用户名: 密码: 验证码:
光刺激对新生小鼠视网膜发育的影响及基质糖蛋白Lumican异位表达的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小鼠出生时睑裂是闭合的,这为其相对幼稚的视网膜出生后的继续发育成熟提供了生理性的黑暗环境。我们通过人工开启单侧眼睑的方法,利用C57BL/6J(黑色近交系)小鼠成功建立了过早接受形觉刺激的动物模型,为研究过早光照对视网膜发育的影响提供了较理想的动物模型。前期工作表明,过早光刺激可引发小鼠可逆性的非轴性近视,并伴随视网膜组织中Lumican基因转录活性的显著性激活。本研究在CD1(白色远交系)小鼠中重建并优化了这一模型,详细量化过早光照引发的视网膜结构的发育异常,描述了Lumican异位表达的时间空间分布情况以及相应区域细胞生长与EMT状态的变化。实验从细胞与分子水平为探讨提前光照影响视网膜发育的病理机制、解析过早光刺激与MOP发生的关联提供了佐证。
     课题主要的研究方法和内容如下:
     (1)优化过早光刺激小鼠模型,选择CD1新生小鼠替代原有的C57BL/6J作为实验动物,一方面提高了新生小鼠出身率与健康存活比率,更为重要的是,为基于CD1遗传背景的Lumican基因敲除小鼠的引进和深入的机理研究提供可能,实验要求严格杜绝对照眼球的意外感光。我们选择P4作为开睑时间,钝性开启右侧眼睑(记为实验眼,R),以左侧眼球为自身对照(L)。采集P6、P9、P12时间点的眼球制作冰冻切片或于对应时间点抽提视网膜组织总蛋白、总RNA,观察、量化不同时间点新生小鼠视网膜各个核层的细胞增殖与凋亡水平,分析提前光照对视网膜发育影响的时间空间特性。
     (2)观察上述三个时间点视网膜中Lumican在mRNA与蛋白水平上的异位表达和分布情况;比较在该糖蛋白异常积蓄的时期,相关视网膜细胞增殖、凋亡和EMT的变化,为全面而深入分析该基因的蛋白产物影响神经发育的潜在机制提供第一手实验数据。
     主要结果与结论如下:
     (1)过早光刺激对视网膜细胞生长状态的影响
     H-E染色显示,光刺激对内、外网层及视杆视锥的发育进程并不产生显著性影响,却能明显的改变视网膜细胞的数量:P6-P9H寸期可促进内、外核层与节细胞数量的维持,P10-P12则转而加剧细胞数量的减少。据此,我们将光刺激影响视网膜发育的时相分作早期的生长促进期(P6-P9)与晚期的生长抑制期(P10-P12)。
     (2)过早光刺激对视网膜细胞增殖水平的抑制
     以PCNA为细胞增殖指标,量化视网膜细胞的增殖状态。感光细胞增殖活力受过早光刺激的抑制最为敏感,在P9时,ONL中零散分布于边缘区域的PCNA核内荧光信号完全消失,但该异常刺激却并不能改变生长促进期(P6-P9)视网膜细胞的总体增殖状态。进入生长抑制期(P10-P12)之后,光刺激对细胞增殖水平的抑制效应进一步扩展到INL中间神经元,节细胞在P12时生理性的PCNA再度上扬现象在实验眼视网膜中被彻底抑制,视网膜细胞总体增殖水平呈显著性的低下,仅极少数细胞核内呈现出微弱的PCNA阳性信号。
     (3)过早光刺激对视网膜细胞凋亡水平的影响
     TUNEL染色分析视网膜细胞的凋亡状态。生理状态下,内外核层细胞凋亡峰值形成时间不同:ONL细胞凋亡高峰出现在P12(自然睁眼前),而INL则发生在P6前后。光照可全程抑制感光细胞的凋亡;对视网膜INL细胞凋亡的影响相对复杂:于生长促进期(P6-P9)抑制中间神经元凋亡,于生长抑制期(P10-P12)则明显延滞INL细胞凋亡水平的迅速下滑。
     综上所述,光刺激在生长促进期(P6-P9),主要通过抑制神经视网膜(INL+ONL)细胞早期(P6时)凋亡峰的形成、导致大量的细胞存活,从而引起这一时期细胞数量的增多。P12时,尽管光照对感光细胞与中间神经元的凋亡施加了截然相反的影响,但在此时刻,实验眼INL细胞的增殖活力却极度减弱,加之节细胞的PCNA峰未能出现,故生长抑制期(P10-P12)期间,光刺激主要通过对细胞增殖的全面抑制效应来实现细胞数量的回落。
     (4)过早光刺激诱导视网膜中Lumiean的表达
     Lumican主要由间充质来源的细胞(如成纤维细胞、角膜细胞)合成,在视网膜、脑等外胚层起源的神经器官组织中表达低下。光照引发视网膜中Lumican转录水平的激活始发自P9,于P12达高峰,睁眼后迅速回落,至P21重新恢复沉寂。P9时,极其微量的Lumican蛋白产物可在视网膜组织总蛋白提取液中检出,以后其含量急剧增多,P12时可见65kDa的宽幅蛋白条带——视网膜中表达的Lumican是糖蛋白而非KSPG。P12时,Lumican糖蛋白主要分布在外网层以内的神经组织中,这包括:内外网层、INL与GCL,主要影响中间神经元与节细胞的生长、转化行为。
     (5) Lumican异位表达与相关细胞增殖水平的抑制
     以PCNA为细胞增殖指标,对P9和P12时的INL与GCL的细胞增殖状态进行了进一步的量化。随着Lumican在神经视网膜INL与GCL中的蓄积,相应区域新生细胞数量锐减明显,这一方面体现在P12时(Lumican异常蓄积高峰时刻)INL细胞PCNA核内信号显著性减少,一方面表现为GCL中PCNA上扬现象的完全消失。
     (6) Lumican异位表达与相关细胞凋亡水平的维持
     为了准确评价视网膜INL与GCL细胞的凋亡状态,我们选择了Caspase-939kDa活性肽段——p39作为细胞凋亡量化指标。免疫荧光检测证实,Caspase-9标记的细胞分布在视网膜(INL+GCL)核层中,而ONL中未见荧光信号;Western-blot确证该分子在这两个核层中的存在形式主要是p39活性肽段,未见全长(49kDa)条带出现,说明此抗体可以特异性标记INL与GCL中的凋亡细胞。随着Lumican在视网膜中的聚集,P12时相对于对照组细胞凋亡水平的进行性锐减,实验眼视网膜Caspase-9 p39依旧维持在相对较高的水平,说明光刺激可于生长抑制期(P10-P12)引发这两个核层细胞较为明显的凋亡。
     综合上述结果我们发现,随着Lumican糖蛋白在神经视网膜内侧区域的积蓄,相应分布区域的视网膜细胞表现出增殖活性的锐减与凋亡水平的相对维持,其综合效应将导致(INL+GCL)细胞生长活性的减低、细胞数量的减少。这一发现揭示了,Lumican可能参与了光刺激对生长抑制期间(P10-P12)相关核层细胞生长的调节。参考Lumican对间充质来源细胞(如角膜细胞)具有抑增殖促凋亡的调控作用,我们据此推测,该分子对来源于神经上皮的视网膜细胞也有相似的作用。正是由于光刺激引发Lumican转录水平的激活以及其糖蛋白产物在P9-P12的迅速蓄积,导致相同的刺激对不同时期的视网膜(尤其是INL与GCL)发育产生截然相反的影响——由前期的促进生长转入后期持续的抑制。
     (7) Lumican异位表达与EMT
     值得我们注意的是,光照并非立即诱发Lumican在视网膜中的异常表达。而上皮细胞尽管在特殊应激诱发(如损伤)下,可以重新开启Lumican的合成潜力,但通常需经历EMT,且Lumican异位表达后还可以进一步维持这种异常转化状态。以α-SMA作为EMT量化指标、分析P6、P9、P12时间点视网膜EMT状态,发现光刺激可引发P6时α-SMA在视网膜中的广泛提升以及P9时(INL+GCL)中α-SMA的富集效应,提示Lumican的表达继发于光刺激诱发的P6-P9时期EMT的上扬。P12时,视网膜EMT还出现了一次较高水平的维持,这一反弹现象伴随着Lumican表达高峰的出现,提示二者之间潜在的关联性。
Mouse is born with eyelid closed,which creates a considerable dark environment for the further retinal development after birth.Lighting ahead animal model has been established in C57BL/6J mouse(black strain) to identify its potential impacts on retinal maturation via surgically opening the unilateral eyelid.The light-affected eye developed significantly reversible refractive error in our previous research with ectopically transcriptional activation of lumican gene in retina.In our present study we reconstructed the lighting ahead model in CD1 mouse(white strain) with a slight modification,described the retinal developmental abnormalities induced by this stress,and corroborated the temporal and spatial profile of the ectopic Lumican expression in the light-affected retina with an attention to the neuronal growth and EMT in the Lumican accumulated region.And the results may be contributed to the exploration of the pathological mechanisms involving retinal developmental abnormalities induced by early lighting and the analysis of the potential relation between this stimuli and MOE
     The methods in our study are as following:
     (1) The lighting ahead mouse model has been optimized.CD1 neonatal mouse was selected instead of the C57BL/6J counterpart to further study the mechanisms via the introduction of lumican gene knock-out mice based upon the CD1 heredity in addition to the higher birthrate and better health.And the opposite eyelid was strictly blacked to avert unexpected photoreception in retina.Right eyes(test eyes,R) were imposed the eyelids-separating operation at P4,while the left eyes(L) served as the self-control.Total RNA and protein were harvested at P6,P9 and P12,and eye sections were prepared to access the retinal neuronal proliferation and apoptosis at the identified time points,and the influence of lighting ahead on retinal development has been investigated temporally and spatially.
     (2) We semi-quantified Lumican mRNA and protein level in the light administrated retinae at the individual time points mentioned above and compared the alterations of cell proliferation,apoptosis and EMT in the Lumican deposited retinal region with its self negative control.These results provide first-hand materials to discover the potential functions of this gene product in neuronal development.
     Results and conclusions:
     (1) The effect of light stimuli on retinal cell growth
     H-E staining showed that early lighting did alter the retinal cell growth with no significant effects either on the formation of inner and outer plexiform layer or the development of cones and rods,that is,the stress maintains the cell number in INL, ONL and GCL during P6-P9,while accelerates the loss of neurons within P10-P12. The effects of early lighting on retinal maturation could thus be divided into two phases:earlier cellular growth promoting phase(P6-P9) and later cellular growth inhibiting phase(P10-P12).
     (2) Early-lighting inhibits retinal cell proliferation
     Retinal cell proliferation was measured via the cell proliferating marker PCNA.At P9 light stimuli almost diminished the PCNA nuclear immunoactivity dispersed in the marginal region of ONL due to the most susceptibility of the photoreceptor cells, while no significant alterations of general retinal cell proliferation were observed within P6-P9,the cellular growth promoting phase.However,during P10-P12,the cellular growth inhibiting phase,the negative effects of light stimuli on cell growth further extended to the intermediate neurons in INL.Merely faint PCNA signals could be detectable in INL and its physical augment within GCL was inhibited absolutely,resulting in acceleration of cell proliferation decline in neural retinae.
     (3) Early lighting influences retinal cell apoptosis
     TUNEL staining was applied to estimate cell apoptosis.Neural cells within INL and ONL possess quite different apoptosis peak:for ONL the apoptosis peaked at P12, the native eyelid separation;while for INL apoptosis reached the summit at P6. Lighting ahead alleviated cell apoptosis of photoreceptors and exhibited more complicated effects on INL cells:for cellular growth promoting phase(P6-P9) this stress inhibited cell apoptosis of intermediate neurons,while for cellular growth inhibiting phase(P10-P12),on the contrary,retarded the rapid apoptotic decline of INL cells.
     In a word,light stimuli increase retinal cell number during cellular growth promoting phase(P6-P9) mostly due to its inhibitive effects on cell apoptosis both in INL and ONL at P6.Despite of the complicated actions of early lighting on intermediate neurons,it is noticeable that at P12 the cell proliferation activity was sharply dropped in INL and the proliferation peak vanished in GCL in the light affected retina.Therefore,light stimuli aggravated cell loss in cellular growth inhibiting phase(P10-P12) primarily due to its comprehensive inhibition in cell proliferation.
     (4) Early lighting activates Lumican expression ectopically in retinae
     Lumican,usually synthesized by cells of mesenchymal origin(such at fibroblasts, keratocytes),possesses the lowest quantification within retina,brain and other nervous organs/tissues coming from embryonic ectoderm.Early lighting reopened the silenced Lumican expression in retinae on P9 partially at the transcriptional level, and the ectopic glycoprotein accumulated evidently at P12,then reversed to silence till P21.A specific 65kDa board band was evident at P12,implies that Lumican deposited in retina is glycoprotein instead of the KSPG form isolated in the corneal stroma,and distributed dominantly in the inner portion inside the outer plexiforrn layer,including INL,GCL,outer and inner plexiform layer as well.Its localization suggests that Lumican aberrantly appearing in the light affected retinae mainly possesses potential functions on the cell behaviors of intermediate neurons and RGCs.
     (5) Lumican ectopic expression and relative neuronal proliferative inhibition
     Using the PCNA cell proliferating marker,the INL and GCL cell proliferation was valued generally and respectively at both P9 and P12.With the Lumican accumulation,the renewal cells in INL and GCL sharply decreased.When Lumican was mostly accumulated at P12,the nuclear PCNA signals dropped moderately,and PCNA boost observed in normal developing retina vanished completely in GCL.
     (6) Lumican ectopic expression and relative neuronal apoptosis maintenance Caspase-9 activate peptide,p39(Mr 39kDa),was selected to measure the special cellular apoptosis in INL and GCL.Immunofluorencent assay showed that caspase-9 could specially stain the cells localized in INL and GCL,with no unexpected label of ONL cells.Western-blot analyses demonstrated that the isoform distributed in these two layers is prominently p39 and no 49kDa band(whole length) was observed, proving it is a perfect antibody marking the apoptotic cells specially in INL and GCL. Compared with the progressive drop of cell apoptosis within the INL and GCL, caspase-9 p39 isoform in the light affected retinae still kept at a considerable higher level,suggesting during cellular growth inhibiting phase(P10-P12) lighting ahead induced obviously higher cell apoptosis in these two layers.
     In conclusion,with the deposition of Lumican glycoprotein in the inner portion of neural retinae,the relative retinal neurons manifested a sharp decline of cell proliferation and a considerable maintenance of cell apoptosis,and the combinative effects is to give rise to a profound falling phenomenon of cell growth and an aggravating loss of cells.This finding implies that Lumican might participate in the influence of early lighting on the cell growth in relative retinae during the cellular growth inhibiting phase(P10-P12).Considering its matrikine effects on mesenchyme-derived cells,we deduced that Lumican also inflicts similar functions on the retinal cells of neural epithelial origin,that is,inhibits cell proliferation and promots cell apoptosis.It is lighting administration induced the activation of Lumican transcription and its glycoprotein swift accumulation during P9-P12 which results in diverse effects of the same stress on retina in different development status (especially for INL and GCL):from earlier growth promoting to later inhibiting.
     (7) Lumican ectopie accumulation and EMT
     It should be noticeable that light induced Lumican expression in immature retinae is not an immediate event.Epithelial cells regaining the capacity of Lumican synthesis in answer to some stimuli(such as injury) usually undergo previous EMT,and Lumican depositing as a result of EMT is reversely contributed to the establishment of the pathological transition.α-SMA was applied as the EMT marker and the EMT status in retina at P6,P9 and P12 was measured,respectively.Light stimuli elicited the generalα-SMA upregulation in P6 retinae and the followedα-SMA abundance in INL and GCL at P9 give us a clue that the Lumican expression is a secondary effect evoked by the EMT activation in P6-P9 in light-affected retinae.At P12,EMT in light-affected retinae restored to a higher lever again,which is accompanied by Lumican accumulation up to its maximum,indicating a potential correlation between the two incidents.
引文
[1]Fielder AR,Quinn GE.Myopia of prematurity:nature,nurture,or disease[J]? Br.J.Ophthalmol.,1997,81:2-3.
    [2]Fielder AR,Levene MI,Russell-Eggitt IM,Weale RA.Temperature-a factor in ocular development[J]? Dev Med Child Neurol,1986,28(3):279-284.
    [3]Quinn GE,Dobson V,Repka MX,Reynolds J,Kivlin J,Davis B,Buckley E,Flynn JT,and Palmer EA.Development of myopia in infants with birth weights less than 1251 grams[J].The Cryotherapy for Retinopathy of Prematurity Cooperative Group.Ophthalmology,1992,99(3):329-340.
    [4]Pohlandt F.Hypothesis:myopia of prematurity is caused by postnatal bone mineral deficiency[J].Eur J Pediatr,Apr 1994;153(4):234-236.
    [5]Holmstrom G,Azazi M el,and Kugelberg U.Ophthalmological long term follow up of preterm infants:a population based,prospective study of the refraction and its development[J].Br.J.Ophthalmol.,Nov 1998;82:1265-1271.
    [6]忽俊,周晓东,龚红华,佘振珏,肖红蕾,周国民。提前视觉刺激及高浓度氧对小鼠屈光状态的影响[J]。眼视光学杂志。2005;7(4):242-244.
    [7]Robinson R and O'Keefe M.Follow-up study on premature infants with and without retinopathy of prematurity[J].Br.J.Ophthalmol.,Feb 1993;77:91-94.
    [8]Choi MY,Park IK,and Yu YS.Long term refractive outcome in eyes of preterm infants with and without retinopathy of prematurity:comparison of keratometric value,axial length,anterior chamber depth,and lens thickness[J].J.Ophthalmol.,Feb 2000;84:138-143.
    [9]Theng JT,Wong TY,and Ling Y.Refractive errors and strabismus in premature Asian infants with and without retinopathy of prematurity[J].Singapore Med J,Aug 2000;41(8):393-397.
    [10]胡磊。早产儿视网膜病变与近视[J]。国外医学:眼科学分册。1997;21(6):355-358.
    [11]Cepko CL.,Austin CR,Yang X,Alexiades M,and Ezzeddine D.Cell fate determination in the vertebrate retina[J].PNAS,Jan 1996;93:589-595.
    [12]Marquardt T and Gruss R Generating neuronal diversity in the retina:one for nearly all[J].Trends Neurosci,Jan 2002;25(1):32-38.
    [13]Young RW.Cell differentiation in the retina of the mouse[J].Anat Rec,Jun 1985;212(2):199-205.
    [14]Hu M and Easter SS.Retinal neurogenesis:the formation of the initial central patch of postmitotic cells[J].Dev Biol,Mar 1999;207(2):309-321.
    [15]Tejedor J and de la Villa P.Refractive Changes Induced by Form Deprivation in the Mouse Eye[A].Invest.Ophthalmol.Vis.Sci.,Jan 2003;44:32.
    [16]Schaeffel F,Simon R Feldkaemper M,Ohngemach S,and Williams RW.Molecular biology of myopia[J].Clin Exp Optom,Sep 2003;86(5):295-307.
    [17]张正培,陈钦元,佘振珏,陈荣家,徐格致,胡宝洋,周国民。氧诱导的血管增生性视网膜病变小鼠模型[J]。眼科研究。2003;21(2):493-496.
    [18]彭清,刘舒娅,任佩贤。不同日龄新生小鼠视网膜组织学观察[J]。中华眼底病杂志。1999;15(3):174-176.
    [19]Rich KA,Zhan Y,and Blanks JC.Migration and synaptogenesis of cone photoreceptors in the developing mouse retina[J].J Comp Neurol,Nov 1997;388(1):47-63.
    [20]Findlater GS,McDougall RD,and Kaufman MH.Eyelid development,fusion and subsequent reopening in the mouse[J].J Anat,Aug 1993;183(Pt 1):121-129.
    [21]Gole GA,Browning J,and Elts SM.The mouse model of oxygen-induced retinopathy:a suitable animal model for angiogenesis research[J].Doe Ophthalmol,Mar 1990;74(3):163-169.
    [22]Gong H,Hu J,Wang F,Chu R,Zhou G,and Williams RW.Refractive Error Development in Neonatal mice with Lighting in advance[A].Invest.Ophthalmol.Vis.Sci.,May 2004;45:4282.
    [23]龚红华,忽俊,凌志红,刘坤,万瑾,王芳,佘振珏,肖红蕾,赵淑民,胡宝洋,周晓东,诸仁远,周国民。提前接受光照对小鼠视网膜TH和bFGF 表达的影响[J]。中国组织化学与细胞化学杂志。2005;14(15):473-478.
    [24] Ying S, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Swiergiel J, Roth MR, Conrad GW, and Kao WW. Characterization and Expression of the Mouse Lumican Gene[J]. J. Biol. Chem., Nov 1997; 272: 30306-30313.
    [25] Corpuz LM, Dunlevy JR, Hassell JR, Conrad AH, and Conrad GW. Molecular cloning and relative tissue expression of decorin and lumican in embryonic quail cornea[J]. Matrix Biol, Dec 2000; 19(7): 699-704.
    [26] Grover J, Chen XN, Korenberg JR, and Roughley PJ..The Human Lumican Gene. Organization, chromosomal location, and expression in articular cartilage[J]. J. Biol. Chem., Sep 1995; 270: 21942-21949.
    [27] Funderburgh JL, Funderburgh ML, Mann MM, and Conrad GW. Arterial lumican. Properties of a corneal-type keratan sulfate proteoglycan from bovine aorta[J]. J. Biol. Chem., Dec 1991; 266: 24773 - 24777.
    [28] Funderburgh JL, Caterson B, and Conrad GW. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan[J]. J. Biol. Chem., Aug 1987; 262: 11634-11640.
    [29] Saika S, Shiraishi A, Saika S, Liu CY, Funderburgh JL, Kao CW, Converse RL, and Kao WW. Role of Lumican in the Corneal Epithelium during Wound Healing[J]. J. Biol. Chem., Jan 2000; 275: 2607-2612.
    [30] Cornuet PK, Blochberger TC, and Hassell JR. Molecular polymorphism of lumican during corneal development[J]. Invest. Ophthalmol. Vis. Sci., Mar 1994; 35: 870-877.
    [31] Kao WW and Liu CY. Roles of lumican and keratocan on corneal transparency[J]. Glycoconj J, May 2002; 19(4-5): 275-285.
    [32] Austin BA, Coulon C, Liu CY, Kao WW, and Rada JA. Altered Collagen Fibril Formation in the Sclera of Lumican-Deficient Mice[J]. Invest. Ophthalmol. Vis. Sci., Jun 2002; 43: 1695-1701.
    [33] Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, and Birk DE.. Ocular and Scleral Alterations in Gene-Targeted Lumican-Fibromodulin Double-Null Mice[J]. Invest. Ophthalmol. Vis. Sci., Jun 2003; 44: 2422-2431.
    [34] Kao WW, Funderburgh JL, Xia Y, Liu CY, and Conrad GW. Focus on molecules: lumican[J].Exp Eye Res,Jan 2006;82(1):3-4.
    [35]Sidman RL.Histogenesis of mouse retina studied with thymidine-3H[J].New York:Academic Press.1961:487-506.
    [36]Carter-Dawson LD and LaVail MM.Rods and cones in the mouse retina.Ⅱ.Autoradiographic analysis of cell generation using tritiated thymidine[J].J Comp Neurol,Nov 1979;188(2):263-272.
    [37]金燕,李根林。视网膜神经细胞有序发生的研究现状[J]。国外医学:眼科学分册。2002;26(6):365-369.
    [38]Bravo R,Frank R,Blundell PA,and Macdonald-Bravo H.Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta[J].Nature,Apr 1987;326(6112):515-517.
    [39]Lewin B.Driving the cell cycle:M phase kinase,its partners,and substrates[J].Cell,Jun 1990;61(5):743-752.
    [40]Hall PA,Levison DA,Woods AL,Yu CC,Kellock DB,Watkins JA,Barnes DM,Gillett CE,Camplejohn R,and Dover R.Proliferating cell nuclear antigen(PCNA)immunolocalization in paraffin sections:an index of cell proliferation with evidence of deregulated expression in some neoplasms[J].J Pathol,Dec 1990;162(4):285-294.
    [41]龚健杨,蔡人杰。C57小鼠出生后视网膜神经上皮层细胞发育中的PCNA 表达及其意义[J]。安徽医科大学学报。2000;35(3):179-183.
    [42]Harada T,Harada C,and Parada LF.Molecular regulation of visual system development:more than meets the eye[J].Genes & Dev.,Feb 2007;21:367-378.
    [43]von Bartheld CS.Neurotrophins in the developing and regenerating visual system[J].Histol Histopathol,Apr 1998;13(2):437-459.
    [44]Frade JM and Barde YA.Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord[J].Development,Feb 1999;126:683-690.
    [45]Harada C,Harada T,Nakamura K,Sakai Y,Tanaka K,and Parada LF.Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye[J].Dev Biol,Feb 2006;290(1):57-65.
    [46] Gonzalez-Hoyuela M, Barbas JA, and Rodriguez-Tebar A. The autoregulation of retinal ganglion cell number[J]. Development, Jan 2001; 128: 117 - 124.
    [47] Perry VH, Henderson Z, and Linden R. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat[J]. J Comp Neurol, Sep 1983; 219(3): 356-368.
    [48] Ishiwata T, Cho K, Kawahara K, Yamamoto T, Fujiwara Y, Uchida E, Tajiri T, and Naito Z. Role of lumican in cancer cells and adjacent stromal tissues in human pancreatic cancer[J]. Oncol Rep, Sep 2007; 18(3): 537-543.
    [49] Aldave AJ, Sonmez B, Bourla N, Schultz G, Papp JC, Salem AK, Rayner SA, and Yellore VS. Autosomal dominant cornea plana is not associated with pathogenic mutations in DCN, DSPG3, FOXC1, KERA, LUM, or PITX2[J]. Ophthalmic Genet, Jun 2007; 28(2): 57-67.
    [50] Sifaki M, Assouti M, Nikitovic D, Krasagakis K, Karamanos NK, and Tzanakakis GN. Lumican, a small leucine-rich proteoglycan substituted with keratan sulfate chains is expressed and secreted by human melanoma cells and not normal melanocytes[J]. IUBMB Life, Oct 2006; 58(10): 606-610.
    [51] Wang IJ, Chiang TH, Shih YF, Hsiao CK, Lu SC, Hou YC, and Lin LL. The association of single nucleotide polymorphisms in the 5'-regulatory region of the lumican gene with susceptibility to high myopia in Taiwan[J]. Mol Vis, Jan 2006; 12: 852-827.
    [52] Szabo V, Balogh K, Suveges I, Racz K, Hunyady L, and Nagy ZZ. The role of lumican and keratocan genes in persistent subepithelial corneal haze following excimer laser photorefractive keratectomy[J]. Mol Vis, Jan 2006; 12: 597-605.
    [53] Svensson L, Narlid I, and Oldberg A. Fibromodulin and lumican bind to the same region on collagen type I fibrils[J]. FEBS Lett, Mar 2000; 470(2): 178-182.
    [54] Matsushima N, Ohyanagi T, Tanaka T, and Kretsinger RH. Super-motifs and evolution of tandem leucine-rich repeats within the small proteoglycans-biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin[J]. Proteins, Feb 2000; 38(2): 210-225.
    [55] Chakravarti S, Stallings RL, SundarRaj N, Cornuet PK, and Hassell JR. Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22[J]. Genomics, Jun 1995; 27(3): 481-488.
    [56] Rada JA, Cornuet PK, and Hassell JR. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins[J]. Exp Eye Res, Jun 1993; 56(6): 635-648.
    [57] Iozzo RV. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth[J]. Crit Rev Biochem Mol Biol, Jan 1997; 32(2): 141-174.
    [58] Ameye L and Young MR. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases[J]. Glycobiology, Sep 2002; 12: 107R -116R.
    [59] Funderburgh JL, Funderburgh ML, Hevelone ND, Stech ME, Justice MJ, Liu CY, Kao WW, and Conrad GW. Sequence, molecular properties, and chromosomal mapping of mouse lumican[J]. Invest. Ophthalmol. Vis. Sci., Oct 1995; 36: 2296-2303.
    [60] Saika S, Miyamoto T, Tanaka S, Tanaka T, Ishida I, Ohnishi Y, Ooshima A, Ishiwata T, Asano G, Chikama T, Shiraishi A, Liu CY, Kao CW, and Kao WW. Response of Lens Epithelial Cells to Injury: Role of Lumican in Epithelial-Mesenchymal Transition[J]. Invest. Ophthalmol. Vis. Sci., May 2003; 44: 2094-2102.
    [61] Koh N, Saika S, Miyamoto T, Tanaka S, Ooshima A, and Ohnishi Y. A Model of Proliferative Vitreoretinopathy Induced by Lens Extraction in Mice[J]. Invest. Ophthalmol. Vis. Sci., May 2003; 44: 3011-3016.
    [62] Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, and Carroll H. Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican[J]. J. Cell Biol., Jun 1998; 141: 1277-1286.
    [63] Scott JE. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen[J]. Biochemistry, Jul 1996; 35(27): 8795-8799.
    [64] Iozzo RV and Murdoch AD. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function[J]. FASEB J, Apr 1996; 10: 598-614.
    [65] Geng Y, McQuillan D, and Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases[J]. Matrix Biol, Oct 2006; 25(8): 484-491.
    [66] Funderburgh ML, Mann MM, Chikama TI, Wang L, Kao WY, and Funderburgh JL. Lumican Supports Migratory Activity of Primary Keratocytes In Vitro [A]. Invest. Ophthalmol. Vis. Sci., May 2004; 45: 3834.
    [67] Vij N, Roberts L, Joyce S, and Chakravarti S. Lumican Regulates Corneal Inflammatory Responses by Modulating Fas-Fas Ligand Signaling[J]. Invest. Ophthalmol. Vis. Sci., Jan 2005; 46: 88 - 95.
    [68] Funderburgh JL, Mitschler RR, Funderburgh ML, Roth MR, Chapes SK, and Conrad GW. Macrophage receptors for lumican. A corneal keratan sulfate proteoglycan[J]. Invest. Ophthalmol. Vis. Sci., May 1997; 38: 1159-1167.
    [69] Vij N, Roberts L, Joyce S, and Chakravarti S. Lumican suppresses cell proliferation and aids Fas-Fas ligand mediated apoptosis: implications in the cornea[J]. Exp Eye Res, May 2004; 78(5): 957-971.
    [70] Yoshioka N, Inoue H, Nakanishi K, Oka K, Yutsudo M, Yamashita A, Hakura A, and Nojima H. Isolation of Transformation Suppressor Genes by cDNA Subtraction: Lumican Suppresses Transformation Induced by v-src and v-K-ras[J]. J. Virol., Jan 2000; 74: 1008-1013.
    [71] Vuillermoz B, Khoruzhenko A, D'Onofrio MF, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart FX, and Wegrowski Y. The small leucine-rich proteoglycan lumican inhibits melanoma progression[J]. Exp Cell Res, Jun 2004; 296(2): 294-306.
    [72] Li Y, Aoki T, Mori Y, Ahmad M, Miyamori H, Takino T, and Sato H. Cleavage of Lumican by Membrane-Type Matrix Metalloproteinase-1 Abrogates This Proteoglycan-Mediated Suppression of Tumor Cell Colony Formation in Soft Agar[J]. Cancer Res., Oct 2004; 64: 7058 - 7064.
    [73] Leygue E, Snell L, Dotzlaw H, Troup S, Hiller-Hitchcock T, Murphy LC, Roughley PJ, and Watson PH. Lumican and decorin are differentially expressed in human breast carcinoma[J]. J Pathol, Nov 2000; 192(3): 313-320.
    [74] Lu YP, Ishiwata T, Kawahara K, Watanabe M, Naito Z, Moriyama Y, Sugisaki Y, and Asano G. Expression of lumican in human colorectal cancer cells[J]. Pathol Int, Aug 2002; 52(8): 519-526.
    [75] Naito Z, Ishiwata T, Kurban G, Teduka K, Kawamoto Y, Kawahara K, and Sugisaki Y. Expression and accumulation of lumican protein in uterine cervical cancer cells at the periphery of cancer nests[J]. Int J Oncol, May 2002; 20(5): 943-948.
    [76] Lu YP, Ishiwata T, and Asano G. Lumican expression in alpha cells of islets in pancreas and pancreatic cancer cells[J]. J Pathol, Mar 2002; 196(3): 324-330.
    [77] Schaefer L, Grone HJ, Raslik I, Robenek H, Ugorcakova J, Budny S, Schaefer RM, and Kresse H. Small proteoglycans of normal adult human kidney: distinct expression patterns of decorin, biglycan, fibromodulin, and lumican[J]. Kidney Int, Oct 2000; 58(4): 1557-1568.
    [78] Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, Roughley PJ, Murphy LC, and Watson PH. Reduced Expression of the Small Leucine-rich Proteoglycans, Lumican, and Decorin Is Associated with Poor Outcome in Node-negative Invasive Breast Cancer[J]. Clin. Cancer Res., Jan 2003; 9: 207-214.
    [79] Duan H, Orth K, Chinnaiyan AM, Poirier GG., Froelich CJ., He WW, and Dixit VM. ICE-LAP6, a Novel Member of the ICE/Ced-3 Gene Family, Is Activated by the Cytotoxic T Cell Protease Granzyme B[J]. J. Biol. Chem., Jul 1996; 271: 16720-16724.
    [80] Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC., Wang L, Trapani JA, Tomaselli KJ, Litwack G, and Alnemri ES. The Ced-3/Interleukin 1β Converting Enzyme-like Homolog Mch6 and the Lamin-cleaving Enzyme Mch2a Are Substrates for the Apoptotic Mediator CPP32[J]. J. Biol. Chem., Oct 1996; 271: 27099-27106.
    [81] Yu WM, Feltri M, Wrabetz L, Strickland S, and Chen ZL. Schwann Cell-Specific Ablation of Laminin γ1 Causes Apoptosis and Prevents Proliferation[J]. J. Neurosci., May 2005; 25: 4463 - 4472.
    [82] Liu X, Kim CN, Yang J, Jemmerson R, and Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c[J]. Cell, Jul 1996; 86(1): 147-157.
    [83] Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, and Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, Nov 1997; 91(4): 479-489.
    [84] Zou H, Li Y, Liu X, and Wang X. An APAF-1 Cytochrome c Multimeric Complex Is a Functional Apoptosome That Activates Procaspase-9[J]. J. Biol. Chem., Apr 1999; 274: 11549-11556.
    [85] Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition[J]. Bioessays, Oct 2001; 23(10): 912-923.
    [86] Lee JM, Dedhar S, Kalluri R, and Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease[J]. J. Cell Biol., Mar 2006; 172:973-981.
    [87] Shook D and Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development[J]. Mech Dev, Nov 2003; 120(11): 1351-1383.
    [88] Radisky DC. Epithelial-mesenchymal transition[J]. J. Cell Sci., Oct 2005; 118: 4325 - 4326.
    [89] Saika S, Kawashima Y, Miyamoto T, Okada Y, Tanaka SI, Ohmi S, Minamide A, Yamanaka O, Ohnishi Y, Ooshima A, and Yamanaka A. Immunolocalization of prolyl 4-hydroxylase subunits, alpha-smooth muscle actin, and extracellular matrix components in human lens capsules with lens implants[J]. Exp Eye Res, Mar 1998; 66(3): 283-294.
    [90] Saika S, Okada Y, Miyamoto T, Ohnishi Y, Ooshima A, and McAvoy JW. Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair[J]. Exp Eye Res, Jun 2001; 72(6): 679-686.
    [91] Saika S, Miyamoto T, Ishida I, Shirai K, Ohnishi Y, Ooshima A, and McAvoy J W. TGFβ-Smad signalling in postoperative human lens epithelial cells[J]. Br. J. Ophthalmol., Dec 2002; 86: 1428 - 1433.
    [92] Huang X and Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge[J]. Dev Biol, Nov 2004; 275(1): 1-11.
    [93] Newgreen,D.F.,and S.J.McKeown. Neural crest cells migration.In Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition[J]. Landes Bioscience, Texas. 2005: 29-39.
    [94] Nieto MA. The early steps of neural crest development[J]. Mech Dev, Jul 2001; 105(1-2): 27-35.
    [1] Iozzo RV. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth [J]. Crit. Rev. Biochem. Mol. Biol., Apr 1997; 32: 141-174.
    
    [2] Laurent A and Marian FY. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases [J]. Glycobiology, Sep 2002; 12: 107R - 116R.
    
    [3] Scott JE. Proteodermatan and proteokeratan sulfate (decorin, lumican / fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen [J]. Biochemistry, Jul 1996; 35(27): 8795-8799.
    
    [4] Funderburgh JL, Funderburgh ML, Hevelone ND, Stech ME, Justice MJ, Liu CY, Kao WW, and Conrad GW. Sequence, molecular properties, and chromosomal mapping of mouse lumican [J]. Invest. Ophthalmol. Vis. Sci., Oct 1995; 36: 2296-2303.
    
    [5] Chakravarti S, Stallings RL, SundarRaj N, Cornuet PK, and Hassell JR. Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22 [J]. Genomics, Jun 1995; 27(3): 481-488.
    
    [6] Dunlevy JR, Beales MP, Berryhill BL, Cornuet PK, and Hassell JR. Expression of the keratan sulfate proteoglycans lumican, keratocan and osteoglycin/mimecan during chick corneal development [J]. Exp Eye Res, Mar 2000; 70(3): 349-362.
    
    [7] Ying S, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Swiergiel J, Roth MR, Conrad GW, and Kao WW. Characterization and Expression of the Mouse Lumican Gene [J]. J. Biol. Chem., Nov 1997; 272: 30306-30313.
    
    [8] Grover J, Liu CY, Kao WW, and Roughley PJ. Analysis of the Human Lumican Gene Promoter [J]. J. Biol. Chem., Dec 2000; 275: 40967-40973.
    
    [9] Rossi P, Karsenty G, Roberts AB, Roche NS, Sporn MB, and Crombrugghe B. A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta [J]. Cell, Feb 1988; 52(3): 405-414.
    
    [10] Courtois SJ, Lafontaine DA, Lemaigre FP, Durviaux SM, and Rousseau GG. Nuclear factor-I and activator protein-2 bind in a mutually exclusive way to overlapping promoter sequences and trans-activate the human growth hormone gene [J]. Nucleic Acids Res., Jan 1990; 18: 57-64.
    
    [11] Keeton MR, Curriden SA, Zonneveld AJ, and Loskutoff DJ. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta [J]. J. Biol. Chem., Dec 1991; 266: 23048-23052.
    
    [12] Grover J, Chen XN, Korenberg JR, and Roughley PJ. The human lumican gene [J]. J. Biol. Chem., Sep 1995; 270: 21942-21949.
    
    [13] Blochberger TC, Vergnes JP, Hempel J, and Hassell JR. cDNA to chick lumican (corneal keratan sulfate proteoglycan) reveals homology to the small interstitial proteoglycan gene family and expression in muscle and intestine [J]. J. Biol. Chem., Jan 1992; 267: 347-352.
    
    [14] Funderburgh JL and Conrad GW. Isoforms of corneal keratan sulfate proteoglycan [J]. J. Biol. Chem., May 1990; 265: 8297-8303.
    
    [15] Funderburgh JL, Funderburgh ML, Brown SJ, Vergnes JP, Hassell JR, Mann MM, and Conrad GW. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique [J] J. Biol. Chem., Jun 1993; 268: 11874-11880.
    
    [16] Iozzo RV. Matrix proteoglycans: from molecular design to cellular function [C]. Annu Rev Biochem, Jan 1998; 67: 609-652.
    
    [17] Matsushima N, Ohyanagi T, Tanaka T, and Kretsinger RH. Super-motifs and evolution of tandem leucine-rich repeats within the small proteoglycans-biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin [J]. Proteins, Feb 2000; 38(2): 210-225.
    
    [18] Corpuz LM, Dunlevy JR, Hassell JR, Conrad AH, and Conrad GW. Molecular cloning and relative tissue expression of decorin and lumican in embryonic quail cornea [J]. Matrix Biol, Dec 2000; 19(7): 699-704.
    
    [19] Funderburgh JL, Funderburgh ML, Mann MM, and Conrad GW. Arterial lumican. Properties of a corneal-type keratan sulfate proteoglycan from bovine aorta [J]. J. Biol. Chem., Dec 1991; 266: 24773-24777.
    
    [20] Funderburgh JL, Caterson B, and Conrad GW. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan [J]. J. Biol. Chem., Aug 1987; 262: 11634-11640.
    
    [21] Melching LI and Roughley PJ. Modulation of keratan sulfate synthesis on lumican by the action of cytokines on human articular chondrocytes [J]. Matrix Biol, Aug 1999; 18(4): 381-390.
    [22] Weng DY, Chikama TI, Hayashi Y, Liu CY, and Kao WW. Structure and function relationship of lumican: role of N-terminal disulfide bond [A]. Invest. Ophthalmol. Vis. Sci., May 2004; 45: 4550.
    
    [23] Kao CC, Carlson EC, Liu CY, Chikama TI, Birk DE, Funderburgh JL, Jester JJ, and Kao WW. Lumican modulates keratocan gene expression [A]. Invest. Ophthalmol. Vis. Sci., May 2004; 45: 3779.
    
    [24] Saika S, Shiraishi A, Saika S, Liu CY, Funderburgh JL, Kao CW, Converse RL, and Kao WW. Role of lumican in the corneal epithelium during wound healing [J]. J. Biol. Chem., Jan 2000; 275: 2607-2612
    
    [25] Cornuet PK, Blochberger TC, and Hassell JR. Molecular polymorphism of lumican during corneal development [J]. Invest. Ophthalmol. Vis. Sci., Mar 1994; 35: 870-877.
    
    [26] Iozzo RV and Murdoch AD. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function [J]. FASEB J, Apr 1996; 10: 598-614.
    
    [27] Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, and Carroll H. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican [J]. J. Cell Biol., Jun 1998; 141: 1277-1286.
    
    [28] Svensson L, Narlid I, and Oldberg A. Fibromodulin and lumican bind to the same region on collagen type I fibrils [J]. FEBS Lett, Mar 2000; 470(2): 178-182.
    
    [29] Carlson EC, Mamiya K, Liu CY, Gendron RL, Birk DE, Funderburgh JL, and Kao WW. Role of Cys41 in the N-terminal domain of lumican in ex vivo collagen fibrillogenesis by cultured corneal stromal cells [J]. Biochem J, Feb 2003; 369(Pt 3): 461-468.
    
    [30] Geng Y, McQuillan D, and Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases [J]. Matrix Biol, Oct 2006; 25(8): 484-491.
    
    [31] Dunlevy JR and Rada JS. Interaction of lumican with aggrecan in the aging human sclera [J]. Invest. Ophthalmol. Vis. Sci., Nov 2004; 45: 3849-3856.
    
    [32] Hildebrand A, Romans M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, and Ruoslahti E. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta [J]. Biochem J, Sep 1994; 302 (Pt 2): 527-534.
    
    [33] Yamaguchi Y, Mann DM, and Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin [J]. Nature, Jul 1990; 346(6281): 281-284.
    
    [34] Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, and Ruoslahti E. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease [J]. Nature, Nov 1992; 360(6402): 361-364.
    
    [35] Isaka Y, Brees DK, Ikegaya K, Kaneda Y, Imai E, Noble NA, and Border WA. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney [J]. Nat Med, Apr 1996; 2(4): 418-423.
    
    [36] Iozzo RV. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins [J]. J. Biol. Chem., Jul 1999; 274: 18843-18846.
    
    [37] Vij N, Roberts L, Joyce S, and Chakravarti S. Lumican suppresses cell proliferation and aids Fas-Fas ligand mediated apoptosis: implications in the cornea [J]. Exp Eye Res, May 2004; 78(5): 957-971.
    
    [38] Vij N, Roberts L, Joyce S, and Chakravarti S. Lumican regulates corneal inflammatory responses by modulating Fas-Fas ligand signaling [J]. Invest. Ophthalmol. Vis. Sci., Jan 2005; 46: 88 - 95.
    
    [39] Li Y, Aoki T, Mori Y, Ahmad M, Miyamori H, Takino T, and Sato H. Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar [J]. Cancer Res., Oct 2004; 64: 7058-7064.
    
    [40] Winston WK and Liu CY. Roles of lumican and keratocan on corneal transparency [J]. Glycoconjugate J., 2003; 19: 275-285.
    
    [41] Chakravarti S. The cornea through the eyes of knockout mice. Exp Eye Res, Oct 2001; 73(4): 411-419.
    
    [42] Chakravarti S, Petroll WM, Hassell JR, Jester JV, Lass JH, Paul J, and Birk DE. Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma [J]. Invest. Ophthalmol. Vis. Sci., Oct 2000; 41: 3365-3373.
    
    [43] Jester JV, Lee YG, Li J, Chakravarti S, Paul J, Petroll WM, and Cavanagh HD. Measurement of corneal sublayer thickness and transparency in transgenic mice with altered corneal clarity using in vivo Confocal microscopy [J]. Vision Res, Jan 2001;41(10-11): 1283-1290.
    
    [44] Chakravarti S, Zhang G, Chervoneva I, Roberts L, and Birk DE. Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea [J]. Dev Dyn, Sep 2006; 235(9): 2493-2506.
    [45] Beecher N, Chakravarti S, Joyce S, Meek KM, and Quantock AJ. Neonatal development of the corneal stroma in wild-type and lumican-null mice [J]. Invest. Ophthalmol. Vis. Sci., Jan 2006; 47: 146-150.
    
    [46] Song J, Lee YG, Houston J, Petroll WM, Chakravarti S, Cavanagh HD, and Jester JV. Neonatal corneal stromal development in the normal and lumican-deficient mouse [J]. Invest. Ophthalmol. Vis. Sci., Feb 2003; 44: 548-557.
    
    [47] Funderburgh JL, Caterson B, and Conrad GW. Keratan sulfate proteoglycan during embryonic development of the chicken cornea [J]. Dev Biol, Aug 1986; 116(2): 267-277.
    
    [48] Hassell JR, Cintron C, Kublin C, and Newsome DA. Proteoglycan changes during restoration of transparency in corneal scars [J]. Arch Biochem Biophys, Apr 1983; 222(2): 362-369.
    
    [49] Cintron C, Covington HI, and Kublin CL. Morphologic analyses of proteoglycans in rabbit corneal scars [J]. Invest. Ophthalmol. Vis. Sci., Sep 1990; 31: 1789-1798.
    
    [50] Klintworth GK and Smith CF. Macular corneal dystrophy. Studies of sulfated glycosaminoglycans in corneal explant and confluent stromal cell cultures [J]. Am. J. Pathol.,Oct 1977;89: 167-182.
    
    [51] Klintworth GK and Smith CF. Abnormalities of proteoglycans and glycoproteins synthesized by corneal organ cultures derived from patients with macular corneal dystrophy [J]. Lab Invest, May 1983; 48(5): 603-612.
    
    [52] Quantock AJ, Meek KM, Ridgway AE, Bron AJ, and Thonar EJ. Macular corneal dystrophy: reduction in both corneal thickness and collagen interfibrillar spacing [J]. Curr Eye Res, Apr 1990; 9(4): 393-398.
    
    [53] Austin BA, Coulon C, Liu CY, Kao WW, and Rada JA. Altered collagen fibril formation in the sclera of lumican-deficient mice [J]. Invest. Ophthalmol. Vis. Sci., Jun 2002; 43: 1695-1701.
    
    [54] Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, and Birk DE. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice [J]. Invest. Ophthalmol. Vis. Sci., Jun 2003; 44: 2422-2431.
    
    [55] Paluru PC, Scavello GS, Ganter WR, and Young TL. Exclusion of lumican and fibromodulin as candidate genes in MYP3 linked high grade myopia [J]. Mol Vis, Nov 2004; 10:917-922.
    
    [56] Majava M, Bishop PN, Hagg P, Scott PG, Rice A, Inglehearn C, Hammond CJ, Spector TD, Ala-Kokko L, and Mannikko M. Novel mutations in the small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia [J]. Hum Mutat, Apr 2007; 28(4): 336-344.
    
    [57] Botella LM, Sanz-Rodriguez F, Sanchez-Eisner T, Langa C, Ramirez JR, Vary C, Roughley PJ, and Bernabeu C. Lumican is down-regulated in cells expressing endoglin. Evidence for an inverse correlationship between Endoglin and Lumican expression [J]. Matrix Biol, Jan 2004; 22(7): 561-572.
    
    [58] Funderburgh ML, Mann MM, Chikama TI, Wang L, Kao WY, and Funderburgh JL. Lumican supports migratory activity of primary keratocytes in vitro [A]. Invest. Ophthalmol. Vis. Sci., May 2004; 45: 3834.
    
    [59] Kao WW, Funderburgh JL, Xia Y, Liu CY, and Conrad GW. Focus on molecules: lumican [J]. Exp Eye Res, Jan 2006; 82(1): 3-4.
    
    [60] Funderburgh JL, Mitschler RR, Funderburgh ML, Roth MR, Chapes SK, and Conrad GW. Macrophage receptors for lumican. A corneal keratan sulfate proteoglycan [J]. Invest. Ophthalmol. Vis. Sci., May 1997; 38: 1159-1167.
    
    [61] Koh N, Saika S, Miyamoto T, Tanaka S, Ooshima A, and Ohnishi Y. A model of proliferative vitreoretinopathy induced by lens extraction in mice [J]. Invest. Ophthalmol. Vis. Sci., May 2003; 44: 301-306.
    
    [62] Saika S, Miyamoto T, Tanaka S, Tanaka T, Ishida I, Ohnishi Y, Ooshima A, Ishiwata T, Asano G, Chikama T, Shiraishi A, Liu CY, Kao CW, and Kao WW. Response of lens epithelial cells to injury: role of lumican in epithelial-mesenchymal transition [J]. Invest. Ophthalmol. Vis. Sci., May 2003; 44: 2094-2102.
    
    [63] Saika S, Kono-Saika S, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Flanders KC, Yoo J, Anzano M, Liu ChY, Kao WW, and Roberts AB. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury [J]. Am. J. Pathol., Feb 2004; 164: 651-663.
    
    [64] Leygue E, Snell L, Dotzlaw H, Troup S, Hiller-Hitchcock T, Murphy LC, Roughley PJ, and Watson PH. Lumican and decorin are differentially expressed in human breast carcinoma [J]. J Pathol, Nov 2000; 192(3): 313-320.
    
    [65] Lu YP, Ishiwata T, Kawahara K, Watanabe M, Naito Z, Moriyama Y, Sugisaki Y, and Asano G. Expression of lumican in human colorectal cancer cells [J]. Pathol Int, Aug 2002; 52(8): 519-526.
    
    [66] Naito Z, Ishiwata T, Kurban G, Teduka K, Kawamoto Y, Kawahara K, and Sugisaki Y. Expression and accumulation of lumican protein in uterine cervical cancer cells at the periphery of cancer nests [J]. Int J Oncol, May 2002; 20(5): 943-948.
    
    [67] Lu YP, Ishiwata T, and Asano G. Lumican expression in alpha cells of islets in pancreas and pancreatic cancer cells [J]. J Pathol, Mar 2002; 196(3): 324-330.
    
    [68] Schaefer L, Grone HJ, Raslik I, Robenek H, Ugorcakova J, Budny S, Schaefer RM, and Kresse H. Small proteoglycans of normal adult human kidney: distinct expression patterns of decorin, biglycan, fibromodulin, and lumican [J]. Kidney Int, Oct 2000; 58(4): 1557-1568.
    
    [69] Yoshioka N, Inoue H, Nakanishi K, Oka K, Yutsudo M, Yamashita A, Hakura A, and Nojima H. Isolation of transformation suppressor genes by cDNA subtraction: lumican suppresses transformation induced by v-src and v-K-ras [J]. J. Virol., Jan 2000; 74: 1008-1013.
    
    [70] Vuillermoz B, Khoruzhenko A, D'Onofrio MF, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart FX, and Wegrowski Y. The small leucine-rich proteoglycan lumican inhibits melanoma progression [J]. Exp Cell Res, Jun 2004; 296(2): 294-306.
    
    [71] Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, Roughley PJ, Murphy LC, and Watson PH. Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer [J]. Clin. Cancer Res., Jan 2003; 9: 207-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700