用户名: 密码: 验证码:
心肌声学造影结合腺苷负荷对心肌微循环灌注的评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:有关声学造影剂结合腺苷负荷对心肌缺血或梗死后是否存在微循环、微循环的状况及微循环灌注储备的评价作用尚不明确。本研究包括:1)探讨声学造影剂(MCE)对心肌缺血面积的估测作用;2)心肌声学造影(MCE)检测基础状态下不同程度的血流TIMI分级冠状动脉所供应心肌组织微循环灌注状况,评价PCI术后心肌微血管灌注的改善情况,探究其临床应用价值;3)探讨心肌声学造影(MCE)结合腺苷评价心肌微血管血流储备的可行性及临床应用价值。方法:1)本课题第一部分选择健康杂种犬12只,建立开胸犬急性心肌缺血动物模型,左前降支(LAD)结扎10min后,经静脉注射声诺维并进行MCE检查。在左室心尖长轴二腔心切面,应用MCE的彩色M型曲线技术检测急性缺血心肌分别在前壁和下壁的临界点,以此为界在二维图像上描计出声学造影剂灌注缺损面积。启动Q-analysis软件,在左室心尖长轴二腔心切面,将取样点置于对应TTC染色心肌缺血区、TTC病理染色范围大于MCE灌注缺损范围的缺血面积区域(临界区)、正常心肌组织区,动态追踪此感兴趣区,使其在造影剂再充盈的各心动周期内的每一帧图像上保持几乎相同的解剖位置,调节图像以使感兴趣区位于心肌内并容纳尽可能多的心肌,选择每一心动周期舒张末期图像纳入分析,软件自动生成灌注强度曲线并拟合函数:Y=A(1-eβ2t)+C,得出曲线峰值强度(A),曲线斜率(β)和灌注量(A·β),每个区域的参数均取3次测量的平均值。通过计算局部组织蓄积的最大微泡数量(A)和造影剂在局部充填的速度(β)测定心肌相对血流量,并作为心肌血流灌注定量判断标准。2)本课题的第二部分选择30例AMI患者及11例急性冠脉综合症患者,其中36例行PCI手术,于PCI手术前后分别进行MCE检查,将左室壁分为16节段进行心肌灌注记分,应用Qlab软件定量分析实时声学造影再灌注曲线。根据冠脉造影的结果,按冠脉血流TIMI分4级,将其所供应的心肌节段分为4组,分别进行组间MCE半定量视觉评分与定量参数值的比较,并与冠脉的血流TIMI分级程度进行相关分析。对比研究PCI手术前后各参数值的变化;3)本课题第三部分选择30例AMI及11例急性冠脉综合症患者,其中36例行PCI手术,应用实时心肌声学造影和腺苷负荷超声心动图,定量评价冠状动脉介入治疗前后心肌微血管血流储备。应用Qlab软件定量分析实时声学造影再灌注曲线,分析PCI手术前后冠脉血流储备量的变化,对PCI手术前后心肌微循环的状况和预后进行估测。结果:1)MCE所测定的左室心肌缺血面积与美蓝染色后缺血面积实际参数高度一致(r=0.93,P=0.01);与TTC染色后缺血面积实际参数一致性较好(r=0.68,P<0.01)。左室心尖长轴二腔心切面, TTC病理染色缺血心肌范围大于MCE灌注缺损范围约12.35±2.16mm。以TTC病理染色为金标准,回顾分析各个感兴趣点的定量指标,心肌正常灌注区的峰值强度(A)、曲线斜率(β)和灌注量(A·β)显著高于缺血区,缺血心肌区域声学造影的峰值强度(A)较正常心肌区明显延长,而显影持续时间却显著缩短,灌注量(A·β)较正常心肌区约降低约70%,与心肌正常灌注区之间差异有统计学意义(P<0.05)。TTC病理染色缺血心肌大于MCE灌注缺损的面积区域声学造影的峰值强度(A)较正常心肌区延长,而显影持续时间亦缩短,灌注量(A·β)较正常心肌区约降低约50%,与心肌正常灌注区之间差异有统计学意义(P<0.05)。2)41例患者术前均顺利完成MCE检查,36例患者PCI术后顺利完成MCE复查。MCE检出心肌灌注异常与相应供血支冠状动脉血流TIMI≤2级的符合率为79%(193/244)。当心肌灌注MCE记分为0时,MCE检出心肌灌注异常与相应供血支冠状动脉血流TIMI<1级的符合率为70%(40/57)。而MCE记分为1时,MCE检出心肌灌注异常与相应供血支冠状动脉血流TIMI>2级的符合率为73%(272/374)。MCE半定量分析显示冠状动脉血流TIMI分级程度不同,MCE分值差异有显著性(P<0.05)。PCI手术前病变血管相应心肌节段的A、β、A·β明显低于正常灌注节段(P<0.001),4组间的A、β及A·β均存在明显差别(F=103.36,91.13,87.34,P<0.01),做任意两组间的t检验,其A、β及A·β差异均有统计学意义(P<0.05)。随冠脉血流TIMI分级的降低,其心肌微循环灌注参数(A、β、A·β)指标降低越明显,而各组内A、β、A·β与冠脉血流TIMI分级的程度并无明显相关性(P均>0.05)。视觉记分在PCI前后存在明显差异(P<0.05),提示PCI治疗后局部心肌灌注区视觉显影较术前有明显改善。择期PCI治疗后梗死节段的A、β、A·β值仍低于正常节段(P<0.05),标化后Ar、βr、及A·βr三个参数值在PCI后均有显著改善(P<0.01);PCI术前视觉评分为0-0.5分者,标化后Ar、βr、及A·βr三个参数值在PCI后均有显著改善(P<0.05);术前视觉评分为1分者,Ar、βr、及A·βr术后有改善,但其变化差异无统计学意义;随着术前血流TIMI分级程度的降低,PCI术后Ar、βr、及A·βr三个参数值增加越少,结果显示术前病变血管的微循环灌注的损害程度直接影响其血流储备量。3)41例患者术前均顺利完成MCE结合腺苷负荷检查,36例患者PCI术后顺利完成MCE结合腺苷负荷的复查。PCI术前的静息状态下,A、β和A·β值随着供血冠脉血流TIMI分级程度的降低而降低(P<0.01);在腺苷负荷状态下,A、β和A·β值亦随着供血冠脉血流TIMI分级的降低而降低(P<0.01),且其储备值呈现出相同的趋势(P<0.01)。PCI术后静息与负荷状态下,β和A·β值亦呈现此趋势,其血流储备量较PCI术前明显增加,但心肌节段A、β、A·β储备值仍低于正常灌注组(P<0.05)。随着术前血流TIMI分级程度的降低,PCI术后A、β、A·β储备值增加减少,结果显示术前病变血管的微循环灌注的损害程度直接影响其血流储备量。结论:1)心肌声学造影MCE可用于心肌缺血面积的估测,测定心肌缺血范围,但在急性夹闭冠状动脉制造犬急性缺血模型的情况下,存在低估急性缺血范围的可能性,因此测定MCE灌注缺损区范围外12.35±2.16mm面积内的A·β心肌血流量可以提高缺血面积的界定。2)MCE视觉记分与血流量定量分析显示冠状动脉血流TIMI分级程度越低,MCE视觉评分及定量微循环血流量值越低,MCE能客观地反映冠状动脉血流TIMI分级的程度。PCI术后,血流TIMI分级在评价冠状动脉微循环灌注的改善与否有局限性,而MCE对术后疗效的评价具有补充及指导意义。3)PCI术前血流储备越差,术后冠脉血流储备改善越差。心肌声学造影结合腺苷负荷试验定量测定心肌血流储备,可以预测患者愈后,有助于介入性治疗前病人的筛选、术后疗效评价。
Objective: Previous studies ST-MCE was safe and feasible for assessing perfusion in Myocardial microcirculation.However, little was known about differention and the role about the Adenosine Stressing Myocardial Contrast Echocardiography.As a result, the present study aimed at resolving several issues including: 1) To assess ischemic myocardium area by Myocardial contrast echocardiography(MCE). 2) To investigate the diagnostic value of myocardial contrast echocardiography (MCE) and the grade of TIMI in evaluating myocardial microcirculation perfusion and clinical applications.To assess resting myocardial perfusion by MCE in patients with coronary artery disease before and after PCI surgery. 3) To investigate the diagnostic value of adenosine stress myocardial contrast echocardiograph in assessing reserve of myocardial microcirculation before and after PCI surgery ,and to establishing the feasibility and clinical applications. Methods: 1) Eleven Open chest dogs were performed by in travenous MCE after ten minutes of left anterior descending coronary artery (LAD) occlusion for acute ischemia.M-mode of MCE defined the cut-off value of ischemic myocardium, and marked in anterior and inferior in 2D images, respectively. Ischemic area was curved and compared with pathologic result.Accoding TTC results ,put the aim on normal ?ischemic and suspicious area and analyzed quantitatively from microbubble replenishment curves for myocardial perfusion. 2) Thirty AMI and eleven ACS patients were examined by MCE using Sonovue intravenous injection before selective coronary angiograph.Thirty-six of patients were examined by MCE again after PCI surgery. The images of MCE were analyzed quantitatively from microbubble replenishment curves for myocardial perfusion .Left ventricular myocardial segments,divided into 4 groups according to the grade of TIMI of coronary artery detected by coronary artery angiography. Acoustic density parameters were compared among these groups, and the correlation between these parameters and the grade of TIMI of coronary artery .3) Thirty AMI and eleven ACS patients were examined by MCE at baseline and after adenosine stress administration before selective coronary angiograph.Thirty-six patients referred for PCI surgery . After and before PCI the patients were referred subsequent revascularization underwent MCE at baseline and after adenosine stress administration. The images of MCE were analyzed quantitatively from microbubble replenishment curves for myocardial perfusion and its reserve. Results: 1) There was correlation between Meis blue dye area and MCE ischemic area (r=0.93, P=0.01). There was correlation between TTC staining area and MCE ischemic area (r=0.68, P=0.01). Accoding TTC results ,the ischemic area in TTC is larger about 12.35±2.16mm than the ischemic area in MCE. The images of MCE were analyzed quantitatively from microbubble replenishment curves for myocardial perfusion. The A?βand A·βin the ischemic and suspicious area were significantly different versus the normal area. 2) Results among the 4 groups were significantly respectively (P<0.05), the A ?βand A·βwere decreased significantly with the grade of TIMI of coronary artery (all P<0.05); Before PCI surgery, A?β?and A·βwere significantly lower in the regions of interest with severe lower the grade of TIMI of coronary artery than those with normal coronary artery (P<0.05). the normalized value of Ar?βr?and A·βr were higher after PCI surgery than those before operation (P<0.05). 3) At baseline, significant differences in A ?βand A?βparameter were observed among groups of graded TIMI severity groups. Under adenosine stress,significant differences in A,βand A·βvalue could be observed among groups which showed that the lower the grade of TIMI severity, the lower the MCE parameters. Graded decreasing in the reserves of A,βand A·βcould also be observed with decreasing coronary the grade of TIMI severity. Furthermore, Some significant differences inβ, A·βcould be observed between segments with CBF and those without. Conclusion: 1) MCE is applicable to assess ischemic myocardium area. But defining myocardial infarct size by MCE ischemic area maybe lowly diagnose ischemia size,so we can improve by the A?βand A·βfrom microbubble replenishment curves for myocardial perfusion in 12.35±2.16mm out of the ischemic area in MCE. 2) Perfusion abnormalities are present in patients with severe lower the grade of TIMI of coronary artery and can be detected by MCE. However, myocardial microcirculation perfusion does not correlate with the grade of TIMI of coronary artery completely. further more, MCE can provide valuable information on t he outcome of coronary artery PCI surgery in these patients. 3) Quantitative MCE in conjunction with adenosine stress is feasible to identify and selsction AMI for PCI as well assesses the contribution of perfusion in myocardial microcirculation before or after PCI surgery.
引文
[1]高润霖,吴宁,胡大一,等.心血管病治疗指南和建议.北京,人民军医出版社, 2005,18-52.
    [2] Hori M, Kitataze K, Adenoisine, The heart and coronary circulation. Hypertension, 1991, 18:565-570
    [3] Caiati C, Montaldo C, Zedda N, et al. New noninvasive method for coronary flow reserve assessment:contrast-enhanced transthoracic second harmonic echo Doppler. Circulation, 1999, 99:771-778.
    [4] Rovai D, Luhrano V, Vassalle C, et al. Detection of perfusion defects during coronary occlusion and myocardial reperfusion after form-bolysis by intravenous administration of the echo-enhancing agent BR1. J Am Soc Echocardiogr, 1998, 11: 169-180.
    [5] Thomson HL, Basmadjian AJ, Rainburi AJ, et al. Contrast echocardiography improves the accuracy and reprodudbility of left ventricular remodeling measurements: a prospective, randomly assigned, blinded study. J Am Coll Cardio, 2001, 38:867-875.
    [6] Castello R, Bella JN, Rovner A, et al. Efficacy and time-efficiency of a "sonographer-driven" contrast echocardiography protocol in a high-volume echocardiography laboratory. J Am Heart, 2003, 145:535-541.
    [7] Kloner RA, Ganote CE, Jennings RB. The“no-reflow”phenomenon after temporary coronary occlusion in the dog. J Clin Invert, 1974, 54:1496-1508
    [8] Ishihara M, Sato H, Tateishi H, et al. Impaired coronary flow reserve immediately after coronary angioplasty in patients with acute myocardial infarction. J Br Heart, 1993, 69:288-292
    [9] Main ML, Magalski A, Morris BA, et al. Combined assessment of microvascular integrity and contractile reserve improves differentiation of stunning and necrosis after acute anterior wall myocardial infarction. J Am Coll Cardio, 2002, 40:1079-1084.
    [10] Marcel P, David V, Agnès P, et al. Assessment of the physiologic significance of coronary disease with dipyridamole real-time myocardial contrast echocardiography, J Am Coll Cardio, 2004, 43:257-264.
    [11] Costa AD, Isaaz K, Cerisier A, et al. Coronary flow reserve in patients with dilated cardio myopathy is related to baseline diastolic function but not to systolic function.Circulation, 1996, 94:660-668
    [12] DeMaria AN, Bommer WJ, Riggs K, et al. Echocardiography visualization of myocardial perfusion by left heart and intracoronary injection of echo contrast agent. Circulation, 1980, 62:138-143.
    [13] Kaul S. Myocardial contrast echocardiography:15 years of research and development. Circulation, 1997, 96:3745-3760.
    [14] Burns PN, Powers J E, Simpson DH, et al. Harmonic imaging:principles and preliminary results. Clin Radio, 1996, 51:50-55.
    [15] Tiemann K, Veltmann C, Ghanem A, et al. The impact of emission power on the destruction of echo contrast agents and on the origin of tissue harmonic signals using power pulse inversion imaging. Ultrasound Med Biol, 2001, 27:1525-1533.
    [16] Wei K, Jayaweera AR, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound induced destruction of microbubbles administered as a contrast venous infusion. Circulation, 1998, 97:473-483.
    [17] Moir S, Haluska B, Leung D, et al. Quantitative myocardial contrast echocardiography for prediction of thrombolysis in myocardial infarction flow in acute myocardial infarction. J Am Cardio, 2004, 93:1212-1217.
    [18] Coggins MP, Sklenar J, Le E, et al. Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral derived myocardial bloodflow. Circulation, 2001, 104:2471-2477.
    [19] Janardhanan R, Burden L, Senior R. Usefulness of myocardial contrast echocardiography in predicting collateral blood flow in the presence of apersistently occluded acute myocardial infarction related coronary artery. J Am Cardio, 2004, 93:1207-1211.
    [20] Sakuma T, Otsuka M, Okimoto T, et al. Optimal time for predicting myocardial viability after successful primary angioplasty in acute myocardial infarction:a study using myocardial contrast echocardiography. Am J Cardiol, 2001, 87:687-692.
    [21] Greaves K, Dixon SR, Fejka M. Myocardial contrast echocardiography is superior to other known modalities for assessing myocardial reperfusion after acute myocardial infarction. Heart, 2003, 89:139-144.
    [22] Liu YN, Deng YB. Myocardial contrast echocardiography and assessment of myocardial viability. J Chin Med Imaging Techno, 2004, 20:153-155.
    [23] Meza MF, Ramee S, Collins T, et al. Knowledge of perfusion and contractile reserveimproves the predictive value of recovery of regional myocardial function post revascularization: a study using the combination of myocardial contrast echocardiography and dobutamine echocardiography. Circulation, 1997, 96:3459-3465.
    [24] Janardhanan R, Moon JC, Pennell DJ, et al. Myocardial contrastechocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. J Am Heart, 2005, 149:355-362.
    [25] Senior R, Janardhanan R, Jeetley P, et al. Myocardial contrast echocardiography for distinguishing ischemic from non ischemic first on set acute heart failure. Circulation, 2005, 112:1587-1593.
    [26] Wei K, Tong KL, Belcik T, et al. Detection of coronary stenoses at rest with myocardial contrast echocardiography. Circulation, 2005, 112:1154-1160.
    [27] Fukuda S, Muro T, Hozumi T, et al. Changes in transmural distribution of myocardial perfusion assessed by quantitative intravenous myocardial contrast echocardiography in humans. Heart, 2002, 88:368-372.
    [28] Shimoni S, Frangogiannis NG, Aggeli CJ, et al. Identification of hibernating myocardium with quantitative intravenous myocardial contrast echocardiograp hy:comparison with dobutamine echocardiography and thallium-201 scintigraphy. Circulation, 2003, 107:538-544.
    [29] Maxwell L, Harrison WR, Gavin JB. Endothelinant agonists diminish postischemic microvascular incompetence and necrosis in the heart. Microvasc Res, 2000, 59:204-212.
    [30] Galiuto L, Lotrionte M, Crea F, et al. Impaired coronary and myocardial flow in severe aortic stenosis is associated with increase dapoptosis:a transthoracic Doppler and myocardial contrast echocardiography study. Heart, 2006, 92:208-212.
    [31] Zhou ZJ,Ye HY, Zhang XY, et al. Proangiogenesis of infracted myocardium induced by human vascular endothelial growth factor(VEGF165)directed by the targeted delivery system of ultrasound mediated bearing gene microbubbles’cavitation. J Chin Cardio, 2004, 32:438-441.
    [32] Mulvagh SL, DeMaria AN, Fdnsto SB, et al. Contrast echocardiography: current and future applications. J Am Soc Echocardiogr, 2000, 13:331-342.
    [33] Porter TR, Xie F, Kricsfdd A, et al. Improved endocardial border resolution during dobutamine stress echocardiography with intravenous sonicated dextrose albumin.J Am Coll Cardio, 1994, 23:1440-1443.
    [34] Leischik R, Kuhlmarm C, Bruch C, et al. Reproducibility of stress echocardiography using intravenous injection of ultrasound contrast agent. J Cardio Imaging 1997, 13:387-394.
    [35] Rainbird AJ, Mulvagh SL, Qh JK, et al. Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J Am Soc Echocardiogr, 2001, 14:378-385.
    [36] Kitzman DW, Goldman ME, Gillam LD, et al. Efficacy and safety of the novel ultrasound contrast agent perfution (Definity) in patients with suboptimal baseline left ventricular echocardiographic images. J Am Cardio, 2000, 86:669-674.
    [37] Thanigaraj S, Nease RF, Schechtman KB, et al. Use of contrast for image enhancement during stress echocardiography is costeffective and reduces additional diagnostic testing. J Am Cardiol, 2001,87:1430-1432.
    [38] Korosoglou G, Hansen A, Hoffend J, et al. Comparision of real-time myocardial contrast echocardiography for the assessment of myocardial viability with fluorodeo xyglycose 218 positron emission tomography and dobutanmine stress echocardiography. J Am Cardio, 2004, 94:570-576.
    [39] Lafitte S, Mateugata H, PetersB, et al. Comparative value of dobutamine and adenosine stress in the detection of coronary stenosis with myocardial contrast echocardiography. Circulation, 2001, 103:2724-2730.
    [40] Porter TR, Xie F, KilzerK, et al. Detectionof myocardial perfusion abnormalities during dobutamine and adenosine stress echocaidiography with transient myocardial contrast imaging after minute quantities of intravenous perfluorocarbon-exposed sonicated dextrose albumin. J Am Soc Echocardiogr 1996, 9:779-786.
    [41] Lim HE, Shim WJ, Rhee H, et al. Assessment of coronary flow reserve with transthoradc Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 2000, 13:264-270.
    [42] Norton ED, Jackson EK, Turner MB, et al. The effects of intravenous infusions of selective adenosine A1-receptor and A2-receptor agonists on myocardial reperfusion injury. J Am Heart, 1992, 123:332-338.
    [43] Hdnle SK, Noblin J, Goree-Best P, et al. Assessment of myocaroial perfusion byharmonic power Doppler imaging at rest and during adenosine stress comparison with (99m)Tc-sestamibi SPECT imaging. Circulation, 2000, 102:55-60.
    [44] Ronderos RE, Boskis M, Chung N, et al. Correlation between myocardial perfusion abnormalities detected with intermittent imaging using intravenous perfluorocarbon microbubbles and radioisotope imaging during high-dose dipyridamole stress echo. Clin Cardio. 2002, 25:103-111.
    [45] Reis SE, Holubkov R, Lee JS, et al. Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease. J Am Coll Cardio, 1999, 33:1469-1475.
    [46] Finegan BA, Lopaschuk GD. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. Circulation, 1993, 87:900-908.
    [47] Jeremias A, Filardo SD, Whitbourn RJ, et al. Effects of intravenous andintra coronary adenosine triphosphate as compared with adenosine on coronary flow and pressure dynamics. Circulation, 2000, 101:318-323.
    [48] Hata K, Whittaler P, Kloiner RA, et al. Brief antecedent ischemia attenuates platelet mediated thrombsis in damaged and stenotic canine coronary arteries role of adenosine. Circulation, 1998, 97:692-702.
    [49] Timothy W, Martin, MD, John F, et al. Comparison of Adenosine, Dipyridamole, Dobutamine in Stress Echocardiography. Annals of linternal Medicine, 1992, 116: 190-195
    [50] Reidar W, Petri G, Ronnie W, et al. Real-time perfusion adenosine stress echocardiography in the coronary care unit: a feasible bedside tool for predicting coronary artery stenosis in patients with acute coronary syndrome. Echocardiography, 2005, 120:31-40.
    [51] Gianni C, Marcus L, Thomas M, et al. Are high doses of intracoronary adenosine an alternative to standard intravenous adenosine for the assessment of fractional flow reserve? American Heart Journal, 2004, 148:590-595
    [52] Porter TR, Xie F, SilverM, et al. Real-time perfusion imaging with low mechanical index pulse inversion Doppler imaging. J Am Coll Cardio, 2001, 37:748-753.
    [53] Peltier M, Vancraeynest D, Pasquet A, et al. Assessment of the physiologic significance of coronary disease with dipyridamole real-time myocardial contrast echocardiography: comparison with technetium-99m sestamibi single-photo emission computed tomography and quantitative coronary angiography. J Am Coll Cardio, 2004, 43:257-264.
    [54] Heinle SK, Noblin J, Goreebest P, et al. Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosine stress:comparesion with (99m) Tc sestamibi SPECT imaging. Circulation, 2000, 102:55-60.
    [55] Blaithnead M, Stuart H, Ryan L, et al. Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. J Am Heart, 2003, 146:99-105.
    [56] Leong H, Le E, Rim SJ, et al. Quantification of myocardial perfusion and determination of coronary stenosis severity during hyperemia using real-time myocardial contrast echocardiography. J Am Soc Echocardiogr, 2001, 14:1173-1 182
    [57] Wei K, Ragosta M, Thorpe J, et al. Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circulation, 2001, 29:560-565
    [58] Masugata H, Peters B, Lafitte S, et al. Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-time myocardial contrast echo refilling curves. J Am Coll Cardio, 2001, 37:262-269
    [59] Thaker KB, Kawaanishi D, Narang YK, et al. Comparison of flow velocity in the left anterior descending coronary artery and coronary flow reserve, by intra coronary flow wire and transesophageal echocardiography. Circulation, 1994, 90:270-276.
    [60] Sensky PR, Jivan A, Hudson NM, et al. Coronary artery disease combined stress MR imaging protocol-one-stop evaluation of myocardial perfusion and function. Radiology, 2000, 215:608-614.
    [61]张竹花.冠状动脉血流储备的无创性影像评价方法和意义.国外医学临床放射学分册, 2000, 2:70-75.
    [62] Bruyne BD, Pijils NH, Barbato E, et al. Intracoronary and intravenous adenosine 5-triphosphate? adenosine papaverine and contrast medium to assess fractional flow reserve in humans. Circulation, 2003, 107:1877-1883.
    [63] Gao F, Christopher TA, Lopez BL, et al. Mechanism of decreased adenosine protection in reperfusion injury of aging rats. J Am Physiol Heart Circ Physiol, 2000, 279:329-338.
    [64] Wasir H, Bhan A, Choudhary SK, et al. Pretreatment of human myocardium with adenosine. J Eur Cardiothorac Surg, 2001, 19:41-46.
    [65] Quintana M, H jemdahl P, Sollevi A, et al. Left ventricular function and cardiovascular events following adjuvant therapy with adenosine in acute myocardial infarction treated with thrombolysis, results of the Attenuation byAdenosine of Cardiac Complications(ATTACC) study. J Eur Clin Pharmacol, 2003, 59:1-9.
    [66] Jayaweera AR, Wei K, Goodman NC, et al. Capillary derecruit mentcauses perfusion defects on myocardial contrast echocardiography during pharmacologic stress. J Am Coll Cardiol, 1999, 33:450-457.
    [67] Chan J, wahi S, Csin P, et a1. Anatomic ll M-mdoe:A novel technique for the Quantitative evaluation of regional wall moiton anlaysis during dobuatmine echo cardiography. J Int Cardiac Imaging. 2000, 16:247-255.
    [68] Winter R, Willenhemier R. The incremental value of myocardial contrast echo cardiography(MCE)as a bedside decision making tool in the coronary care unit . J Eur Echocardiogr, 2004, 5:149-155.
    [69] Main M, Magalski A, Chee N, et al. Full motion pulse inversion power Doppler contrast echocardiography differentiates stunning from necrosis and predicts recovery of left ventricular function after acute myocardial infarction. J Am Coll Cardio, 2001, 38:1930-1934.
    [70] Greaves K, Dixon S, Fejka M, et al. Myocardial contrast echocardiography is superior to other known modalities for assessing myocardial reperfusion after acute myocardial infarction. Heart, 2003, 89:139-144.
    [71] Guiducci V, Fioroni S, Giacometti P, et al. Early evaluation of coronary microcirculation by echocardiography with contrast medium in patients with acute myocardial infarction treated with primary percutaneous transluminal coronary angiop lasty. Minerva Cardio Angio, 2005, 53:157-164.
    [72] Janardhanan R, Swinburn JMA, Greaves K, et al. Usefulness of myocardial contrast echocardiography using low power continuous imaging early after acute myocardial infarction to predict late function left ventricular recovery. Am J Cardio, 2003, 92:493-497.
    [73] Wada H, Yasu T, Kotsuka H, et al. Evaluation of transmural myocardial perfusion by ultra harmonic myocardial contrast echocardiography in reperfused acute myocardial infarction.Circ J, 2005, 69:1041-1046.
    [74] Xing YQ, Zhang Y, Li DQ, et al. Comparison of the veracity of real-time perfusion,harmonic angio,and ultraharmonic myocardial contrast imaging modes in evaluation of acute myocardial infarction area. J Chin Med, 2006, 119:179-184.
    [75] SiriM, Sigm und F, Hans T, et al. Quantitative adenosine real-time myocardial comtrast echocardiography for detection of angiographically significant coronaryartery disease. J Am Soc Echocardiogr, 2006, 19:365-372.
    [76] Linka AZ, Sklenar J, Wei K, et al. Assessment of transmural distribution of myocardial perfusion with contrast echocardiography. Circulation, 1998, 98:1912-1920.
    [77] Janardhanan R, Moon JC, Pennell DJ, et al. Myocardial contrast echocardiography acutely reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. J Am Heart, 2005, 149:388-392.
    [78] Shmioni S, Frangogiannis NG, Aggeli CJ, et al. Microvascular structural correlates of myocardial contrast echocardiography in patients with coronary artery disease and left ventricular dysfunction: implication for the assessment of myocardial hibernation. Circulation, 2002, 106:950-956.
    [79] Dourado PMM, Tsutsui JM, Santos JM T, et al. Bioeffects of album in encapsula ted microbubbles and real-tmie myocardial contrast echocardiography in an expermi ental canine model. J Braz Med Biol Res, 2006, 39:825-832.
    [80] Martin TW, Seaworth JF, Johns JP, et al. Comparison of adenosine?dipyridamole and dobutamine in stress echocardiography. Ann Intern Med. 1992, 116:190-196.
    [81] Ana Djordjevic-Dikic, Miodrag Ostojic, Branko Beleslin et al. Low-dose adenosine stress echocardiography: Detection of myocardial viability. Cardiovascular Ultrasound, 2003, 7:1186-1476.
    [82]李昭屏,中尾伸二,首藤弥绪等.经胸超声心动图测定冠状动脉血流储备对严重冠脉狭窄的诊断价值.中国超声医学杂志, 2005, 21:344-347.
    [83] Reffelmann T, Kloner RA. Effects of adenosine and verapamil on anatomic no-reflow in a rabbit model of coronary artery occlusion and reperfusion. J Cardiovasc Pharmacol, 2004, 43:580-588.
    [84] Kelley MW, Segal SS, Kaul S, et al. The behavior of sonication albumin microbubbles within the microcirculation:A basis for their use during myocardial contrast echocardiography. Circ Res, 1989; 65:458-464
    [85] Main ML, Hannen MN, Kusnetzky LL, et al. Myocardial contrast echocardiographic estmiates of infarct size predict likelihood of left ventricular remodeling after acute anterior wall myocardial infarction. J Am Soc Echocardiogr, 2006, 19:64-70.
    [86] Sieswerda GT,Yang L,Boo MB,et al. Real-time perfusion imaging: a new echocardiograp hictechnique for simultaneous evaluation of myocardial perfusion and contraction .Echocardiography,2003,20∶545
    [87] Steg PG, Goldberg RJ, Gore JM, et al. Baseline characteristics, managementpractices, and in hospital outcomes of Acute Coronary Events(GRACE). J Am Cardio, 2002, 15:358-363.
    [88] Girish D, Rajesh J, Sajad H, et al. Detection of residual infarct related coronary artery stenosis and multivessel disease after thrombolysis:comparison between myocardial contrast echocardiography and single photon emission computed tomography. J Am Soc Echocardiogr, 2006, 19:546-551.
    [89] Koyama Y, Matsuoka H, Mochizuki T, et al. Assessment of reperfused acute myocardial infarction with two phase contrast enhanced helical CT:prediction of left ventricular function and wall thickness. Radiology, 2005, 235:804-811.
    [90] Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. C irculation, 2003, 108:1022-1026.
    [91] Hou CC, Wang WS, Huang XR, et al.Ultrasound microbubble mediated genetransfer of inducible Smad blocks transforming grow the factor signaling and fibrosis in ratremnant kidney. Am J Pathol, 2005, 166:761-771.
    [92] Bodi V,Sanchis J,Losada A,et al. Study of post infarction coronary perfusion using quantitative analysis of myocardial echocardiography with intravenous injection of con trast.Rev Esp Cardio,2005,58∶137
    [93] Korosoglou G, Labadze N, Giannitsis E, et al. Usefulness of real-time myocardial perfusion miaging to evaluate tissue level reperfusion in patients with non ST elevation myocardial infarction. Am J Cardio, 2005, 95:1033-1038.
    [94] Zhang SW, Wu SN, Lin ZW, et al. Application of myocard ial perfusion and wall motion in assessing coronary artery disease. J Chin Ultrasonography, 2003,12: 716-720
    [95] Xing YQ, Zhang Y, Li DQ, et al. Comparison of the veracity of real-time perfusion, harmonic angio,and ultraharmonic myocardial contrast mi aging modes in evaluation of acute myocardial infarction area. J Chin Med, 2006, 119:179-184.
    [96] Rovai D, Lubrano V, Vassalle C, et al. Detection of perfusion defects during coronary occlusion and myocardial reperfusion following thromobolysis by intravenous administration of the echo enchancing agent BRI. J Am Soc Echocardiograph, 1998, 11:169-180.
    [97] Kang CS,Yuan XP,Liu WP. Quantitative evaluation of myocardial microvascular endothelial dilatation by time in tensity curve with myocardial contrast chocardiography in dogs. JChin Ultrasonography,2003,12∶616-620
    [98] Greaves K, Dixon S, Fejka M, et al. Myocardial contrast echocardiography is superior to other known modalities for assessing myocardial reperfusion after acute myocardial infarction. Heart, 2003, 89:139-144.
    [99] Wada H, Yasu T, Kotsuka H, et al. Evaluation of transmural myocardial perfusion by ultra-harmonic myocardial contrast echocardiography in reperfused acute myocardial infarction. J Circ, 2005, 69:1041-1046.
    [100] Janardhanan R, Swinburn JM, Greaves K, et al. Usefulness of myocardial contrast echocardiography using low-power continuous imaging early after acute myocardial infarction to predict late function left ventricular recovery. J Am Cardio, 2003, 92:493-497.
    [101] Moreno R,Zamorano JL,Serra V,et al.Myocardial perfusion in real-time using power modulation: Invivo evidence for microcirculatory damage after acute myocardial infarction.Int Cardiol,2003,91∶187-195
    [102] Coggins MP, Sklenar J, Le DE, et al. Noninvasive prediction of ultmiate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral erived myocardial blood flow. Circulation, 2001, 104:2471-2477.
    [103] Janardhanan R, Moon JCC, Pennell DJ, et al. Myocardial contrast echocardiography acutely reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. J Am Heart, 2005, 149:388-392.
    [104] Kaul S. Asseement of coronary microcirculation with myocardial contrast echocardiography:Current and future clinical applications. Br Heart, 1995, 73:490-497
    [105] Tiemann K, Lohmeier S, Kuntz S, et al. Real-time contrast echo assessment of myocardial perfusion at low emission power first experimental and clinical results using power pulse inversion imaging. Echocardiography, 1999, 16:799-809.
    [106] Lindner JR, Dent JM, Moos SP, et al. Enhancement of left ventricular cavity opadfication by harmonic imaging after venous injection of Albunex. J Am Cardio, 1997, 79:1657-1662.
    [107] Kaul S, Kelly P, Oliner JD, et al. Assessment of regional myocardial blood flow with myocardial contrast two-dimensional echocardiography. J Am Coll Cardio, 1989, 13:468-482.
    [108] Porter T, KilaerK, Ddigonul U. Correlation between quantitative angiographie lesion severity and myocardial contrast intensity during a continuous infusion ofperfluorocarbon-containing microbubbles. J Am Soc Echocardiogr, 1998, 11:702-710.
    [109] Cobb FR, Bzche RJ, Rivas F, et al. Local effects of acute cellular injury on regional myocardial blood flow. J Clin Invest, 1976, 57:1359-1368.
    [110] Pollack CV, Sites FD, Shofer FS, et al. Application of the TIMI risk score for unstable angina and non-ST elevation acute coronary syndrome to an unselected emergency department chest pain population. Acad Emerg Med, 2006, 13(1):13-18.
    [111]赵树梅,李晓燕,刘现亮,等.急性心肌梗死TIMI危险评分与冠状动脉病变的关系.临床心血管病杂志, 2005, 21:111-112.
    [112] Szygula, Jurkiewicz B, Wilczek K, et al. Usefulness of TIMI Risk Score in assessing the prognosis in patients with acute coronary syndromes without ST elevation assigned to early percutaneous coronary intervention. Comparison of the high risk and the moderate risk patients. Pol Arch Med Wewn, 2004, 112:1083-1091.
    [113] Shan K, Bick RJ, Poindexter BJ, et al. Altered adrenergic receptor density in myocardial hibernation in human: A possible mechanism of depressed myocardial function. Circulation, 2000, 102:2599 - 2606.
    [114] Lindner JR, Firschke C, Wd K, et al. Myocardial perfusion characteristics and hemodynamic profile of MRX-115: a venous echocardiographic contrast agent during acute myocardial infarction. J Am Soc Echocardiogr, 1998, 11:36-46.
    [115] The TIMI Study Group .The thrombolysis in myocardial infarction (TIMI) trial :Phase I findings. J EngI Med, 1985, 312:932-936.
    [116] Stone GW, Cox D, Garcia E, et al. Normal flow(TIMI23) before mechanical reperfusion therapy is an independent determinant of survival in acute myocardial infarction :analysis from the primary angioplasty in myocardial infarction trials. Circulation, 2001, 104:624-626.
    [117] Karha J, Exaire JE, Rajagopal V, et al. Relation of myocardial perfusion to mortality after primary percutaneous coronary intervention. Am J Cardio , 2005, 95:980-982.
    [118]房芳,李治安,杨娅,等.选择性心肌声学造影与心肌显色分级评价冠状动脉介入后心肌灌注的对比研究.中国医学影像技术, 2007, 23:1158-1160
    [119] Main ML, Escobar JF, Hall SA, et al. Detection of myocardial perfusion defects by contrast echocardiography in the set-ting of acute myocardial ischemia with residual antegrade flow. J Am Soc Echocardiogr, 1998, 11;228-235.
    [120] Bartel T, Yang Y, Muller S, et al. Noninvasive assessment of microvascular function in arterial hypertension by transthoracic Doppler harmonic echocardiography. J Am Coll Cardio, 2002, 39:2-12
    [121] Peltier M, Vancraeynest D, Pasquet A, et al. Assessment of the physiologic significance of coronary disease with dipyridamole real-time myocardial contrast echocardiography:comparison with tedmetium-99m asstamihisingle-photo emission computed tomography and quantitative coronary angiography. J Am Coll Cardio, 2004, 43:257-264.
    [122] Shimoni S, Zoghbi WA, Xie F, et al. Real-time assessment of myocardial perfusion and wall motion during bicyde and treadmill exercise echocardiography; comparison with single photon emission computed tomography. J Am Coll Cardio, 2001, 37:741-747.
    [123] Liu SZ,Shen XD,Shu XH,et al.Quantification of myocardial blood flow by in termittent trigger imaging. J Chin Medical Imaging Technology,2002,18:1217-1223
    [124] Almansour HA, Mulvagh SL, Pumper GM, et al. Usefulness of harmonic imaging for left ventricular opadfication and endocardial bonder delineation by Qptison. J Am Cardiol, 2000, 85:795-799.
    [125] Lindner JR, Song J, Jayaweera AR, et al. Microvascularrheology of definity micro-bubbles after intra arterial and intravenous administration. J Am Soc Echocardiograph, 2002, 15:396-402
    [126] Balcells E, Powers ER, LepperW, et al. Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol, 2003, 41:827-833.
    [127] Kitzman DW, Goldman ME, Gillam LD, et al. Efficacy and safety of the novel ultrasound contrast agent perflutren(Definity) in patients with suboptimal baseline left ventricular echocardiographic images. J Am Cardio, 2000, 86:669-674.
    [128] Kaul S. Myocardial contrast echocardiography:basic principles. Prog Cardiovasc Dis, 2001, 44:1-11.
    [129] Yano A, Ito H, Iwakura K, et al. Myocardial contrast echocardiography with a new calibration method can estimate myocardial viability in patients with myocardial infarction. J Am Coll Cardio, 2004, 43:1799-1806.
    [130] Krishnamani R, Senior R. Evaluation of myocardial viability after myocardial infarction. J Eur Heart Suppl, 2002, 4:35-38.
    [131] Andrassy P, Zielinska M, Busch R, et al. Myocardial blood volume and the amountof viable myocardium early after mechanical reperfusion of acute myocardial infarction: prospective study using venous contrast echocardiography. Heart, 2002, 87(4):350-355.
    [132] Leonarda G, Anthony N. Maria D,. et al Ischemia-Reperfusion Injury at the Microvascular Level Treatment by Endothelin: A-Selective Antagonist and Evaluation by Myocardial Contrast Echocardiography. Circulation, 2000, 102:311-315.
    [133] Skyba DM, Camarano G, Goodman NC, et al. Hemodynamic characteristics, myocardial kinetics and microvascularrheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. J Am Coll Cardio, 1996, 28:1292-1300.
    [134] Hillis GS, Mulvagh SL, Pellikka PA, et al. Comparison of intravenous myocardial contrast echocardiography and low dose dobutamine echocardiography for predicting left ventricular functional recovery following acute myocardial infarction. J Am Cardio, 2003, 92:504-508.
    [135] Peltier M, Vancraeynest D, Pasquet A, et al. Assessment of the physiologic significance of coronary disease with dipyridamole Real-Time myocardial contrast echocardiography. J Am Coll Cardio, 2004, 21:257-264.
    [136] Hoffmann R. Borges AC. Kasprzak JD. et al. Analysis of myocardial perfusion or myocardial function for detection of regional myocardial abnormalities: An echocardiographic multicenter comparison study using myocardial contrast echocardiography and 2D echocardiography. J European Echocardiography. 2007, 8(6):438-48,
    [137] Smart SC, Sawada S, Ryan T, et al. Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation, 1993, 88:405-415.
    [138] Leclercq F, Messner P, Moragues C, et al. Myocardial viability assessed by dobutamine echocardiography in acute myocardialinfarction after successful primary coronary angioplasty. J Am Cardiol, 1997, 80:6-10.
    [139] Tiemann K, Becher H, Bimmel D, et al. Stimulated acoustic emission: nonbackscatter contrast effect of microbubbles seen with harmonic power Doppler imaging. Echocardiography. 1997, 14:65– 69.
    [140] Lindstedt S, Ingemansson R. Blood flow changes in normal and ischemic myocardium during topically applied negative pressure. Ann ThoracSurg, 2007,84:568-573.
    [141] Higuchi T, Ablet shauser C, Nekolla SG. Effect of the angiotensin receptor blocker valsartanon coronary microvascular flow reserve in moderately hypertensive patients with stable coronary artery disease. Microcirculation, 2007, 27:1-8.
    [142] Yang Y,Bartel T,Eggebrecht H,et al.New noninvasive method for the evaluation of coronary flow velocity reserve:contrast enhanced transthoracic doppler echocardiography with second harmonic technique. J Chin Cardiology, 2003,31:91- 95.
    [143] Montalescot G, Anderson HR, Antoniucci D, et al. Summary of recommendations on percutaneous coronary intervention for the reperfusion of acute ST elevation myocardial infarction. Heart, 2004, 90:676-677.
    [144] Dalby M, Bouzamondo A, Lechat PH, et al. Transfer for primary angioplasty versus thrombolysis in acute myocardial infarction. A meta analysis. Circulation, 2003, 108:1809-1814.
    [145] Deluca G,Vanhof AW,Boer MJ,et al.Time to treatment significanty affects the extent of ST-segment resolution and myocardial infarction treated by primary angioplasty. J European Heart, 2004, 25:1009-1013.
    [146] Bernardi G. Relationship of symptom onset to balloon time and door to balloon time with mortality in patient s undergoing angioplasty for acute myocardial infarction. Ital Heart Juppl, 2000, 1:1485-1487.
    [147] Antoniucci D, Valenti R, Migliorini A, et al. Relation of time to treatment and mortality in patients with acute myocardial infarction undergoing primary coronary angioplasty . Am J Cardiol, 2002, 89:1248-1252.
    [148] Korosoglou G, Labadze N, Giannitsis E, et al. Usefulness of real-time myocardial perfusion imagine to evaluate tissue level reperfusion in patient with non ST elevation myocardial infarction. J Am Cardiol, 2005, 95:1033-1038.
    [149] Guiducci V, Fioroni S, Giacometti P, et al. Early evaluation of coronary microcirculation by echocardiography with contrast medium in patients with acute myocardial infarction treated with primary percutaneous transluminal coronary angioplasty. Minerva Cardio Angio, 2005, 53:157-164.
    [150] Meimoun P, Benali T, Sayah S, et al. Evaluation of left anterior descending coronary artery stenosis of intermediate severity using transthoracic coronary flow reserve and dobutamine stress echo-cardiography. J Am Soc Echocardiograph, 2005, 18:1233-1240.
    [151] Lindner JR, Skyba DM, Goodman NC, et al. Changes in myocardial blood volume with graded coronary stenosis. J Am Physiol, 1997, 272:5672-575.
    [152] Lim DS, Kim YH, Lee HS, et al.Coronary flow reserve is reflective of myocardial perfusion status in acute anterior myocardial infarction.Catheter Cardiovasc Interv, 2000, 51:281-286.
    [153] Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve:comparison between contrast enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardio, 2002, 39:9 -18.
    [154] Higuchi T, Abletshauser C, Nekolla SG.. Effect of the angiotensin receptor blocker valsartan on coronary microvascular flow reserve in moderately hypertensive patient s with stable coronary artery disease. Microcirculation, 2007, 27:1-8.
    [155] Karha J, Exaire E, Rajagopal V, et al. Relation of myocardial perfusion tomortality after primary percutaneous coronary intervention. J Am Cardio, 2005, 95:980-982.
    [156] Araszkiewicz A, Lesiak M, Grajek S, et al. Effect of microvascular reperfusion on prognosis and left ventricular function in anteriorwall myocardial infarction t reated with primary angioplasty. J Int Cardio, 2007, 114:183-187.
    [157] Donato M, Gelpi RJ. Adenosine and cardioprotection during reperfusion-an overview. Mol Cell Biochem, 2003, 251:153-159.
    [158] Babbitt DG, Virmani R, Forman MB. Intracoronary adenosine administered after reperfusion limits vascular injury after prolonged ischemia in the canine mode. Circulation, 1989, 80:1388-1399.
    [159] Lindstedt S, Ingemansson R. Blood flow changes in normal and ischemic myocardium during topically applied negative pressure. Ann ThoracSurg, 2007, 84:568-573.
    [160] Olszowska M, Tracz W, Przewlocki T, et al. The value of myocardial contrast echocardiograp By compared with SPECT in detecting myocardial perfusion abnormalities in patients with anterior acute myocardial infarction. Kardio Pol, 2004, 60:27-38.
    [161] Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve:comparison between contrast enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardio, 2002, 39:34-41
    [162] Abe Y, Muro T, Sakanoue Y, et al. Intravenous myocardial contrast echocardiograp hypredict sregional and global left vent ricular remodeling after acute myocardial infarction:Comparison with low dose dobutamine stress echocardiograp hy. Heart,2005, 91:1578-1583.
    [163] Ueda Y, Akasaka T, Hozumi T, et al. Transthoracic Doppler echocardiograph assessment of coronary flow velocity pattern in patient with acute myocardial infarction implies progression of myocardial damage. J Am Soc Echocardiograph, 2005, 18:1163-1172.
    [164] Anardhanan R, Burden L, Senior R. Usef ulness of myocardial contrast echocardiography in predicting collateral blood flow in the presence of a persistently occluded acute myocardial infarction related coronary artery. J Am Cardio, 2004, 93:1207-1211.
    [165]赵静,张运,张薇,等.心肌声学造影评估心肌微血管血流储备的临床研究.中华超声影像学杂志, 2004, 10:8-11.
    [166] Vancamp G, Anney T, Pasquer A, et al. Quantification of myocardial blood flow and assessment of its transmural distribution withreal-time power modulation myocardial contrast echocardiography. J Am Soc Echocardiogr, 2003, 16:263-270.
    [167] Masugata H, Peters B, Lafitte S, et al. Quantitative assessment of myocardial perfusion during graded coronary stenosis by real-timemyocardial contrast echo refilling curves. J Am Coll Cardiol, 2002, 37:262-269
    [168] Porter TR, Xie F, Kricsfeld A, et al. Noninvasive identification of acute myocardial ischemia and reperfusion with contrast ultrasound using intravenous perfluoropropane-exposed sonicated dextrose albumin. J Am Coll Cardio, 1995, 26:33-40.
    [169]唐志宏,刘伊丽,黄祖汉,等.心肌声学造影估测冠脉血流储备的实验研究,中国超声医学杂志, 1997, 13:5-7
    [170] Caldas MA, Tsutsui JM, Kowatsch I, et al. Value of myocardial contrast echocardiography for predicting left ventricular remodeling and segmental functional recovery after anterior wall acute myocardial infarction. J Am Soc Echocardiogr, 2004, 17:923-932
    [171] Kassab GS, Rider CA, Tang NJ, et al. Morphometry of pig coronary arterial trees. J Am Physiol, 1993, 265:350-356
    [172]林转娣,宋明才,麦子杰等,小剂量多巴酚丁胺负荷超声心动图与心肌造影判断心肌梗死后患者存活心肌的可行性.实用医学杂志,2007,23:994-995
    [173] Senior R, Swinburn JM. Incremental value of myocardial contrast echocardiography prediction of recovery of function in dobutamine nonresponsive myocardium early after acute myocardial infarction. Am J Cardio,2003, 91:397-402.
    [174] Borges AC, Richter WS ,Witzel C, et al. Myocardial contrast echocardiography for predicting functional recovery after acute myocardial infarction. Int J Cardiovasc Imaging, 2002, 18:257-268.
    [175] Bolognese L, Neskovic AN, Parodi G, et al. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long term prognostic implications. Circulation, 2002, 106:2351-2357.
    [176] Siri M, Sigm F, Hans T,et al. Quantitative adenosine real-time myocardial contrast chocardiography for detection of angiographically significant coronary artery disease. J Am Soc Echocardiogr, 2006, 19:365-372.
    [177] Ito H, Tomooka T, Salal N, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of recovery of left ventricular function in anterior myocardial infarction. Circulation, 1992, 85:1699-1705.
    [178] Bellandi F, Leoncini M, Maioli M, et al. Markers of myocardial reperfusion as predictors of left ventricular function recovery in acute myocardial infarction treated with primary angioplasty. Clin Cardio, 2004, 27:683-688.
    [179] Rigo F,Cortigiani L, Pasanisi E, et al. The additional prognostic value of coronary flow reserve on left anterior descending artery in patients with negative stress echo by wall motion criteria. Atran sthoracic vasodilator stress echocardiograp hystudy. J Am Heart, 2006, 151:124-130.
    [1] Porter TR, Xie F. Transient myocardial contrast after initial exposureto diagnostic ultrasound pressures with minute doses of intravenouslyinjected microbubbles. Demonstration and potential mechanisms. Circulation, 1995, 92:2391-2395
    [2]星军,任彩萍.分子成像及其应用.生命科学, 2005, 17:456-460
    [3]查道刚,刘伊丽,黄晓波等.一种新的心肌声学造影技术:持续静脉滴注声振微泡的心肌声学造影方法研究.中国超声医学杂志, 2000, 16:241-244
    [4]杨源, Barry P, Anthony N.血压变化对心肌声学造影评定冠状动脉储备的影响.中华超声影像学杂志, 2003, 12:620-622
    [5] Verna E, Caico SI, Ghiringhelli S. New methods of func-tional assessment in the catheterization room、Pressure wire、Doppler flow wire and echocontrastomyography. Italian Heart Journal Supplement, 2001 ;2:593-605
    [6]姚桂华,张运,室生卓等.应用实时心肌造影超声心动图对心肌灌注的评价.中国超声影像学杂志, 2004, 13:124-126
    [7] Tsutsui JM, Xie F, Oleary EL, et al. Diagnostic accuracyand prognostic value of dobutamine stress myocardial contrast echocardiography. J Am cardio,2001,15:145-151
    [8]凌智瑜,王志刚,冉海涛等.超声微泡造影剂介导VEGF基因治疗大鼠心肌缺血的实验性研究.中国超声医学杂志, 2002, 18:502-504
    [9] Shirnoni S, Frangogiannis NG, Aggeli CJ, et al. Identificatoin of hibernating my ocardium with quantitative intravenous myocardial contrast echocardoigraph comparison with dobutamine echocardoigraphy and thallium-201 scintigraphy. Circulation, 2003, 107:538-544.
    [10] Firschke C, L indner JR, Wei K, et a1. Myocardial perfusoin imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second generatoin echocardiographic contrast agent. Circulatoin, 1997, 96:959-967.
    [11] Krishnamani R, Senoir R. Evaluatoin of my ocardial viability after myocardial in farction. J Eur Heart, 2002, 4:35-38.
    [12] Korosogolu G, Hansen A, Hoffend J, et a1. Comparison of real-time myocardia1 contrast echocardoigraphy for the assessment of myocardial viability with fluoro-deoxyglucose position emissoin tomography and dobutamine stress echocardoigraphy. J Am Cardio, 2004, 94:570-576.
    [13] Stefan EH, Isabell P, Alexander H, et a1. Differential value of adenosine myocardialcontrast echocardoigraphy and dobutamine stress echocardoigraphy in evaluating functoinal significance of coronary artery stenosis in a porcine model. Basic Res Cardoi, 2001, 96:415-421.
    [14] Kaul S, Jayaweera AR. Coronary and myocardial blood volume noninvasive to assese the coronary microcirculatoin? Circulation, 1997, 96:719-724.
    [15] Peltier M, Vancraeynest D, Pasquet A, et a1. A ssessment of the physoilogic significance of coronary disease with dpiyridamole real-time myocardial contras techo cardiography. Comparison with technetium-99m sestamibi single photo emissoin computed tomography and quantitative coronary angoigraphy. J Am Coll Cardio, 2004, 43:257-264.
    [16] Tsutsui JM, Elhendy A, Anderson JR, et a1. Prognostic value of dobutam in stress myocardial contrast perfusion echocardoigraphy. Circulation, 2005, 112:1444-1450.
    [17] Rocchi G, Fallani F, Bracchetti G, et a1. Noninvasive detectoin of coronary artery stenosis:a comparision among power-Doppler contrast echo, 99Tc-sestamibi SPECT and echo wall-motoin analysis. Coron Artery Dis, 2003, 14:239-245.
    [18] Hillis GS, Mulvagh SL, Pellikka PA, et a1. Comparison of intravenous my ocardial contrast echocardoigraphy and low dose dobutamine echocardoigraphy for predicting left ventricular functoinal recovery following acute my ocardial infarctoin. J Am Cardio, 2003, 92:504-508.
    [19] Fontana A, Lucca E, Brambilla N, et a1. Usefulness and lmiitations of contrastechocardiography during dobutamine stress test. J Ital Heart, 2003, 4:119-124.
    [20] Adrian CB, Wolf SR, Christian W, et al. Myocardial contrast echocardiography for predicting functoinal recovery after acute myocardial infarction. J Intern Cardiovasc Imaging, 2002, 18:257-268.
    [21] Huang WC, Choiu KR, Liu CP, et al. Comparison of real-time contrast echocardoigraphy and low-dose dobutamine stress echocardoigraphy in predicting the leftventricular functoinal recovery in patients after acute myocardial infarctoinunder different therapeutic interventoin. J Int Cardio, 2005, 104:81-91.
    [22] Sabia PJ, Powers ER, Jayaweera AR, et a1. Functional significance collateral flow in patients with recent acute myocardial infarctoin:A study using myocardial contrast echocardoigraphy. Circulation, 1992, 85:2080-2089.
    [23] Coggius MP, Sklenar J, len DE, et a1. Noninvasive predictoin of ultmiate infarct sizeat the time of acute coronary occlusoin based on the extent and magnitude of collateral derived myocardial bolod flow. Ci rculatoin, 2001, 104:2471-2477.
    [24] Brochet E. The value of contrast in stress echocardoigraphy. Arch Mal Coeur Vaiss, 2004, 97:46-52.
    [25] Andrassy P, Zielinska M, Busch R, et a1. Myocardial bolod volume and the amount of viable myocardium early after me chanical reperfusion of acute myocardial infarctoin:prospective study using venous contrast echocardoigraphy. Heart, 2002, 87:350-355.
    [26] Pelleg A, Katchanov G, Xu J. Autonomic neural control of cardiac function: modulation by adenosine and adenosine 5-triphosphate. J Am Cardio 1997, 79:11-14.
    [27] Dejong JW, Keijzer E, Bradamante S. The role of adenosine in preconditioning. Pharmacol Ther, 2000; 87:141-149.
    [28] Tucker AL, Linden J. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res, 1993, 27:62-67.
    [29] Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardio. 1997, 79:2-10.
    [30] Marzilli M, Orsini E, Marraccini P, et al. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute MI. Circulation, 2000, 101:2154-2159.
    [31] Kern MJ, Deligonul U, Tatineni S, et al. Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardio, 1991, 18:718-729.
    [32] Wilson RF, Wyche K, Christensen BV, et al. Effects of adenosine on human coronary arterial circulation. Circulation, 1990, 82:1595-1606.
    [33] Wilson RF. Assessing the severity of coronary artery stenoses. J Engl Med, 1996, 334:1735-1737.
    [34] Kern MJ, De Bruyne B, Pijls NHJ. From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardio, 1997,30:613-620.
    [35] Topol E. Textbook of cardiovascular medicine, 2nded. Lippincott, Williams, & Wilkins: 2002,P 67-78
    [36] Jeremias A, Whitbourn RJ, Filardo SD, et al. Adequacy of intracoronary versusintravenous adenosine-induced maximal coronary hyperemia for fractional flow reserve measurements. J Am Heart, 2000, 140:651-657.
    [37] Fearon WF, Samady H, Powers ER, et al. Higher doses of intracoronary adenosine are necessary for FFR-based stent optimization. J Am Coll Cardio, 2002, 37:107-121.
    [38] Pijls NH, De Bruyne B, Bech GJ, et al. Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery validation in humans. Circulation, 2000, 102:2371-2377.
    [39] Pijls MHJ, De Bruyne B. Coronary pressure. Dordrecht: Kluwer Academic, 1997, p 306-309.
    [40] Kern MJ, Hodgson JM, Rossen JD, et al. Hyperemic coronary blood flow by selective adenosine A2a receptor stimulation: first report in patients of a well tolerated novel agent for stress imaging. J Am Coll Cardio, 2001, 37:1302-1365.
    [41] Ito H, Okamura A, Iwakura K, et al. Myocardial perfusion patterns related to thrombolysis in myocardial infarction grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation, 1996, 93:1993-1999.
    [42] Vallejo E, Pena-Duque MA, Norono O, et al. The no-reflow phenomenon: its incidence and clinical characteristics in a series of cases. Arch Inst Cardiol Mex, 1998, 68:247-252.
    [43] Abbo KM, Dooris M, Glazier S, et al. Feature and outcome of no-reflow after percutaneous coronary intervention. J Am Cardio, 1995, 75:778-782.
    [44] Morishima I, Sone T, Mokuno S, et al. Clinical significance of no-reflow phenomenon observed on angiography after successful treatment of acute myocardial infarction with percutaneous transluminal coronary angioplasty. J Am Heart, 1995, 130:239-243.
    [45] Piana RN, Paik GY, Mosucci M, et al. Incidence and treatment of no reflow after percutaneous coronary intervention. Circulation, 1994, 89:2514-2518.
    [46] Hanna GP, Yhip P, Fujise K, et al. Intracoronary adenosine administered during rotational atherectomy of complex lesions in native coronary arteries reduce the incidence of“no reflow”phenomenon. Cathet Cardiovasc Diagn, 1999, 48:275-278.
    [47] Fischell TA, Carter AJ, Foster MT, et al. Reversal of“no reflow”during vein graft stenting using high velocity boluses of intracoronary adenosine. Cathet Cardiovasc Diagn, 1998, 45:360-465.
    [48] Sdringola S, Assali AR, Ghani M, et al. Adenosine use during aortocoronary vein graft interventions reverse but does not prevent the slow, no-reflow phenomenon. Catheter Cardiovasc Interv, 2000, 51:394-399.
    [49] Gregorini L, Marco J, Farrah B, et al. Effects of adenosine and alpha1-adrenergic blockers on the no-reflow phenomenon. J Am Coll Cardiol, 2001, 37:1094-1177.
    [50] Jacobson KA, Xie R, Young L, et al. A novel pharmacological approach to treating cardiac ischemia: binary conjugates of A1 and A3 adenosine receptors agonists. J Biol Chem, 2000, 275:30272-30279.
    [51] Liang BT, Jacobson KA. Efficiency of adenosine receptor coupling in cardioprotection: efficacy of partial A1 and A3 agonists. Circulation, 2000, 102:100-105.
    [52] Kitakaze M, Hori M. Adenosine therapy: a new approach to chronic heart failure. Exp Opin Invest Drugs, 2000, 9:2519-2535.
    [53] Funaya H, Kitakaze M, Node K, et al.Plasma adenosine levels increase in patients with chronic heart failure. Circulation, 1997, 95:1363-1365.
    [54] Edlund A, Ohlsen H, Sollevi A. Renal effects of local infusion of adenosine in man. Clin Sci, 1994, 87:143-149.
    [55] Patterson TM, Hendrick JW, Sample JA, et al. Selective A1 receptor antagonism improve renal function in heart failure. Circulation, 2000, 102:757-762.
    [56] Munger KA, Jackson EK. Effects of selective A1 receptor blockade on glomerular hemodynamics: involvement of renin-angiotensin system. J Am Physiol, 1994, 36:783-790.
    [57] Gottlieb SS, Skettino SL, Wolff A, et al. Effects of BG9719 (CVT-124), and A1-adenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J Am Coll Cardio, 2000, 35:56-59.
    [58] Gottlieb SS, Brater DC, Thomas I, et al. BG9719 (CVT-124) and A1-adenosine receptor antagonistA、protects against the decline in renal function observed with standard congestive heart failure therapy. J Am coll Cardiol, 2001, 37:830-833.
    [59] Cerquiera MD, Verani MS, Schwaiger M, et al. Safety profile of adenosine stress perfusion imaging: results from Adenoscan multicenter trial registry. J Am Coll Cardiol, 1994, 23:384-389.
    [60] Fischell TA, Carter AJ, Foster MT, et al. Reversal of“no reflow”during vein graft stenting using high velocity boluses of intracoronary adenosine. Cathet CardiovascDiagn, 1998, 45:360-465.
    [61] Sdringola S, Assali AR, Ghani M, et al. Adenosine use during aortocoronary vein graft interventions reverse but does not prevent the slow and no-reflow phenomenon. Catheter Cardiovasc Interv, 2000, 51:394-399.
    [62] Reidar W,Petri G, Ronnie W, et al. Real-time perfusion adenosine stress echocardiography in the coronary care unit : a feasible bedside tool for predicting coronary artery stenosis in patients with acute coronary syndrome . Echocardiography, 2005,120:31-40.
    [63] Hata K,Whittaler P,Kloiner RA,et al.Brief antecedent ischemia attenuates platelet mediated thrombsis in damaged and stenotic canine coronary arteries :role of adenosine.Circulation,1998,97:692-702.
    [64] Liang BT, Jacobson KA. Efficiency of adenosine receptor coupling in cardioprotection: efficacy of partial A1 and A3 agonists. Circulation, 2000, 102:1005-1009.
    [65]刘秀杰.冠状动脉血流储备的测定及其临床意义.中国循环杂志, 1996, 11 :636-638.
    [66]林金秀.冠心病患者冠状动脉血流储备变化的临床意义.中国超声杂志, 1994, 10:4-8.
    [67]张竹花.冠状动脉血流储备的无创性影像评价方法和意义.国外医学临床放射学分册, 2000, 2:70-75.
    [68]张梅,张运.冠脉内注射罂粟碱测量冠状动脉血流储备的研究.中国超声杂志, 1998, 14:14-16.
    [69]纪承演.心血管疾病磁共振显像的基础研究.见:现代心血管显像诊断学.北京:人民军医出版社, 2004. 325.
    [70]蔡剑鸣,高元桂,蔡幼铨,等.屏气相位对比MRI评价正常人冠状动脉血流储备.中华放射学杂志, 1999, 33:854-856.
    [71] Sensky PR, Jivan A, Hudson NM, et al. Coronary artery disease:com-bined stress MR imaging protocol-one-stop evaluation of myocar2dialperfusion and function. Radiology, 2000, 215:608-614.
    [72] Sakuma H, Takeda K, Higgins CB, et al. Fast magnetic resonance imaging of the heart. J Eur Radiology, 1999, 29:101-113.
    [73]白晨,张薇,张运.经食道多普勒超声心动图测量冠状动脉血流储备研究方法进展.中国超声杂志, 1997, 13:65-66.
    [74] Thaker KB, Kawaanishi D, Narang YK, et al. Comparison of flow velocityin the leftanterior descending coronary artery and coronary flow reserve by intra coronary flow wire and transesophageal echocardiography. Circulation, 1994, 90:272-276.
    [75]杨燕斐.经食道多普勒超声心动图测量冠状动脉血流储备功能对冠状动脉病变程度的评价.中国心血管病杂志, 1997, 25:349-351.
    [76]祝文虎.经胸超声定量评估冠状动脉血流储备的临床研究.中国临床医学, 2001, 8:595-597.
    [77]陶平.冠状动脉血管解剖学.中国协和医科大学联合出版社,1994.16-21.
    [78]祝文虎.无创伤评估冠状动脉血流储备的实验研究.中国超声杂志, 2001, 17:561-563.
    [79] Shimoni S, Zoghbi W. A, Xie F, et al. Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmillexercise echocardiography: Comparison with single photon emission computed tomography. J Am Coll Cardio, 2001, 37:741-747.
    [80] Lafitte S, Matsugata H, Peters B, et al. Comparative value of dobutamine and adenosine stress in the detection of coronary stenosiswith myocardial contrast echocardiography. Circulation, 2001, 103:2724-2730.
    [81] Hori M, Kitataze K. Adenoisine, the heart and coronary circulation. Hypertension, 1991, 18:565-570
    [82] Aggeli C,Stefanadis C,Bonou M,et al. Prediction of functional recovery of hibernating myocardium using harmonic power Doppler imaging and dobutamine stress echocardiography in patients with coronary artery disease. J Am Cardio, 2003, 91:1415-1420.
    [83] Hdnle SK, Noblin J, Goree-best P, et al. Assessment of myocaroial perfusion by harmonic power Doppler imaging at rest and during adenosine stress comparison with(99m)Tc sestamibi SPECT imaging. Circulation, 2000, 102 :55-60.
    [84] Hillis GS, Mulvagh SL, Pellikka PA, et al. Comparison of intravenous myocardial contrast echocardiography and low dose dobutamine echocardiography for predicting left ventricular functional recovery follow-ing acute myocardial infarction. J Am Cardio, 2003, 92:504-508.
    [85] Porter TR, Dsa A,Turner S,et al. Myocardial contrast echocardiography or the assessment of coronary blood flow reserve:Valilotion in humans. J Am Coll Cardio, 1993, 21:349-356
    [86] Lim HE, Shim WJ, Rhee H, et al. Assessment of coronary flow reserve with transthoradc Doppler echocardio-graphy: comparison among adenosine、standard-dose dipyridamole and high-dose dipyridamole. J Am Soc Echocardiogr, 2000, 13:264-270.
    [87] Guo SZ, Shu XH, Pan CZ, et al. Usefulness of dobutamine stress myocardial contrast echocardiography for accessing coronary artery disease. J Chin Med, 2005, 118:1766-1772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700