,它被激活后明显抑制免疫细胞产生炎性因子如TNFα、IL-12、高迁移率族蛋白1 (high-mobility group box1,HMGB1)等,这些是α7nAChR介导抗炎作用的主要机制,与此同时它还可以促进转化生长因子β(transforming growth factorβ,TGFβ)、IL-10等抗炎因子的产生。因此,对α7nAChR的激动剂的研究可为新型抗炎药物的开发提供可能性。本文所涉及的化合物GX-50则通过生物信息学计算发现一种潜在的α7nAChR激动剂,而N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺是将GX-50进行部分化学修饰所得,我们希望能通过相关实验对这种化合物进行研究,为找到一种新型的抗炎药物奠定基础。
     本研究的目的就是想探讨N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺对于巨噬细胞Ana-1分泌细胞因子TNF-α和IL-1的影响,并进一步研究其作用机制。实验首先用不同浓度的N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺处理巨噬细胞Ana-1,用MTT和LDH的方法进行药物毒性检测,筛选出对细胞无毒的1μM的N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺浓度用于后续实验。接下来分别设计control(只加1640培养基)组,只加N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺组,先用1μM的N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺浓度预处理Ana-130分钟,再加入LPS刺激4小时组,只加LPS处理4小时组共4组实验。分别收集上清和细胞,提取蛋白质和RNA用于ELISA和PCR方法检测各组TNF-α和IL-1的基因表达量,Western检测IKK,IκB,p38的磷酸化蛋白量以及EMSA的方法检测NF-κB的活化程度。最后用受体结合实验检测N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺与α7烟碱型乙酰胆碱受体的结合能力。
     结果显示,N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺对LPS刺激的巨噬细胞的细胞因子TNF-α分泌有显著的抑制作用,其分泌量约比未经化合物A预处理的分泌量的下降了50%左右,对IL-1分泌的抑制作用不明显。在P38MAPK通路中和在NF-κB通路中,N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺预处理再用LPS处理组比只用LPS处理组p38和IKK、IκB的蛋白磷酸化程度分别下降了约29.8%,约27.7%和约58.8%。EMSA结果也表明,N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺预处理再用LPS刺激组比只用LPS刺激组NF-κB活化程度明显下降。而α7nAChR受体特异性结合实验也表明N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺可能是α7nAChR的潜在激动剂。
     通过本次实验证明了N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺对巨噬细胞分泌的炎性因子TNF-α有显著抑制作用,其机制可能主要通过抑制了LPS刺激的P38MAPK和NF-κB信号通路活化起到抗炎作用。而N-(1-苯乙基)-3-(2-呋喃基)丙烯酰胺α7nAChR良好的结合,也暗示了胆碱能抗炎通路可能也参与其中,但是其深入机制还需要进行进一步研究。
Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, The magnitude of the inflammatory response is crucial and insufficient responses result in immunodeficiency, which can lead to infection and cancer. Excessive responses cause morbidity and mortality in diseases such as rheumatoid arthritis, and cerebral and myocardial ischaemia. If inflammation spreads into the bloodstream, as occurs in septic shock syndrome, sepsis, meningitis and severe trauma, the inflammatory responses can be more dangerous than the original inciting stimulus.
     Lipopolysaccharide (lipopolysaccharide, LPS) can stimulate macrophages and endothelial cells realease a series of proinflammatory cytokines such as tumor necrosis factor-(TNF-α), interleukin-1 (IL-1), IL-6, IL-8 expression, etc.A large number of experiments show that the MAPK (mitogen-activated protein kinase) pathway, NF-κB pathway plays an important role in LPS-induced expression of inflammatory cytokines. Mitogen-activated protein kinase (mitogen-activated protein kinase, MAPK) are important in vivo signal transduction systems in the world, involved in mediating cell growth, division, differentiation, death and the function of cell synchronization, and other physiological processes. In vivo, MAPKKK/ MAPKK/MAPK is a backbone, plus a variety of upstream and downstream factors and substrate, forming a versatile, responsive signal transduction network. These cell signaling enzymes can delivere extracellular signals to the nucleus from the surface, resulting in changes in gene expressions. The p38 is an important member of the MAPK pathway, with close connection of TNF-α, IL-1 and other inflammatory factors. NF-κB pathway is downstream in LPS signal transduction. NF-κB pathway plays an important role in the regulation of expression of various inflammatory mediators.NF-κB activates involving IKB (NF-κB inhibitor) phosphorylation, which depends on IKK (IκB kinase). IKK/IκB/NF-κB are an organic system, playing important role on the signal transduction pathway in the body.
     Humoral factors or cytokines in autocrine and paracrine mediators have the anti-inflammatory or inflammatory effects and neurotransmitters also regulate inflammation directly. In 2000, Nature reported that acetylcholine (ACh) can bind to nicotine receptors on macrophages so that endotoxin-induced inflammatory factor TNF-α, IL-1β, IL-6, IL-18 secretion were inhibited. Further studies revealed that acetylcholine mainly binded with a7 nicotinic acetylcholine (a7-nAChR) receptor, through a series of intracellular signaling, ultimately inhibited Jak2-STAT3 and NF-κB signal activation, thus inhibiting the production of inflammatory factors. This pathway is named cholinergic anti-inflammatory pathway (CAP). Studies show that a7-nAChR plays a key role in this pathway, after it is activated, it inhibits the secretion of inflammatory factors such as TNF alpha, IL-12, high mobility boxl group (HMGB1), meanwhile it can also promote transforming growth factor beta (TGF beta), IL-10 etc anti-inflammatory factor. Thus, the studies on a7-nAChR receptor agonists provide the possibilities for the new anti-inflammatory drugs. The GX-50 compound involved in this passage is a potential alpha 7nAChR agonist found by bioinformatics calculation, and the 3-(2-furanyl)-N-(1-phenylethyl) acrylamide is partially modified from GX-50, we hope to find a new compound from this 3-(2-furanyl)-N-(1-phenylethyl) acrylamide which can inhibit the secretion of inflammatory factors and then have anti-inflammatory effect by several experiments evidences.
     The purpose of this study is to investigate the direct and indireact effect of 3-(2-furanyl)-N-(1-phenylethyl) acrylamide on expressions of TNF-αand IL-1 in macrophages Ana-1 and analysis the pathways on the mechanisms.
     Firstly, the toxicities of the 3-(2-furanyl)-N-(1-phenylethyl) acrylamide are tested by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase). Then the best concentration-1μM of 3-(2-furanyl)-N-(1-phenylethyl) acrylamide is found for the further study. Next,4 groups was established as following:control (only 1640 medium plus), analogues, LPS, analogues pretreated for 30 min and then LPS treated for 4h. The supernants and cells were collected and used for RNA and protein extractions. ELISA (enzyme linked immunosorbent assay) and PCR were used to detect the contents of TNF-alpha and IL-1 which are significant media in local and whole inflammatory response. Western blot experiment was used to measure the phosphorylation of IKK, IκB and p38. The influence on the NF-κB pathway was detected by EMSA.
     The results show that the level of expressions of TNF-alpha were significantly decreased of in the groups of analogues pretreated by about 50% respectively of LPS-treated group and there was no significant influence on expression of IL-1. The phosphorylation levels of p38 of the P38MAPK pathway and IKK、IκB of NF-κB pathway were inhibited to about 29.8%, 27.7% and 58.8%.3-(2-furanyl)-N-(1-phenylethyl) acrylamide also inhibited the activation of NF-KB pathway. In addition, our research revealed that 3-(2-furanyl)-N-(1-phenylethyl) acrylamide was a potential a7 nAChR agonist.
     In a word, with the efforts I sucessefully find 3-(2-furanyl)-N-(1-phenylethyl) acrylamide has obvious effect on the inhibition of TNF-αby inhibiting the activation of P38MAPK pathway and NF-KB pathway. In addition, further research was needed to investigate anti-inflammatory pathway with the anti-inflammatory effect of 3-(2-furanyl)-N-(1-phenylethyl) acrylamide for knowing 3-(2-furanyl)-N-(1-phenylethyl) acrylamide was a potential a7 nAChR agonist.
引文
[1]Fujiwara N, Kobayashi K, Macrophages in inflammation, Curr Drug Targets Inflamm Allergy, 2005,4(3):281-6
    [2]Kim JH, Studer RK, Sowa GA, Vo NV, Kang JD, Activated macrophage-like THP-1 cells modulate anulus fibrosus cell production of inflammatory mediators in response to cytokines[J] Spine, 2008,33(21):2253-9.
    [3]O'Mahony DS, Pham U, Iyer R, Hawn TR, Liles WC.Differential constitutive and cytokine-modulated expression of human Toll-like receptors in primary neutrophils, monocytes, and macrophages, Int J Med Sci,2008,5(1):1-8
    [4]Hasko G, Pacher P, Deitch EA, Vizi ES, Shaping of monocyte and macrophage function by adenosine receptors, Pharmacol Ther,2007,113(2):264-75.
    [5]Timothy A Butterfield, Thomas M Best, and Mark A Merrick, The Dual Roles of Neutrophils and Macrophages in Inflammation:A Critical Balance Between Tissue Damage and Repair, J Athl Train. 2006,41(4):457-465.
    [6]Smith C, Kruger MJ, Smith RM et al., The inflammatory response to skeletal muscle injury: illuminating complexities, Sports Med,2008,38(11):947-69.
    [7]C. K. Wong, C. B. Wang, Y. P. Tian et al., Role of p38 MAPK and NF-kB for chemokine release in coculture of human eosinophils and bronchial epithelial cells, Sports Med,2008;38(11):947-69.
    [8]Y.D. Min, C.H. Choi, H. Bark et al., Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line KimInflammation Research;Volume 56, Number 5,210-215,
    [9]Ingleton, Kristen D; Beckey et al, Glutamine prevents activation of NF-[kappa]B and stress kinase pathways, attenuates inflammation cytokine release, and prevents acute respiratory distress syndrome(ARDS) following sepsis,Shock,2005; 24(6),583-589
    [10]Enrique Martin-Blanco, p38 MAPK signalling cascades:ancient roles and new functions BioEssays,2000,22,7,637-645
    [11]Andrew D. Foey, Sarah L. Parry, Lynn M. Williams, Regulation of Monocyte IL-10 Synthesis by Endogenous IL-1 and TNF-a:Role of the p38 and p42/44 Mitogen-Activated Protein Kinases, Kennedy Institute of Rheumatology, Hammersmith
    [12]Selective Activation of the p38 MAPK Pathway by Synthetic Monophosphoryl Lipid A J. Biol. Chem.2009284:31982-31991
    [13]Shi Wei, Hideki Kitaura, Ping Zhou, IL-1 mediates TNF-induced osteoclastogenesis, J Clin Invest.2005;115(2):282-290.
    [14]Yuekui Li, Ling Liu, Steven W. Barger et al., Interleukin-1 Mediates Pathological Effects of Microglia on Tau Phosphorylation and on Synaptophysin Synthesis in Cortical Neurons through a p38-MAPK Pathway, The Journal of Neuroscience,2003,23(5):1605
    [15]A. A. Birukova, K. G. Birukov, B. Gorshkov, F. Liu et al.,MAP kinases in lung endothelial permeability induced by microtubule disassembly [J], Physiol Lung Cell Mol Physiol,2005; 289(1): L75-L84.
    [16]Lynn Martin, Sandeep C. Pingle, Daniel M. Hallam, Activation of the Adenosine A3 Receptor in RAW 264.7 Cells Inhibits Lipopolysaccharide-Stimulated Tumor Necrosis Factor-α Release by Reducing Calcium-Dependent Activation of Nuclear Factor-κB and Extracellular Signal-Regulated Kinase 1/2, JPET 2006, vol.316 no.171-78
    [17]DELA PENA Aileen; LECLERCQ Isabelle; FIELD Jacqueline et al., NF-κB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis,2005,129, (5),1663-1674
    [18]L. A. J O'Neilla and C. Kaltschmidtb, NF-kB:a crucial transcription factor for glial and neuronal cell function, Trends in Neurosciences,1997,20,6, (1),252-258
    [19]Patrick A. Baeuerle, Vijay R. Baichwal, NF-κB as a Frequent Target for Immunosuppressive and, Advances in Immunology,1997,65,111-137
    [20]Mark P. Mattson, Anti-apoptotic role of the transcription factor NF-Kb, Advances in Cell Aging and Gerontology,2001,5,269-295
    [21]Toru Hosoi and Yasuyuki Nomura, Functional role of acetylcholine in the immune system, Frontiers in Bioscience,2004,9,2414-2419
    [22]Borovikova LV, Ivanova S, Zhang M, Yang H, Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature 2000; 405:458-462
    [23]Alexander I. Chernyavskya, Juan Arredondoa, Maryna Skokd and Sergei A. Grandoa, Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors,
    [24]Cem Gabay, M.D., and Irving Kushner, M.D., Acute-Phase Proteins and Other Systemic Responses to Inflammation, N Engl J Med 1999; 340:448-454
    [25]Bruce D. Levy, Clary B. Clish, Birgitta Schmidt et al., Lipid mediator class switching during acute inflammation:signals in resolution, Nature Immunology 2001,2,612-619
    [26]Tracey KJ. The inflammatory reflex. Nature.2002;420:853-9.
    [27]Andrew Churg, Rong D. Wang, Hsin Tai, Xiaoshan Wang et al., Macrophage Metalloelastase Mediates Acute Cigarette Smoke-induced Inflammation via Tumor Necrosis Factor-Release, American Journal of Respiratory and Critical Care Medicine,2003,167,1083-1089
    [28]L C Renwick, D Brown, A Clouter et al., Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types, Occup Environ Med 2004;61:442-447
    [29]Alisa E Koch, Elizabeth A Calhoun, Phillip L Campbell et al., IL-1β and TNF-α in prostatic secretions are indicators in the evaluation of men with chronic prostatitis, The Journal of Urology, 2000,164(1),214-218,
    [30]D.A. Carswella, Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths, Physics and Chemistry of The Earth,1975,9,417-429
    [31]Muazzam Jacobs, Najmeeyah Brown, Nasiema Allie, Infection in TNF-LT-a-Deficient Mice and Bernhard Ryffel, Clinical Immunology,2000,94, (3),192-199
    [32]Otto, Viviane I.; Stahel et al., Regulation of chemokines and chemokine receptors after experimental closed head injury, Molecular Neuroscience,2001,12 (9),2059-2064
    [33]Louis, Franchimont, Piron et al., Tumour necrosis factor (TNF) gene polymorphism influences TNF- production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans,Clinical & Experimental Immunology,1998,113,(3),401-406
    [34]Al-Lamki, R. S.,Wang, J.,Skepper, J. N., etc. Expression of tumor necrosis factor receptors in normal kidney and rejecting renal transplants [J]. Laboratory Investigation,2001,81(11):1503-1515.
    [35]Roy A. Black, Charles T. Rauch, Carl J. et al., A metalloproteinase disintegrin that releases tumour-necrosis factor-from cells, Nature,1997,385,729-733
    [36].Tracey, K. J, Fong, Y, Hesse, D. G., etc. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia [J]. Nature,1987,330 (6149):662-664.
    [37]Bradley, J. TNF-mediated inflammatory disease [J]. Journal of Pathology,2008,214 (2):149.
    [38]Mike A. Berry, M.R.C.P., Beverley Hargadon, R.G.N.et al., Evidence of a Role of Tumor Necrosis Factor a in Refractory Asthma,N Engl J Med 2006; 354:697-708
    [39]British Journal of Dermatology,1996,135, (5),815-851
    [40]T. YOKOTA, G. K. HANSSON,Immunological mechanisms in atherosclerosis, Journal of Internal Medicine,1995,238, (6),479-489
    [41]By Tiziano Barbui, Guido Finazzi, and Anna Falanga, The Impact of All-trans-Retinoic Acid on the Coagulopathy of Acute Promyelocytic Leukemia,Blood,1998,91(9),3093-3102
    [42]Natalya V Serbina, Thais P Salazar-Mather, Christine A Biron et al., TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection, Immunity,2003,19, (1), 59-70,
    [43]Sang M. Lee, Tae Y. Yune, Sun J. Kim et al., Minocycline inhibits apoptotic cell death via attenuation of TNF- expression following iNOS/NO induction by lipopolysaccharide in neuron/glia co-cultures, Journal of Neurochemistry,2004,Volume 91, Issue 3, pages 568-578
    [44]M. Chawla-Sarkar, D. J. Lindner, Y.-F. Liu et al., Apoptosis and interferons:Role of interferon-stimulated genes as mediators of apoptosis,Apoptosis,Volume 8, Number 3,237-249,
    [45]T.J Connora, C Songb, B.E Leonarda et al., An assessment of the effects of central interleukin-1β,-2,-6, and tumor necrosis factor-a administration on some behavioural, neurochemical, endocrine and immune parameters in the rat, Neuroscience,1998,Volume 84, Issue 3,24, Pages 923-933
    [46]Brendan F. Boyce, Thomas B. Aufdemorte, I. Ross et al., Effects of Interleukin-1 on Bone Turnover in Normal Mice, Endocrinology, Vol.125 (3):1142-1150
    [47]Y. Niki, H. Takaishi, J. Takito, T. Miyamoto, N. Kosaki et al., Administration of Cyclooxygenase-2 Inhibitor Reduces Joint Inflammation but Exacerbates Osteopenia in IL-1{alpha} Transgenic Mice Due to GM-CSF Overproduction,J., Immunol.,2007; 179(1):639-646.
    [48]B. O. Oyajobi, G. Franchin, P. J. Williams, et al., Dual effects of macrophage inflammatory protein-1{alpha} on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease, Blood, July 1,2003; 102(1):311-319.
    [49]P.R. Taylor, L. Martinez-Pomares, M. Stacey et al., Macrophage receptors and immune recognition, Annual Review of Immunology,2005, Vol.23:901-944
    [50]Siamon Gordon*,Pattern Recognition Receptors, Cell,2002,Volume 111, Issue 7,927-930,27
    [51]Alberto Mantovania,Antonio Sicab, Silvano Sozzanib et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends in Immunology,2004, Volume 25, Issue 12, Pages 677-686
    [52]MearlsTK, LienE, YoshimuraA, et al. The CD14 ligands lipoarabinomanuan and lipopolysaccharide differ in their requirement forToll-like receptors[J]. Jlmmunol,1999,163:6748. 55
    [53]Hirschfeld M, Ma Y, John H et al. Cutting edge:Repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor2 [J]. J Immunol,2000,165(2): 618-622
    [54]Medzhitov R, Preston-Hulburt P, Janeway CJ. A human homologue of the Drosophila Toll protein signals activiation of adaptive immunity [J]. Nature,1997;388(6640); 394-7
    [55]Parviz AN, Hacker H, Mark R. Bacterial CpG-DNA and lipopolysaccharides activiate Toll-like receptors at distinct cellular compartments[J].Eur J Immunol,2002; (7):1958-1968.
    [56]Chuang TH, Ulevitch RT. Identification of hTLR10:A novel human Toll-like receptor preferentially expressed in immune cells[J]. Biochim Biophys Acta,2001,1518(3):157-161
    [57]Takeuchi O, Kawai T, Sanjo H et al. TLR6:Anovel member of an expanding toll-like receptor family [J]. Gene,1999;231(1-2):59-65
    [58]Du X, Poltorak A, Wei Y et al. Three novel mammalian toll-like receptors:Gene structure, expression, and evolution [J]. Eur Cytokine Netw,2000,11(3):362-371
    [59]Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition ofgram-negative and gram-positive bacterial cell wall components[J]. Immunity,1999 lⅠ:443-51
    [60]Heine H, Kirschning CJ, Lien E et al. Cutting edge:Cells that carry a null allele for Toll-like receptor 2 are capable of responding to endotoxin[J]. J Immunol,1999,162(12):6971-6975
    [61]Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components [J]. Immunity,1999,11(4):443-451
    [62]Flo TH, Halaaso O, Lien E et al. Human toll-like receptor 2 mediates monocyte activiation by listeria monocytogenes, but not by group B streptococci or lipopolysaccharide [J]. J Immunol,2000, 164(4):2064-2069
    [63]Schwandner R, Dziarski R, Wesche H et al. Peptidoglycan and lipoteichoic acid-induced cell activiation is mediated by toll-like receptor2 [J]. J Biol Chem,1999,274(25) 17406-9
    [64]Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60 use Toll-like receptor 2 and TLR4 to activiate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. Nature, 2001,410(6832):1099-103
    [65]Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5[J]. Nature,2001,410(6832):1099-103
    [66]Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA [J]. Nature.2000,408(6857):659-60
    [67]Ozinsky A, Smith KD, Hume D et al. Co-operative induction of bacterial lipoproteins by toll-like receptors[J]. J Endotoxin Res,2000,6(5):3939-6
    [68]Takeuchi O, Kawai T, Muhlradt PF et al. Discrimination of bacterial lipoproteins by toll-like receptor 6[J]. Int Immunol,2000,13 (7):933-40
    [69]. Alexopoulou I, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activiation of NF-kappaB by Toll-like receptor 3[J]. Nature.2001,413(6857):732-8 []Neurohormonal-cytokine interactions:Implications for inflammation, common human diseases and well-being
    [70]Hemmi H, Kaisho T, Takeuchi O et al. Small antiviral compounds activiate immune cells via TCR7 MyD88-dependent signaling pathway[J]. Nat Immunol,2000,3(2):196-200
    [71]Zhang FX, Kirschning CJ, Mancinelli R, et al. Bacterial lipopolysaccharide activiates nuclear factor-KappaB through interlrukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes[J]. J Biol Chem,1999,274(12):7622-7814.
    [72]Moore KJ, Andresson LP, Ingalls RRet al. Divergent response to LPS and bacteria in CD14-deficient murine macophages[J]. J Immunol,2000; 165(8):4272-4280.
    [73]Triantafilou M, Triatafilou K, Femandez N, et al. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influenced by endotoxin concentration [J]. Eur J Biochem,2000,267 (8):2218-2226
    [74]Kisseleva, T.,Bhattacharya, S.,Braunstein, J., etc. Signaling through the JAK/STAT pathway, recent advances and future challenges [J]. Gene,2002,285 (1-2):1-24.
    [75]Wang Z, Harkins PC, Ulevitch RJ, et al. The structure of mitogen-activiated protein kinase p38 at 2.1-A resolution. Proc Natl Acad Sci. USA,1997,94:2327-2332
    [76]Ravanti L, Toriseva M, Penttinen R, et al. Expression of human collagenase-3(MMP-13) by fetal skin fibroblasts is induced by transforming growth factor beta via p38 mitogen-activated protein kinase. FASEB J,2001,15(6):1098-1100
    [77]Jiang Y, Gran H, Zhao M, et al. Characterization of structre and function of the fourth member of p38 group mitogen-activated protein kinase, p38 delta [J]. J Biol Chem,1997,272(48):30122-30128
    [78]Enslen H, Brancho DM, Davis RJ. Molecular det erminants that mediate selective activiation of p38 MAP kinase isoforms [J], EMBOJ,2000,19(6):1301-1311
    [79]Raingeaud J, Gupta S, Rogers JS, et al. Proinflammatory cytokinase and environmental stress cause p38 mitogen-phosphorylationon tyrosine and threonine [J]. J Biol Chem.1995,270(13): 7420-7426
    [80]Ben-Levy R, Hooper S, Wilson R, et al. Marshall. Nuclear export of the stress-activiated protein kinase p38 mediated by its substrate MAPKAP kinase-2[J]. Curr Biol,1998,8(19):1049-1057
    [81]Sen J, Kapeller R, Fragoso R, et al. In-trathymic signals inthymocytes are mediated by p38 mitogen-activated protein kinase. J Immunol J, et al. Opposing effects of ERK and JNK-p38MAP kinase on apoptosis [J]. Science,1995,270(5240):1326-1331
    [82]Kyriakis JM, Avruch J, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiol Rev,2001,81(2):807-869
    [83]Philippe P, Roux, John B, ERK and p38 MAPK-activated protein kinase:a family of protein kinase with diverse biological functions [J]. Microbiology and molecular biology reviews,2004,68(2): 320-344
    [84]Brewster JL, De Valoir T, Dwyer N, et al. An osmosensing signal transduction phathway in yeast [J]. Science.1999,259(5099):1760-1763
    [85]Han J, Lee JD, Bibbs I, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells [J]. Science,1994,265(5173):808-811
    [86]Gargova G, Derijard ZB, Wu IH, et al. An osmosening signal transduction pathway in mammalian cells [J]. Sxience,1994,265(5173):806-08
    [87]Yaron A, Hatzubai A, Davis M, et al. Identification of receptor component of the IκB-ubiquitin ligase[J]. Nature,1998,396; 590-94.
    [88]Hoeflich KP, Luo J, Rubie EA,et al. Requirment for glycogen synthase kinase-3 in cell survival and NF-κB activation [J]. Nature.2000,406(6791):86-90.
    [89]Duran A, Diaz-Meco MT, Moscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NK-kappaB transcriptional activation [J]. EMBO J,2003,22(15):3910-3918
    [90]Hiroaki Sakurai, Hiroki Chiba, Hidetaka, et al. IκB kinase phosphorylate NF-κB p65 subunit on serine 563 in the transactivation domain [J]. J Biol Chem.1999,274(43):30353-30356
    [91]Zhong H, May MJ, Jimi E, et al. Phosophorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent intraction with the coactivator CBP/p300 [J]. Mol Cell.2002,9:625-636
    [92]Wang D, Westerheide SD, Hanson JL, et al. Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529 [J]. J Biol Chem,2000,275:32592-32597.
    [93]Buss H, Dorrie A, Schimitz ML, et al. Phosphorylates of Serine 468 by GSK-3-Negatively Regulates Basal p65 NF-KB Activity [J]. J Biol Chem.2004,279(48):4751-49754.
    [94]Schwabe RF, Sakurai H. IKK beta phosphorylates p65 at S468 in transactivation domain 2 [J]. FASEB J.2005,26:13.
    [95]Rudolph D,Yeh WC, Wakeham A, et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKK gamma-deficient mice [J]. Genes Dev.2000,14(7):854-862.
    [96]Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase [J]. Science.1999,284(5412):316-320.
    [97]Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities in mice lacking IKKalpha [J]. Science.1999,284(5412):313-316.
    [98]Martina Quirling, Sharon Page, Nikolaus Jilg, et al. Detection of IKK-IKK-subcomplexes in monocytic cells and characterization of associated signaling [J]. J Biol Chem.2004,279(36): 37452-37460.
    [99]DiDonato JA, Hoyakawe M, Rothwerf DM. A cytokine-responsive IκB-kinase that activiates the transcription factor NF-KB [J]. Nature,1997,388:548-554.
    [100]Takeda K, Kaisho T, Akira S. Toll-like receptors [J]. Annu Rev Immunol,2003,21: 335-376.
    [101]Luo G, Yu-Lee L. Stat5b inhibits NF-kappa B-mediated signaling [J]. Mol Endocrinol,2000, 14(1):114-123.
    [102]Ganster RW, Taylor BS, Shao L, et al. Complex regulation of human inducible nitric oxide synthase gene transcription by Statl and NF-kappa B[J]. Proc Natl Acad Sci USA, 2001,98(15):8638-8643.
    [104]Athie MV, Flotow H, Hilyard KL, et al. IL-12 selectively regulates STAT4 via phosphatidylinositol 3-kinase and Ras-independent signal transduction pathways[J]. Eur J lmmunot, 2000,30(5):1425-1434.
    [105]Gahliem M, Vitiello M, Sanzari E, et al. Porins from Salmonella enterica serovar typhimurium activate the transcription factors activating protein 1 and NF-kappa B though the Raf-1-mitogen-activated protein kinase cascade [J]. Infect Jmmun,2002,70(2):558-568.
    [106]Conejo R, de Alvaro C, Benito M. et al. Insulin restores differentiation of Ras-transformed C2C 12 myoblasts by inducing NF-kappaB through an AKT/P70S6K/p38-MAPK pathway [J]. Oncogene,2002,21(23):3739-3753.
    [107]Knvmik P, Mangold M, Ramsauer K, et al. Specificity of signaling by STAT1 depends onSH2 and C-terminal domains that regulate Ser727 phosphorylation, diferentially affecting specific target gene expression[J]. EMBO J,2001,20(1-2):91-100.
    [108]Hu WH, Pendergast JS, Mo XM, et al. NIBP:a novel NIK and IKKβ binding pgotein that enhances NF-KB activation [J]. J Biol Chem,2005,280(32):29233-29241.
    [109]Digieaylioglu M, Lipton S, Erythropoictin-mediated neuro-protection-involves cross-talk between JAK2 and JNF-κB signaling cascades [J]. Nature.2001,4122(6847):641-647.
    [110]Dhawan P, Richmond A, A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells [J]. J Biol Chem,2002,277(10):7920-7928
    [111]Craig R, Larkin A, Mingo AM, et al. p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release [J]. J Biol Chem,2000,275(31):23814-23824.
    [112]Lim CP, Cao X. Regulation of Stat3 activation by MEK kinasel [J].J Biol Chem,2001, 276(24):21004-21011
    [113]Bradbury CM, Markovina S, Wei SJ, et, al. Indomethacin-induced radiosensitization and inhibition of ionizing radiation-induced NF-kappa B activation in HeLa cells occur via a mechanism involving p38 MAP kinase [J]. Cancer Res,2001,61(20):7689-7696.
    [114]. Rehani, K.,Scott, D. A.,Renaud, D., etc. Cotinine-induced convergence of the cholinergic and PI3 kinase-dependent anti-inflammatory pathways in innate immune cells[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2008,1783 (3):375-382.
    [115]Van Assche, G.,Vermeire, S.,Rutgeerts, P. Medical treatment of inflammatory bowel diseases[J]. Current opinion in gastroenterology,2005,21 (4):443.
    [116].Wang, H.,Yu, M.,Ochani, M., etc. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation [J]. Nature,2002,421 (6921):384-388.
    [117]Mark Potter, Ken A. Platt and Tamas Oravecz Konstantin V. Salojin, Iris B. Owusu, Karen A. Millerchip,Negative Control of Innate Immune Responses,
    [118].Glauser, M. P. The inflammatory cytokines. New developments in the pathophysiology and treatment of septic shock[J]. Drugs,1996,52 9.
    [119].Wang, X. Z.,Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase [J]. Science,1996,272 (5266):1347.
    [120].Wittebole, X.,Hahm, S.,Coyle, S. M., etc. Nicotine exposure alters in vivo human responses to endotoxin[J]. Clinical and experimental immunology,2007,147 (1):28.
    [121]Massimiliano Di Filippo, Paola Sarchielli, Barbara Picconi and Paolo Calabresi, Neuroinflammation and synaptic plasticity:theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders, Trends in Pharmacological Sciences Volume 29, Issue 8, August 2008, Pages 402-412
    [122]Ilia J. Elenkov Neurohormonal-cytokine interactions:Implications for inflammation, common human diseases and well-being, Neurochemistry International,2008, Volume 52, Issues 1-2, Pages 40-51
    [123]Paul P. Tak and Gary S. Firestein, NF-κB:a key role in inflammatory diseases J Clin Invest. 2001;107(1):7-11.
    [124]SL Weinstein, AJ Finn, SH Dave et al., Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-beta, Journal of Leukocyte Biology, Vol 67, Issue 3 405-414,
    [125]Feng Gaoa, Tian-Li Yueb, Dong-Wei Shia et al.,p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation[J] Oxford Journals Medicine Cardiovascular Research Volume53, Issue2 Pp.414-422.
    [126]Ralf R. Schumann, Dagmar Pfeil, Dorette Freyer et al., Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2, and p38 in astrocytes [J] Glia Volume 22, Issue 3, pages 295-305, March 1998
    [127]Ching-Chow Chen and Jia-Kae Wang p38 but Not p44/42 Mitogen-Activated Protein Kinase Is Required for Nitric Oxide Synthase Induction Mediated by Lipopolysaccharide in RAW 264.7 Macrophages Molecular Pharmacology March 1,1999 vol.55 no.3481-488
    [128]Ulloa L, The vagus nerve and the nicotinic anti-inflammatory pathway, Nat Rev Drug Discov, 2005,4(8):673-684.
    [129]Van Assche G, Rutgeerts P. Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases. I. Immunology and therapeutic potential of antiadhesion molecule therapy in inflammatory bowel disease, Am J Physiol Gastrointest Liver Physiol.2005,288(2): G169-G174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700