用户名: 密码: 验证码:
Tim-1-Fc抑制同种移植物排斥反应的作用与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CD4~+T辅助细胞的活化、增殖和分化是抗原特异性免疫反应产生的关键环节。该反应的产生除了需要抗原递呈细胞(Antigen presenting cells, APCs)提供抗原肽MHC复合物与T细胞受体特异性结合外,还必须有APCs提供协同刺激分子如免疫球蛋白家族成员(CD80、ICOSL等)、TNF家族成员(CD40、OX40、4-1BB、CD27、LIGHT等)和多种细胞因子的参与。随着研究的深入,不断有新的分子被发现参与、调控了T细胞的活化过程。因此,T细胞的活化与调节仍然是基础免疫学研究的重点,也是移植免疫学关注的热点。
     T细胞免疫球蛋白粘蛋白(T cell immunoglobulin mucin,Tim)是2001年发现的表达在T细胞和DCs表面与细胞活化相关的新分子。小鼠TIM基因家族位于11B1.1,目前共发现8个基因,编码蛋白Tim-l~4和4个假想蛋白Tim-5~8。人类TIM基因家族只有3个成员,定位于染色体5q33.2,分别编码蛋白Tim-l, 3, 4(没有Tim-2)。Tim是一类具有共同基序的跨膜糖蛋白,其结构包括免疫球蛋白(Ig)样区、粘蛋白样区、跨膜区和胞内区。除Tim-4外,Tim-1,2,3的胞内区均含有酪氨酸激酶磷酸化位点,直接参与信号转导。
     早期研究发现,Tim-1表达于所有活化的CD4~+ T细胞,并在其分化后仍高表达于Th2细胞,而低表达于Th1,Th17,CD11c~+骨髓源性树突状细胞(Dendritic cells,DCs)和CD19~+ B细胞。Tim-1的配体为Tim-4,与其它Tim蛋白不同,小鼠Tim-4只表达于APCs。它作为Tim-1的配体参与T细胞的活化和增殖,并能减少其凋亡。Tim-主要表达于Th1细胞和DCs,它与DCs上的Galectin-9结合后能导致Th1细胞的凋亡。
     然而,随着研究的深入,人们发现Tim-1和Tim-4在免疫调节中的作用比预想的更为复杂。最近的研究显示,小鼠Tim-4与人IgG_1 Fc段融合蛋白(Tim-4-Ig)在不同的终浓度下能刺激或抑制培养体系中T细胞的活化。另外, Tim-4-Ig可以通过与小鼠初始CD4~+ T细胞上的某种配体结合抑制其活化,经证实,这种配体并非Tim-1。然而,Tim-4-Ig的这种作用只局限于不表达Tim-1的小鼠初始T细胞,它不能抑制预先激活的T细胞增殖。上述研究提示Tim-4-Ig可以与T细胞上的不同配体结合,介导不同的免疫效应。此外,Tim-1的不同单克隆抗体(3B3和RMT1-10)也可以对T细胞活化产生相反的作用,这可能取决于它们与Tim-1结合的亲和力不同或对细胞骨架结构的影响不同。因此,进一步阐明Tim-1调节T细胞反应的机制,对于开发治疗自身免疫性疾病和移植物排斥反应的新药物,具有重要的意义。
     基于上述研究,本课题拟进一步:(1)合成人源化Tim-1胞外段和IgG_1 Fc段融合蛋白(Tim-1-Fc),检测其与小鼠不同种类细胞的结合情况,验证其是否具有交叉活性,并判定这种可能的结合是否是Tim-4依赖性的;(2)体外研究Tim-1-Fc对anti-CD3, anti-CD28 mAbs介导的小鼠CD4~+ T细胞活化,增殖,凋亡,细胞周期和对同种DCs介导的混合淋巴细胞反应(Allogeneic mixed lymphocyte response, allo-MLR)的影响,探讨其胞内信号转导途径;观察其对调节性T细胞(Regulatory T cells, Tregs)增殖和叉头状转录因子p3(Forkhead transcription factor p3, Foxp3)表达的影响;(3)通过腹腔注射Tim-1-Fc(对照组注射PBS和人IgG_1),阻断Tim-4-Tim-1介导的T细胞活化,观察其对小鼠颈部异位心脏移植物生存期的影响,初步揭示其抑制移植排斥反应的作用和体内机制;通过本课题研究,有望进一步认识Tim-1-Fc分子在T细胞介导的免疫反应和抑制同种移植物排斥反应中的作用,为寻找临床免疫抑制治疗的新靶点提供实验依据。
     目的:合成人源化Tim-1胞外段和IgG_1 Fc段融合蛋白(Tim-1-Fc),检测其与小鼠不同细胞结合情况,验证其是否具有交叉活性,并判定这种可能的结合是否是Tim-4依赖性的。方法:从基因库中搜索人Tim-1胞外段和IgG_1 Fc段的cDNA序列,克隆到哺乳动物细胞表达载体pcDNA3.1上,利用转染试剂将重组质粒转入中国仓鼠卵巢细胞(Chinese hamster ovary, CHO)中,通过Western-blot检测Tim-1-Fc表达情况,经亲和、离子交换等多种层析方法纯化蛋白。采用流式细胞仪(Flow cytometry, FCM)检测Tim-1-Fc与未接受刺激的或刺激3天后的小鼠DCs,CD4~+CD25~- T细胞,CD4~+CD25~+ T细胞(Natural regulatory T cells, nTregs)结合情况,加入Tim-4单抗,阻断可能的Tim-4-Tim-1-Fc结合。结果:经Western-blot检测,合成的Tim-1-Fc分子量约62KD,纯度>92%。Tim-1-Fc不结合DCs,nTregs和未活化的CD4~+CD25~- T细胞,但能选择性结合活化后的CD4~+CD25~- T细胞(Effector T cells, Teffs),且该作用不被anti-Tim-4 mAb阻断。结论:Tim-1-Fc构建成功。小鼠Teffs上存在人Tim-1的新型配体。
     目的:观察Tim-1-Fc在体外对CD4~+ T细胞活化,增殖,凋亡和细胞周期,胞内信号转导,allo-MLR以及nTregs增殖、Fxop3表达的影响。方法:在CD4~+ T细胞培养体系中加入不同终浓度的Tim-1-Fc(1,5,10μg/ml),按不同比例(1:40,1:20,1:10)将DC与CD4~+ T细胞混合培养,采用3H掺入法检测细胞增殖,CSFE检测细胞分裂,ELISA检测培养上清液中Th1/Th2细胞因子分泌情况,PI/Annexin V双染色法检测各组CD4~+ T细胞凋亡的比例,RT-PCR法检测Tim-1-Fc对nTregs内Foxp3基因转录的影响,Western-blot检测Tim-1-Fc对细胞周期蛋白Cdk2,Cdk4,p27~(kip)表达及anti-CD3(2μg/ml), anti-CD28(1μg/ml)mAbs刺激后不同时间点(5, 15, 30min)CD4~+ T细胞内信号分子AKT,ERK1/2磷酸化情况的影响。结果:Tim-1-Fc不但能抑制CD4~+ T细胞表面活化标志CD25,CD69表达、抑制细胞分裂增殖,该作用不依赖于Tim-4(RT-PCR和FCM检测也未发现小鼠T细胞表达Tim-4);还能显著下调Cdk2,Cdk4而增加p27~(kip)表达,使细胞停滞在G1期;抑制CD4~+ T细胞内AKT,ERK1/2磷酸化;抑制allo-MLR,诱导T细胞对同种抗原的低反应性,减少IL-2,IFN-γ而促进IL-10的分泌。但Tim-1-Fc对CD4~+ T细胞凋亡,nTregs增殖和Foxp3表达无明显影响。结论:Tim-1-Fc在体外能通过与T细胞表面新型受体结合抑制CD4~+ T细胞活化、增殖和Th1源性细胞因子表达,使细胞停滞在G_0/G_1期,并下调T细胞内信号分子AKT,ERK1/2磷酸化水平。还能抑制小鼠allo-MLR,诱导T细胞对同种抗原的低反应性;但它不影响CD4~+ T细胞凋亡,nTregs增殖和Foxp3表达。
     目的:观察Tim-1-Fc对小鼠心脏移植物存活期的影响并探讨其抑制排斥反应的体内机制。方法:采用BALB/c→C57BL/6小鼠颈部异位心脏移植模型,将受体分为3组(每组n=10):组1,心脏移植+PBS治疗组;组2,心脏移植+ hIgG_1(10μg/g/天术后0~6天)治疗组;组3,心脏移植+Tim-1-Fc(10μg/g/天术后0~6天)腹腔注射治疗组。专人记录心脏移植物存活时间。于术后第7天处死小鼠,收集血液、心脏、脾脏标本。Real-time PCR检测心脏移植物内淋巴细胞表面分子CD3, CD11b和炎性细胞因子IL-2, IFN-γ, IL-4, IL-10和转录因子Foxp3表达情况,病理检查心脏移植物内炎性细胞浸润和组织破坏情况。磁珠分选受体小鼠脾脏CD4~+ T细胞,用BALB/c小鼠DCs刺激,~3H掺入法检测其增殖情况,ELISA检测Th1,Th2细胞因子水平。FCM检测受体小鼠脾脏中CD4~+Foxp3~+调节性T细胞占总CD4~+T细胞比例,以及CD4~+CD25~- T细胞培养体系中加入Tim-1-Fc后Foxp3的表达变化。结果:三组小鼠心脏移植物存活时间分别为6.5±0.5,6.7±0.4和17.1±1.1天。Tim-1-Fc治疗组移植物内IL-2、IFN-γ、CD11b、CD3 mRNA表达水平显著较低,病理损害亦明显减轻,但IL-10水平升高(P<0.05);Tim-1-Fc组受体脾脏来源CD4~+ T细胞接受同种异基因DCs刺激后增殖水平显著较低(P<0.05);受体小鼠脾脏中CD4~+Foxp3~+调节性T细胞占总CD4~+T细胞比例显著升高(P<0.05),但Tim-1-Fc并不能直接诱导CD4~+CD25~- T细胞表达Foxp3。结论:Tim-1-Fc能减轻小鼠心脏移植物Th1细胞因子表达和炎性细胞浸润,促进Th2细胞因子表达,降低受体脾脏内供体反应性T细胞对同种抗原的反应能力,显著延长移植物存活期;Tim-1-Fc虽不能直接诱导Tregs,但它通过调节Th1/Th2平衡向Th2发展,提高脾脏内CD4~+Foxp3~+ T细胞比例,调节Teffs/Tregs平衡向Tregs偏移,成功抑制了小鼠心脏移植物排斥反应,使其有望成为抗排斥治疗的新药物。
Activation, proliferation and differentiation of CD4~+ T helper cell are crucial elementsof antigen-specific immune response. This process needs not only the specific binding of Tcellreceptors with antigenic peptide/MHC complexes provided by antigen-presenting cells(APCs), but also needs co-stimulatory molecules such as immunoglobulin family members(CD80, ICOSL, etc.), TNF family members (CD40, OX40, 4-1BB, CD27, LIGHT, etc.)and a variety of inflammatory cytokines. With the in-depth research, new co-stimulatorymolecules have being discovered to be involved in T cells activation. Thus, the activationand regulation of T cells remain major scientific issues to basic immunology research andhot spots to transplantation immunology research.
     T cell immunoglobulin mucin (Tim) is a newly discovered molecular expressed on thesurface of T cells and APCs and is associated to T-cell activation. Mouse TIM genes arelocated on chromosome 11B1.1, encoding protein Tim-1~4, and four hypothetical proteinTim-5~8. Human TIM genes are located on chromosome 5q33.2, encoding protein Tim-l, 3,4, but not Tim-2. Tim represents a group of transmembrane glycoproteins with commonmotifs: immunoglobulin (Ig)-like domain, mucin-like domain, transmembrane region andintracellular domain. In addition to Tim-4, Tim-1, 2 and 3 all contain an intracellulartyrosine kinase phosphorylation site, which is directly involved in the intracellular signaltransduction.
     Tim-1 is expressed on all activated CD4~+ T cells, and highly expressed on Th2 cellsafter differentiation, while lowly expressed on Th1, Th17, CD11c~+ bone marrow-deriveddendritic cells (DCs) and CD19~+ B cells. Tim-1 is the natural ligand for Tim-4, which isonly expressed on APCs and is involved in T cell activation, proliferation, and apoptosisinhibition. Tim-3 is mainly expressed on Th1 cells and DCs, and after cross-linking withGalectin-9, it can lead to the apoptosis of Th1 cells.
     However, the mechanisms for immune regulation by Tim-1 and Tim-4 are morecomplex than initially expected. Recent studies showed that Tim-4-Ig may either stimulateor inhibit T cell proliferation depending on its concentration. Moreover, Tim-4-Ig wasdemonstrated to inhibit naive mouse CD4~+ T cell activation through a novel ligand otherthan Tim-1, as such an inhibitory effect of Tim-4-Ig was specific to naive T cells that do notexpress Tim-1, and the effect disappeared in pre-activated T cells. This suggests thepossibility that the opposite effect of Tim-4-Ig on T cell activation observed in the previous studies could be resulted from its engagement with different receptors expressed on T cells.On the other hand, anti-Tim-1 mAbs (3B3 and IRM-10) were also found to mediate either astimulatory or an inhibitory effect on T cell activation depending on their binding affinity toTim-1 or their influence on the cytoskeleton. Thus, further elucidation of the role of Tim-1in regulating T cell responses is highly important for developing novel therapeuticstrategies targeting Tim-1 for the treatment of autoimmune diseases and allograft rejection.
     Based on the above studies, further efforts of this study include: (1) Synthesization ofhuman Tim-1 excellular domain and IgG_1 Fc domain fusion protein (Tim-1-Fc). To analyzethe biding activity of Tim-1-Fc with different kinds of mouse cell types such asunstimulated or stimulated dendritic cells (DCs), CD4~+CD25~- T cells and CD4~+Foxp3+regulatory T cells (nTregs) to identify the cross-reactive, and to test whether this bindingwas Tim-4 dependent; (2) Exploration of the influence of Tim-1-Fc on allogeneic mixedlymphocyte response, activation and proliferation of CD4~+ T cells, cells cycle and apoptosisevoked by anti-CD3 and anti-CD28 mAbs. Investigation of the intracellular signalingpathways in CD4~+ T cells after ligation with Tim-1-Fc. Observation of its effect on theproliferation and Foxp3 expression of nTregs. (3) Intraperitoneal injection of Tim-1-Fc tomice that receive heterotopic cardiac transplantation, while PBS and hIgG_1 treatment wereused as controls. The mechanisms of Tim-1-Fc in suppressing allograft acute rejection areto be explored. Through this research, we could get a better understanding of human Tim-1in mouse T cell-mediated immune responses and allograft rejection suppression, which mayprovide a new target for clinical immunosuppressive therapy.
     Objective: To synthesize humanized excellular domain of Tim-1 and IgG_1 Fc domainfusion protein (Tim-1-Fc). To analyze the biding activity of Tim-1-Fc with different kindsof mouse cell types such as DCs, CD4~+CD25~- T cells and nTregs, and to test whether thisbinding activity was Tim-4 dependent. Methods: cDNA sequences of human Tim-1extracellular domain and IgG_1 Fc fragment were got from the gene bank and cloned intothe mammalian cell expression vector pcDNA3.1, the recombinant plasmids weretransformed into CHO cells using transfection reagent. Tim-1-Fc expression was detected by SDS-PAGE and Western-blot, and purified by affinity column. The binding activity ofTim-1-Fc (5μg/ml) with fresh isolated or activated DCs, CD4~+CD25~- T cells and nTregswas labeled using mouse anti-human IgG_1(Fc)-FITC and measured by FCM. Anti-Tim-4mAb (10μg/ml) was added to block the possible Tim-4-Tim-1-Fc engagement. ResultsResults:Western-blot test revealed that Tim-1-Fc molecular weight was about 62KD, purity was>92%. Tim-1-Fc could not bind to unstimulated or stimulated DCs or nTregs, but couldselectively bind to activated CD4~+CD25~- T cells (Teffs), and this effect could not bereversed by anti-Tim-4 mAb. Conclusion: Tim-1-Fc was constructed successfully. Theremust be a novel ligand for human Tim-1 expressed on mouse Teffs other than Tim-4.
     Objective: To test the influence of Tim-1-Fc on allo-MLR and on the activation,proliferation, cell cycles, apoptosis and Fxop3 expression of CD4~+ T cells; to explore theTim-1-Fc-triggered intracellular signaling pathways in CD4~+ T cells. Methods: Differentconcentrations of Tim-1-Fc (1, 5, 10μg/ml) and different proportions (1:40, 1:20, 1:10) ofDC:T-cell were added to test the influence of Tim-1-Fc on allo-MLR. 3H-TdR, CFSE andELISA were used to assay the proliferation and cytokines production of CD4~+ T cells coculturedwith Tim-1-Fc. FCM was used to test the influence of Tim-1-Fc on the apoptosis(PI/Annexin V) and Foxp3 expression of CD4~+ T cells. Western blot was used to explore thephosphorylation of intracellular signal moleculars. Results: Tim-1-Fc significantlyinhibited CD4~+ T cells activation, proliferation and allo-MLR but not the apoptosis. Theseeffects were Tim-4-independent. Also, Tim-1-Fc reduced IL-2,IFN-γwhile promoted IL-10production, and it negatively regulated Cdk2 and Cdk4 expression while increased p27~(kip)expression. Moreover, the phosphorylation of AKT and ERK1/2 in CD4~+ T cells was alsoinhibited, but the proliferation of nTregs or Foxp3 expression were not inhibited by Tim-1-Fc. Conclusion: Tim-1-Fc was able to inhibit the activation, proliferation, differentiation,Th1 cytokines production and allo-MLR of CD4~+ T cells, and to suppress thephosphorylation of AKT, ERK1/2 in CD4~+ T cells, but has not influence on the proliferation and Foxp3 expression of nTregs in vitro.
     Objective: To observe the influence of Tim-1-Fc on cardiac allograft survival andallograft acute rejection and to explore the in vivo mechanisms. Methods:BALB/c→C57BL/6 mouse model of cervical heterotopic heart transplantation wasperformed, the recipients were divided into 3 groups according to the different treatments(for each group, n=10): Group 1, transplantation + PBS treatment group; Group 2,transplantation + human IgG_1 treatment group (10μg/g/day, intraperitoneal injection, 0-6days post-operatively); Group 3, transplantation+Tim-1-Fc treatment group (10μg/g/day,intraperitoneal injection, 0-6 days post-operatively). The survival time of cardiac allograftwas recorded. At the 7th day after transplant, the mice were killed, the bloods, hearts andspleens were collected. ELISA test for blood cytokines (IL-2, IFN-γ, IL-4 and IL-10) levelsand intragraft RT-PCR detection for inflammatory cytokines production, lymphocytessurface molecules (CD3 and CD11b) and Foxp3 expression were conducted. Recipients'splenic CD4~+ T cells were isolated by magnetic activated cell sorting and stimulated withallogenetic DCs, the proliferation was detected by using ~3H thymidine incorporation using aliquid scintillation counter. The ratio of Tregs in recipient mice spleens was also assessed.CD4~+CD25~- T cells were isolated and cultured with Tim-1-Fc and/or recombinant humanTGF-β1,then the expression of Foxp3 were determined by FCM. Results: Recipientstreated with Tim-1-Fc showed significantly prolonged allograft survival (17.1±1.1 days)compared to those treated with PBS (6.5±0.5 days; P<0.01) or control hIgG_1 (6.7±0.4 days;P<0.01). Histological analysis of heart grafts at POD 7 revealed severe mononuclear cellsinfiltration and myocardial necrosis in the control groups, whereas almost normal tissuestructure with minimal mononuclear cell infiltration was seen in Tim-1-Fc-treated mice.Tim-1-Fc significantly reduced the intragraft transcription for IL-2, IFN-γ, CD3 and CD11b. The proliferation of CD4~+ T cells in response to allogenetic DCs was significantlyinhibited in Tim-1-Fc treated group. Moreover, the proportion of CD4~+Foxp3~+ Tregs insplenic CD4~+ T cells was significantly increased, although Tim-1-Fc did not induce Foxp3expression in CD4~+CD25~- T cells. ConclusionConclusion: Tim-1-Fc was able to prolong mouse heartallograft survival though reducing the inflammatory cells infiltration and Th1 cytokinesproduction in the graft and decreasing the proliferative capability of donor reactive T cellsto allogenetic antigens, while increasing the proportion of Tregs in the spleen, thus shiftingthe balance of Th1/Th2 towards Th2 and the balance of Tregs/Teffs towards regulators,although it did not induce Foxp3 expression in CD4~+CD25~- T cells directly. These madeTim-1-Fc become a promising drug for anti-rejection therapy.
引文
[1]谭建明.器官移植基础与临床研究进展.医学研究通讯2005; 34: 5-8.
    [2]器官移植手术的发展之路.发明与创新2009: 48-49.
    [3] Wijdicks EF. The neurologist and Harvard criteria for brain death. Neurology 2003; 61: 970-976.
    [4] Buell C, Koo J. Long-term safety of mycophenolate mofetil and cyclosporine: a review. J DrugsDermatol 2008; 7: 741-748.
    [5] Shah MB, Martin JE, Schroeder TJ, First MR. The evaluation of the safety and tolerability oftwo formulations of cyclosporine: neoral and sandimmune. A meta-analysis. Transplantation1999; 67: 1411-1417.
    [6] Henry ML. Cyclosporine and tacrolimus (FK506): a comparison of efficacy and safety profiles.Clinical transplantation 1999; 13: 209-220.
    [7] The L. Religion, organ transplantation, and the definition of death. Lancet 2011; 377: 271.
    [8] Zhang Z, Kaptanoglu L, Haddad W, Ivancic D, Alnadjim Z, Hurst S et al. Donor T cellactivation initiates small bowel allograft rejection through an IFN-gamma-inducible protein-10-dependent mechanism. J Immunol 2002; 168: 3205-3212.
    [9] Kreisel D, Krupnick AS, Gelman AE, Engels FH, Popma SH, Krasinskas AM et al. Nonhematopoieticallograft cells directly activate CD8+ T cells and trigger acute rejection: analternative mechanism of allorecognition. Nature medicine 2002; 8: 233-239.
    [10] Molajoni ER, Cinti P, Orlandini A, Molajoni J, Tugulea S, Ho E et al. Mechanism of liverallograft rejection: the indirect recognition pathway. Human immunology 1997; 53: 57-63.
    [11] Lantz O, Alard P, Charpentier B. [Mechanism of allograft rejection]. Pathologie-biologie 1993;41: 515-520.
    [12] Benichou G. Direct and indirect antigen recognition: the pathways to allograft immune rejection.Front Biosci 1999; 4: D476-480.
    [13] Hornick P, Lechler R. Direct and indirect pathways of alloantigen recognition: relevance toacute and chronic allograft rejection. Nephrol Dial Transplant 1997; 12: 1806-1810.
    [14]龚非力.医学免疫学.科学出版社2007; 2: 173-177.
    [15] Bettens F, Tiercy JM, Campanile N, Giostra E, Majno P, Rubbia L et al. Microchimerism afterliver transplantation: absence of rejection without abrogation of anti-donor cytotoxic Tlymphocyte-mediated alloreactivity. Liver Transpl 2005; 11: 290-297.
    [16] Sahota A, Gao S, Hayes J, Jindal RM. Microchimerism and rejection: a meta-analysis. Clinicaltransplantation 2000; 14: 345-350.
    [17] Elwood ET, Larsen CP, Maurer DH, Routenberg KL, Neylan JF, Whelchel JD et al.Microchimerism and rejection in clinical transplantation. Lancet 1997; 349: 1358-1360.
    [18] Schlitt HJ, Hundrieser J, Ringe B, Pichlmayr R. Donor-type microchimerism associated withgraft rejection eight years after liver transplantation. The New England journal of medicine1994; 330: 646-647.
    [19] Pirenne J, Kitade H, Kawai M, Koshiba T, Van Damme B, Mathieu C et al. Regulatory cells,TH1/TH2 unbalance, and antibody-induced chronic rejection in operational tolerance inducedby donor-specific blood transfusion. Transplantation 2005; 79: S25-27.
    [20] Shittu EA, Yang CP, Roberts IS, Bell EB, Brenchley P, Roberts T et al. Inhibition of chronicvascular rejection by donor-specific blood transfusion is associated with a reduction intransforming growth factor-beta1 expression. Transplantation 2002; 73: 1573-1581.
    [21] Wood PJ, Roberts IS, Yang CP, Cossens IA, Bell EB. Prevention of chronic rejection by donorspecificblood transfusion in a new model of chronic cardiac allograft rejection. Transplantation1996; 61: 1440-1443.
    [22] Kitade H, Kawai M, Rutgeerts O, Landuyt W, Waer M, Mathieu C et al. Early presence ofregulatory cells in transplanted rats rendered tolerant by donor-specific blood transfusion. JImmunol 2005; 175: 4963-4970.
    [23] Kuypers DR. Immunosuppressive drug therapy and subclinical acute renal allograft rejection:impact and effect. Transplantation 2008; 85: S25-30.
    [24] Lake KD. Immunosuppressive drugs and novel strategies to prevent acute and chronic allograftrejection. Seminars in respiratory and critical care medicine 2001; 22: 559-580.
    [25] Trzonkowski P, Szarynska M, Mysliwska J, Mysliwski A. Ex vivo expansion of CD4(+)CD25(+)T regulatory cells for immunosuppressive therapy. Cytometry A 2009; 75: 175-188.
    [26] Wekerle T. T-regulatory cells-what relationship with immunosuppressive agents?Transplantation proceedings 2008; 40: S13-16.
    [27] Ouaissi A. Regulatory cells and immunosuppressive cytokines: parasite-derived factors induceimmune polarization. Journal of biomedicine & biotechnology 2007; 2007: 94971.
    [28] Mahnke K, Ring S, Johnson TS, Schallenberg S, Schonfeld K, Storn V et al. Induction ofimmunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: roleof B7-H3 expression and antigen presentation. European journal of immunology 2007; 37:2117-2126.
    [29]张春桃单娟,冯莉,卢俊,肖政,罗蕾,等.移植排斥治疗中不同免疫抑制剂对调节性T细胞活化及功能的影响:结合基础和临床的系统评价.中国循证医学杂志2010; 10: 740-748.
    [30] Ugurlu MM, Griffin MD, O'Brien T, Tazelaar HD, Miller VM, McGregor CG. The effects ofCTLA-4Ig on acute lung allograft rejection: a comparison of intrabronchial gene therapy withsystemic administration of protein. Transplantation 2001; 71: 1867-1871.
    [31] Ugurlu MM, Griffin MD, Tazelaar HD, McGregor CG. Synergistic effects of CTLA-4Ig andsirolimus on orthotopic lung-allograft survival and histology. Transplantation 2003; 76: 489-495.
    [32] Guo L, Li X, Enosawa S, Harihara Y, Funeshima N, Kimura H et al. Prolongation of liverxenograft survival by adenovirus vector-mediated CTLA-4Ig gene transfer. Transplantimmunology 2003; 11: 155-162.
    [33] Daley SR, Cobbold SP, Waldmann H. Fc-disabled anti-mouse CD40L antibodies retain efficacyin promoting transplantation tolerance. Am J Transplant 2008; 8: 2265-2271.
    [34] Yin D, Ma L, Zeng H, Shen J, Chong AS. Allograft tolerance induced by intact active bone cotransplantationand anti-CD40L monoclonal antibody therapy. Transplantation 2002; 74: 345-354.
    [35] Nathan MJ, Yin D, Eichwald EJ, Bishop DK. The immunobiology of inductive anti-CD40Ltherapy in transplantation: allograft acceptance is not dependent upon the deletion of graftreactiveT cells. Am J Transplant 2002; 2: 323-332.
    [36] Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation.Daclizumab Triple Therapy Study Group. The New England journal of medicine 1998; 338:161-165.
    [37] Sageshima J, Ciancio G, Chen L, Burke GW, 3rd. Anti-interleukin-2 receptor antibodiesbasiliximaband daclizumab-for the prevention of acute rejection in renal transplantation.Biologics 2009; 3: 319-336.
    [38] Atalar K, Afzali B, Lord G, Lombardi G. Relative roles of Th1 and Th17 effector cells inallograft rejection. Current opinion in organ transplantation 2009; 14: 23-29.
    [39] Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al. Th1-specific cellsurface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.Nature 2002; 415: 536-541.
    [40] Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE et al. TIM-4 is theligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Natureimmunology 2005; 6: 455-464.
    [41] Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O et al. TIM-1 induces Tcell activation and inhibits the development of peripheral tolerance. Nature immunology 2005; 6:447-454.
    [42] Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells andnegative regulation of Th1 cell differentiation by IL-17. Journal of leukocyte biology 2007; 81:1258-1268.
    [43] Rodriguez-Manzanet R, Meyers JH, Balasubramanian S, Slavik J, Kassam N, Dardalhon V et al.TIM-4 expressed on APCs induces T cell expansion and survival. J Immunol 2008; 180: 4706-4713.
    [44] Binne LL, Scott ML, Rennert PD. Human TIM-1 associates with the TCR complex and upregulatesT cell activation signals. J Immunol 2007; 178: 4342-4350.
    [45] Kim HS, Kim HS, Lee CW, Chung DH. T cell Ig domain and mucin domain 1 engagement oninvariant NKT cells in the presence of TCR stimulation enhances IL-4 production but inhibitsIFN-gamma production. J Immunol 2010; 184: 4095-4106.
    [46] Mariat C, Degauque N, Balasubramanian S, Kenny J, DeKruyff RH, Umetsu DT et al. Tim-1signaling substitutes for conventional signal 1 and requires costimulation to induce T cellproliferation. J Immunol 2009; 182: 1379-1385.
    [47] Spitzenberger F, Graessler J, Schroeder HE. Molecular and functional characterization ofgalectin 9 mRNA isoforms in porcine and human cells and tissues. Biochimie 2001; 83: 851-862.
    [1] Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al. Th1-specific cellsurface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.Nature 2002; 415: 536-541.
    [2] Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ. The TIM gene family: emerging roles inimmunity and disease. Nature reviews 2003; 3: 454-462.
    [3] Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE et al. TIM-4 is theligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Natureimmunology 2005; 6: 455-464.
    [4] Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O et al. TIM-1 induces Tcell activation and inhibits the development of peripheral tolerance. Nature immunology 2005; 6:447-454.
    [5] Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells andnegative regulation of Th1 cell differentiation by IL-17. Journal of leukocyte biology 2007; 81:1258-1268.
    [6] Rodriguez-Manzanet R, Meyers JH, Balasubramanian S, Slavik J, Kassam N, Dardalhon V et al.TIM-4 expressed on APCs induces T cell expansion and survival. J Immunol 2008; 180: 4706-4713.
    [7] Binne LL, Scott ML, Rennert PD. Human TIM-1 associates with the TCR complex and upregulatesT cell activation signals. J Immunol 2007; 178: 4342-4350.
    [8] Kim HS, Kim HS, Lee CW, Chung DH. T cell Ig domain and mucin domain 1 engagement oninvariant NKT cells in the presence of TCR stimulation enhances IL-4 production but inhibitsIFN-gamma production. J Immunol 2010; 184: 4095-4106.
    [9] Mariat C, Degauque N, Balasubramanian S, Kenny J, DeKruyff RH, Umetsu DT et al. Tim-1signaling substitutes for conventional signal 1 and requires costimulation to induce T cellproliferation. J Immunol 2009; 182: 1379-1385.
    [10] Spitzenberger F, Graessler J, Schroeder HE. Molecular and functional characterization ofgalectin 9 mRNA isoforms in porcine and human cells and tissues. Biochimie 2001; 83: 851-862.
    [11] Wang F, Wan L, Zhang C, Zheng X, Li J, Chen ZK. Tim-3-Galectin-9 pathway involves thesuppression induced by CD4+CD25+ regulatory T cells. Immunobiology 2009; 214: 342-349.
    [12] Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone SM. Identification of asurface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus.The EMBO journal 1996; 15: 4282-4296.
    [13] Feigelstock D, Thompson P, Mattoo P, Zhang Y, Kaplan GG. The human homolog of HAVcr-1codes for a hepatitis A virus cellular receptor. Journal of virology 1998; 72: 6621-6628.
    [14] Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulindomain, is up-regulated in renal cells after injury. The Journal of biological chemistry 1998; 273:4135-4142.
    [15] Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT. The costimulatory role of TIMmolecules. Immunological reviews 2009; 229: 259-270.
    [16] Linneberg A, Ostergaard C, Tvede M, Andersen LP, Nielsen NH, Madsen F et al. IgG antibodiesagainst microorganisms and atopic disease in Danish adults: the Copenhagen Allergy Study. TheJournal of allergy and clinical immunology 2003; 111: 847-853.
    [17] Chae SC, Park YR, Song JH, Shim SC, Yoon KS, Chung HT. The polymorphisms of Tim-1promoter region are associated with rheumatoid arthritis in a Korean population.Immunogenetics 2005; 56: 696-701.
    [18] Chae SC, Song JH, Shim SC, Yoon KS, Chung HT. The exon 4 variations of Tim-1 gene areassociated with rheumatoid arthritis in a Korean population. Biochemical and biophysicalresearch communications 2004; 315: 971-975.
    [19] Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C et al. T Cell Ig- andmucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentiallyexpressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells inmultiple sclerosis. J Immunol 2004; 172: 7169-7176.
    [20] Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu MD et al. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. The Journal ofclinical investigation 2008; 118: 735-741.
    [21] Sizing ID, Bailly V, McCoon P, Chang W, Rao S, Pablo L et al. Epitope-dependent effect of antimurineTIM-1 monoclonal antibodies on T cell activity and lung immune responses. J Immunol2007; 178: 2249-2261.
    [22] Xiao S, Najafian N, Reddy J, Albin M, Zhu C, Jensen E et al. Differential engagement of Tim-1during activation can positively or negatively costimulate T cell expansion and effector function.The Journal of experimental medicine 2007; 204: 1691-1702.
    [23] de Souza AJ, Oriss TB, O'Malley K J, Ray A, Kane LP. T cell Ig and mucin 1 (TIM-1) isexpressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation.Proceedings of the National Academy of Sciences of the United States of America 2005; 102:17113-17118.
    [24] de Souza AJ, Oak JS, Jordanhazy R, DeKruyff RH, Fruman DA, Kane LP. T cell Ig and mucindomain-1-mediated T cell activation requires recruitment and activation of phosphoinositide 3-kinase. J Immunol 2008; 180: 6518-6526.
    [25] Zou Z, Sun PD. An improved recombinant mammalian cell expression system for humantransforming growth factor-beta2 and -beta3 preparations. Protein expression and purification2006; 50: 9-17.
    [1] Yeo CJ, Fearon DT. T-bet-mediated differentiation of the activated CD8+ T cell. European journal ofimmunology 2011; 41: 60-66.
    [2] MacLeod H, Goodwin DG, Damphousse C, Lonie E, Xu X, Collins M et al. The DTH effectorresponse and IL-2 are unaffected by cyclosporine A in autoimmune B6D2F1 mice. Cellularimmunology 2010; 266: 14-23.
    [3] Libregts S, van Olffen RW, van der Sluijs KF, van Lier RA, Nolte MA. Function of CD27 in helper Tcell differentiation. Immunology letters 2011.
    [4] Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines andtranscription factors. Immunological reviews 2010; 238: 247-262.
    [5] Wirnsberger G, Hinterberger M, Klein L. Regulatory T-cell differentiation versus clonal deletion ofautoreactive thymocytes. Immunology and cell biology 2011; 89: 45-53.
    [6] Huang H, Dawicki W, Zhang X, Town J, Gordon JR. Tolerogenic dendritic cells induceCD4+CD25hiFoxp3+ regulatory T cell differentiation from CD4+CD25-/loFoxp3- effector T cells. JImmunol 2010; 185: 5003-5010.
    [7] Murali-Krishna K, Ravi V, Manjunath R. Protection of adult but not newborn mice against lethalintracerebral challenge with Japanese encephalitis virus by adoptively transferred virus-specificcytotoxic T lymphocytes: requirement for L3T4+ T cells. The Journal of general virology 1996; 77( Pt 4): 705-714.
    [8] Araujo FG. Depletion of L3T4+ (CD4+) T lymphocytes prevents development of resistance toToxoplasma gondii in mice. Infection and immunity 1991; 59: 1614-1619.
    [9] Chen Y, Zheng T, Lan Q, Foss F, Kim C, Chen X et al. Cytokine polymorphisms in Th1/Th2 pathwaygenes, body mass index, and risk of non-Hodgkin lymphoma. Blood 2010; 117: 585-590.
    [10] Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates Th1/Th2/Th17 cytokine production andinflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. JImmunol; 185: 3750-3758.
    [11] Wei B, da Rocha Dias S, Wang H, Rudd CE. CTL-associated antigen-4 ligation induces rapid T cellpolarization that depends on phosphatidylinositol 3-kinase, Vav-1, Cdc42, and myosin light chainkinase. J Immunol 2007; 179: 400-408.
    [12] Hoyer KK, Herling M, Bagrintseva K, Dawson DW, French SW, Renard M et al. T cell leukemia-1modulates TCR signal strength and IFN-gamma levels through phosphatidylinositol 3-kinase andprotein kinase C pathway activation. J Immunol 2005; 175: 864-873.
    [13] Liversidge J, Dawson R, Hoey S, McKay D, Grabowski P, Forrester JV. CD59 and CD48 expressedby rat retinal pigment epithelial cells are major ligands for the CD2-mediated alternative pathway ofT cell activation. J Immunol 1996; 156: 3696-3703.
    [14] Meuer SC, Roux MM, Schraven B. The alternative pathway of T cell activation: biology,pathophysiology, and perspectives for immunopharmacology. Clinical immunology andimmunopathology 1989; 50: S133-139.
    [15] Zhong XP, Hainey EA, Olenchock BA, Zhao H, Topham MK, Koretzky GA. Regulation of T cellreceptor-induced activation of the Ras-ERK pathway by diacylglycerol kinase zeta. The Journal ofbiological chemistry 2002; 277: 31089-31098.
    [16] Roose JP, Mollenauer M, Gupta VA, Stone J, Weiss A. A diacylglycerol-protein kinase C-RasGRP1pathway directs Ras activation upon antigen receptor stimulation of T cells. Molecular and cellularbiology 2005; 25: 4426-4441.
    [17] Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ et al. Glucose uptake islimiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. JImmunol 2008; 180: 4476-4486.
    [18] Liu Y, Witte S, Liu YC, Doyle M, Elly C, Altman A. Regulation of protein kinase Ctheta functionduring T cell activation by Lck-mediated tyrosine phosphorylation. The Journal of biologicalchemistry 2000; 275: 3603-3609.
    [19] Yang D, Miller RA. Cluster formation by protein kinase Ctheta during murine T cell activation: effectof age. Cellular immunology 1999; 195: 28-36.
    [20] Korty PE, Brando C, Shevach EM. CD59 functions as a signal-transducing molecule for human Tcell activation. J Immunol 1991; 146: 4092-4098.
    [21] Rowan W, Tite J, Topley P, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) mediatesgrowth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 1998; 95: 427-436.
    [22] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCRand the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif 2001; 25: 402-408.
    [23] Assoian RK. Stopping and going with p27kip1. Developmental cell 2004; 6: 458-459.
    [24] Kramer JM, Kochinke K, Oortveld MA, Marks H, Kramer D, de Jong EK et al. Epigenetic regulationof learning and memory by Drosophila EHMT/G9a. PLoS biology 2011; 9: e1000569.
    [25] Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE et al. TIM-4 is the ligandfor TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nature immunology 2005;6: 455-464.
    [26] Schutte B, Nuydens R, Geerts H, Ramaekers F. Annexin V binding assay as a tool to measureapoptosis in differentiated neuronal cells. Journal of neuroscience methods 1998; 86: 63-69.
    [27] Zhou Y, Wang S, Gobl A, Oberg K. Inhibition of CDK2, CDK4 and cyclin E and increasedexpression of p27Kip1 during treatment with interferon-alpha in carcinoid tumor cells. Journal ofbiological regulators and homeostatic agents 1999; 13: 207-215.
    [28] Li W, Kotoshiba S, Berthet C, Hilton MB, Kaldis P. Rb/Cdk2/Cdk4 triple mutant mice elicit analternative mechanism for regulation of the G1/S transition. Proceedings of the National Academy ofSciences of the United States of America 2009; 106: 486-491.
    [29] Reynolds LF, de Bettignies C, Norton T, Beeser A, Chernoff J, Tybulewicz VL. Vav1 transduces Tcell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. TheJournal of biological chemistry 2004; 279: 18239-18246.
    [30] Rathmell JC, Elstrom RL, Cinalli RM, Thompson CB. Activated Akt promotes increased resting Tcell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma.European journal of immunology 2003; 33: 2223-2232.
    [31] Delgado P, Fernandez E, Dave V, Kappes D, Alarcon B. CD3delta couples T-cell receptor signallingto ERK activation and thymocyte positive selection. Nature 2000; 406: 426-430.
    [32] Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O et al. TIM-1 induces T cellactivation and inhibits the development of peripheral tolerance. Nature immunology 2005; 6: 447-454.
    [33] Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells andnegative regulation of Th1 cell differentiation by IL-17. Journal of leukocyte biology 2007; 81:1258-1268.
    [34] Binne LL, Scott ML, Rennert PD. Human TIM-1 associates with the TCR complex and up-regulatesT cell activation signals. J Immunol 2007; 178: 4342-4350.
    [35] de Souza AJ, Oriss TB, O'Malley K J, Ray A, Kane LP. T cell Ig and mucin 1 (TIM-1) is expressedon in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proceedings ofthe National Academy of Sciences of the United States of America 2005; 102: 17113-17118.
    [36] Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu MD et al. Immunostimulatory Tim-1-specificantibody deprograms Tregs and prevents transplant tolerance in mice. The Journal of clinicalinvestigation 2008; 118: 735-741.
    [37] Ueno T, Habicht A, Clarkson MR, Albin MJ, Yamaura K, Boenisch O et al. The emerging role of Tcell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model. The Journal ofclinical investigation 2008; 118: 742-751.
    [38] Rodriguez-Manzanet R, Meyers JH, Balasubramanian S, Slavik J, Kassam N, Dardalhon V et al.TIM-4 expressed on APCs induces T cell expansion and survival. J Immunol 2008; 180: 4706-4713.
    [39] Mizui M, Shikina T, Arase H, Suzuki K, Yasui T, Rennert PD et al. Bimodal regulation of T cellmediatedimmune responses by TIM-4. International immunology 2008; 20: 695-708.
    [40] Mesri M, Smithson G, Ghatpande A, Chapoval A, Shenoy S, Boldog F et al. Inhibition of in vitro andin vivo T cell responses by recombinant human Tim-1 extracellular domain proteins. Internationalimmunology 2006; 18: 473-484.
    [41] Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L et al. TIM-4 expressed by mucosaldendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy.Gastroenterology 2007; 133: 1522-1533.
    [42] Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, Umetsu SE et al. TIM-1 and TIM-4glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 2007; 27:927-940.
    [43] Yamanishi Y, Kitaura J, Izawa K, Kaitani A, Komeno Y, Nakamura M et al. TIM1 is an endogenousligand for LMIR5/CD300b: LMIR5 deficiency ameliorates mouse kidney ischemia/reperfusioninjury. The Journal of experimental medicine 2010; 207: 1501-1511.
    [44] Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL et al. Kidney injury molecule-1(KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, isup-regulated in renal cells after injury. The Journal of biological chemistry 1998; 273: 4135-4142.
    [45] Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F et al. Functional analysis ofactivating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3. The Journal of biologicalchemistry 2007; 282: 17997-18008.
    [46] Yamanishi Y, Kitaura J, Izawa K, Matsuoka T, Oki T, Lu Y et al. Analysis of mouse LMIR5/CLM-7as an activating receptor: differential regulation of LMIR5/CLM-7 in mouse versus human cells.Blood 2008; 111: 688-698.
    [47] Santiago C, Ballesteros A, Tami C, Martinez-Munoz L, Kaplan GG, Casasnovas JM. Structures of TCell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immuneresponses by the TIM receptor family. Immunity 2007; 26: 299-310.
    [48] Wilker PR, Sedy JR, Grigura V, Murphy TL, Murphy KM. Evidence for carbohydrate recognitionand homotypic and heterotypic binding by the TIM family. International immunology 2007; 19: 763-773.
    [49] Bhatia S, Sun K, Almo SC, Nathenson SG, Hodes RJ. Dynamic equilibrium of B7-1 dimers andmonomers differentially affects immunological synapse formation and T cell activation in responseto TCR/CD28 stimulation. J Immunol 2010; 184: 1821-1828.
    [50] Li N, Zhu F, Gao F, Wang Q, Wang X, Li H et al. Blockade of CD28 by a synthetical peptoid inhibitsT-cell proliferation and attenuates graft-versus-host disease. Cellular & molecular immunology 2010;7: 133-142.
    [51] Luciano AA, Lederman MM, Valentin-Torres A, Bazdar DA, Sieg SF. Impaired induction of CD27and CD28 predicts naive CD4 T cell proliferation defects in HIV disease. J Immunol 2007; 179:3543-3549.
    [1] Pirenne J, Kitade H, Kawai M, Koshiba T, Van Damme B, Mathieu C et al. Regulatory cells,TH1/TH2 unbalance, and antibody-induced chronic rejection in operational tolerance induced bydonor-specific blood transfusion. Transplantation 2005; 79: S25-27.
    [2] Holschermann H, Stadlbauer TH, Wagner AH, Fingerhuth H, Muth H, Rong S et al. STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival.Cardiovascular research 2006; 71: 527-536.
    [3] Winlaw DS, Schyvens CG, Smythe GA, Du ZY, Rainer SP, Lord RS et al. Selective inhibition ofnitric oxide production during cardiac allograft rejection causes a small increase in graft survival.Transplantation 1995; 60: 77-82.
    [4] Everly MJ, Rebellato LM, Ozawa M, Briley KP, Catrou PG, Haisch CE et al. Beyond histology:lowering human leukocyte antigen antibody to improve renal allograft survival in acute rejection.Transplantation 2010; 89: 962-967.
    [5] Knight SR, Russell NK, Barcena L, Morris PJ. Mycophenolate mofetil decreases acute rejection andmay improve graft survival in renal transplant recipients when compared with azathioprine: asystematic review. Transplantation 2009; 87: 785-794.
    [6] Grazia TJ, Plenter RJ, Weber SM, Lepper HM, Victorino F, Zamora MR et al. Acute cardiac allograftrejection by directly cytotoxic CD4 T cells: parallel requirements for Fas and perforin.Transplantation 2010; 89: 33-39.
    [7] Hashimoto K, Miller C, Hirose K, Diago T, Aucejo F, Quintini C et al. Measurement of CD4+ T-cellfunction in predicting allograft rejection and recurrent hepatitis C after liver transplantation. Clinicaltransplantation 2010; 24: 701-708.
    [8] Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D'Addio F, Mfarrej B, Donnarumma M et al. A novelrole of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. The Journal ofexperimental medicine 2008; 205: 3133-3144.
    [9] Qian J, Galitovskiy V, Chernyavsky AI, Marchenko S, Grando SA. Plasticity of the murine spleen Tcellcholinergic receptors and their role in in vitro differentiation of naive CD4 T cells toward the Th1,Th2 and Th17 lineages. Genes and immunity 2011.
    [10] Medina A, Ghahary A. Reprogrammed fibrocytes induce a mixed Th1/Th2 cytokine response ofnaive CD4(+) T cells. Molecular and cellular biochemistry 2011; 346: 89-94.
    [11] Illigens BM, Yamada A, Anosova N, Dong VM, Sayegh MH, Benichou G. Dual effects of thealloresponse by Th1 and Th2 cells on acute and chronic rejection of allotransplants. European journalof immunology 2009; 39: 3000-3009.
    [12] Sadeghi M, Daniel V, Naujokat C, Schmidt J, Mehrabi A, Zeier M et al. Evidence for IFN-gammaup- and IL-4 downregulation late post-transplant in patients with good kidney graft outcome. Clinicaltransplantation 2007; 21: 449-459.
    [13] Verma ND, Plain KM, Nomura M, Tran GT, Robinson C, Boyd R et al. CD4+CD25+ T cellsalloactivated ex vivo by IL-2 or IL-4 become potent alloantigen-specific inhibitors of rejection withdifferent phenotypes, suggesting separate pathways of activation by Th1 and Th2 responses. Blood2009; 113: 479-487.
    [14] Joffre O, Santolaria T, Calise D, Al Saati T, Hudrisier D, Romagnoli P et al. Prevention of acute andchronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nature medicine2008; 14: 88-92.
    [15] Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation andexpansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 2001; 166:7282-7289.
    [16] Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H. Characterization of dendriticcells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18: 605-617.
    [17] Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansionof polyclonal human CD4(+)CD25high regulatory T cells. Blood 2004; 104: 895-903.
    [18] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCRand the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif 2001; 25: 402-408.
    [19] Kramer JM, Kochinke K, Oortveld MA, Marks H, Kramer D, de Jong EK et al. Epigenetic regulationof learning and memory by Drosophila EHMT/G9a. PLoS biology 2011; 9: e1000569.
    [20] Mariotti J, Foley J, Ryan K, Buxhoeveden N, Kapoor V, Amarnath S et al. Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6pathway. Blood 2008; 112: 4765-4775.
    [21] Braun MY, McCormack A, Webb G, Batchelor JR. Mediation of acute but not chronic rejection ofMHC-incompatible rat kidney grafts by alloreactive CD4 T cells activated by the direct pathway ofsensitization. Transplantation 1993; 55: 177-182.
    [22] VanBuskirk AM, Wakely ME, Orosz CG. Acute rejection of cardiac allografts by noncytolytic CD4(+)T cell populations. Transplantation 1996; 62: 300-302.
    [23] Smith CR, Jaramillo A, Liu W, Tu Y, Kaleem Z, Swanson CJ et al. CD4+ T cell recognition of asingle discordant HLA-A2-transgenic molecule through the indirect antigen presentation pathwayinduces acute rejection of murine cardiac allografts. Transplantation 2001; 71: 1640-1648.
    [24] Grazia TJ, Pietra BA, Johnson ZA, Kelly BP, Plenter RJ, Gill RG. A two-step model of acute CD4 Tcellmediated cardiac allograft rejection. J Immunol 2004; 172: 7451-7458.
    [25] Shurin MR, Lu L, Kalinski P, Stewart-Akers AM, Lotze MT. Th1/Th2 balance in cancer,transplantation and pregnancy. Springer seminars in immunopathology 1999; 21: 339-359.
    [26] van Gelder T, Balk AH, Jonkman FA, Zietse R, Zondervan P, Hesse CJ et al. A randomized trialcomparing safety and efficacy of OKT3 and a monoclonal anti-interleukin-2 receptor antibody(BT563) in the prevention of acute rejection after heart transplantation. Transplantation 1996; 62: 51-55.
    [27] Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P et al. Interleukin-2-receptorblockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab TripleTherapy Study Group. The New England journal of medicine 1998; 338: 161-165.
    [28] Sageshima J, Ciancio G, Chen L, Burke GW, 3rd. Anti-interleukin-2 receptor antibodies-basiliximaband daclizumab-for the prevention of acute rejection in renal transplantation. Biologics 2009; 3: 319-336.
    [29]姜晓峰孙文郁,郭大伟. Thl/Th2细胞因子对器官移植排斥反应的影响.中国现代普通外科进展2009; 12: 391-392.
    [30] Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K et al. Regulation of T cells andcytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26.European journal of immunology 2006; 36: 380-388.
    [31] Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Annals of the New York Academy of Sciences2004; 1024: 138-146.
    [32] Qin L, Ding Y, Tahara H, Bromberg JS. Viral IL-10-induced immunosuppression requires Th2cytokines and impairs APC function within the allograft. J Immunol 2001; 166: 2385-2393.
    [33] Tung TC, Oshima K, Cui G, Laks H, Sen L. Dual upregulation of Fas and Bax promotes alloreactiveT cell apoptosis in IL-10 gene targeting of cardiac allografts. American journal of physiology 2003;285: H964-973.
    [34] Zhang M, Wang Q, Liu Y, Sun Y, Ding G, Fu Z et al. Effective induction of immune tolerance byportal venous infusion with IL-10 gene-modified immature dendritic cells leading to prolongation ofallograft survival. Journal of molecular medicine (Berlin, Germany) 2004; 82: 240-249.
    [35]粟一帆邓勇志.心脏移植免疫耐受研究进展.心血管病学进展2008; 29: 554-556.
    [36] Takayashiki T, Asakura H, Ku G, Kataoka M, Flye MW. Infectious tolerance develops afterintrathymic alloantigen-induced acceptance of rat heart allografts can be adoptively transferred.Surgery 2005; 138: 254-260.
    [37] Kishimoto K, Yuan X, Auchincloss H, Jr., Sharpe AH, Mandelbrot DA, Sayegh MH. Mechanism ofaction of donor-specific transfusion in inducing tolerance: role of donor MHC molecules, donor costimulatorymolecules, and indirect antigen presentation. J Am Soc Nephrol 2004; 15: 2423-2428.
    [38] Hoerbelt R, Johnston DR, Shoji T, Houser SL, Hasse RS, Ledgerwood LG et al. Combinationtreatment with donor-specific transfusions and cyclosporine a induces long-term survival of cardiacallografts in miniature Swine. Transplantation 2005; 80: 1275-1282.
    [39] Nomura M, Plain KM, Verma N, Robinson C, Boyd R, Hodgkinson SJ et al. The cellular basis ofcardiac allograft rejection. IX. Ratio of naive CD4+CD25+ T cells/CD4+CD25- T cells determinesrejection or tolerance. Transplant immunology 2006; 15: 311-318.
    [40] Seino KI, Fukao K, Muramoto K, Yanagisawa K, Takada Y, Kakuta S et al. Requirement for naturalkiller T (NKT) cells in the induction of allograft tolerance. Proceedings of the National Academy ofSciences of the United States of America 2001; 98: 2577-2581.
    [41]常青高东宸.调节性T细胞在移植免疫耐受中的研究进展.国际外科学杂志2006; 33: 455-458.
    [42] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factorFoxp3. Science (New York, NY 2003; 299: 1057-1061.
    [43] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function ofCD4+CD25+ regulatory T cells. Nature immunology 2003; 4: 330-336.
    [44] Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3.The Journal of experimental medicine 2003; 198: 1875-1886.
    [45] Pyzik M, Piccirillo CA. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinctCD4+ T cell subsets. Journal of leukocyte biology 2007; 82: 335-346.
    [46] Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting Edge: IL-2 is essential for TGF-betamediatedinduction of Foxp3+ T regulatory cells. J Immunol 2007; 178: 4022-4026.
    [1] Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al. Th1-specific cellsurface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.Nature 2002; 415: 536-541.
    [2] Chan RC, Chan A, Jeon M, Wu TF, Pasqualone D, Rougvie AE et al. Chromosome cohesion isregulated by a clock gene paralogue TIM-1. Nature 2003; 423: 1002-1009.
    [3] Meyer P, Saez L, Young MW. PER-TIM interactions in living Drosophila cells: an interval timerfor the circadian clock. Science (New York, NY 2006; 311: 226-229.
    [4] Kuchroo VK, Meyers JH, Umetsu DT, DeKruyff RH. TIM family of genes in immunity andtolerance. Advances in immunology 2006; 91: 227-249.
    [5] Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ. The TIM gene family: emerging roles inimmunity and disease. Nature reviews 2003; 3: 454-462.
    [6] Kuchroo VK, Dardalhon V, Xiao S, Anderson AC. New roles for TIM family members inimmune regulation. Nature reviews 2008; 8: 577-580.
    [7] Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, Feinstone SM. Identification of asurface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus.The EMBO journal 1996; 15: 4282-4296.
    [8] Feigelstock D, Thompson P, Mattoo P, Zhang Y, Kaplan GG. The human homolog of HAVcr-1codes for a hepatitis A virus cellular receptor. Journal of virology 1998; 72: 6621-6628.
    [9] Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulindomain, is up-regulated in renal cells after injury. The Journal of biological chemistry 1998; 273:4135-4142.
    [10] Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE et al. TIM-4 is theligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Natureimmunology 2005; 6: 455-464.
    [11] Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, Akbari O et al. TIM-1 induces Tcell activation and inhibits the development of peripheral tolerance. Nature immunology 2005; 6:447-454.
    [12] Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells andnegative regulation of Th1 cell differentiation by IL-17. Journal of leukocyte biology 2007; 81:1258-1268.
    [13] Linneberg A, Ostergaard C, Tvede M, Andersen LP, Nielsen NH, Madsen F et al. IgG antibodiesagainst microorganisms and atopic disease in Danish adults: the Copenhagen Allergy Study. TheJournal of allergy and clinical immunology 2003; 111: 847-853.
    [14] Chae SC, Park YR, Song JH, Shim SC, Yoon KS, Chung HT. The polymorphisms of Tim-1promoter region are associated with rheumatoid arthritis in a Korean population.Immunogenetics 2005; 56: 696-701.
    [15] Chae SC, Song JH, Shim SC, Yoon KS, Chung HT. The exon 4 variations of Tim-1 gene areassociated with rheumatoid arthritis in a Korean population. Biochemical and biophysicalresearch communications 2004; 315: 971-975.
    [16] Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C et al. T Cell Ig- andmucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentiallyexpressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells inmultiple sclerosis. J Immunol 2004; 172: 7169-7176.
    [17] Xu G, Cheng L, Lu L, Zhu Y, Xu R, Yao X et al. Expression of T-cell immunoglobulin- andmucin-domain-containing molecule-1 (TIM-1) is increased in a mouse model of asthma andrelationship to GATA-3. Life sciences 2008; 82: 663-669.
    [18] Su EW, Lin JY, Kane LP. TIM-1 and TIM-3 proteins in immune regulation. Cytokine 2008; 44:9-13.
    [19] Binne LL, Scott ML, Rennert PD. Human TIM-1 associates with the TCR complex and upregulatesT cell activation signals. J Immunol 2007; 178: 4342-4350.
    [20] de Souza AJ, Oriss TB, O'Malley K J, Ray A, Kane LP. T cell Ig and mucin 1 (TIM-1) isexpressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation.Proceedings of the National Academy of Sciences of the United States of America 2005; 102:17113-17118.
    [21] de Souza AJ, Oak JS, Jordanhazy R, DeKruyff RH, Fruman DA, Kane LP. T cell Ig and mucindomain-1-mediated T cell activation requires recruitment and activation of phosphoinositide 3-kinase. J Immunol 2008; 180: 6518-6526.
    [22] Degauque N, Mariat C, Kenny J, Zhang D, Gao W, Vu MD et al. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. The Journal ofclinical investigation 2008; 118: 735-741.
    [23] Ueno T, Habicht A, Clarkson MR, Albin MJ, Yamaura K, Boenisch O et al. The emerging role ofT cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model. TheJournal of clinical investigation 2008; 118: 742-751.
    [24] Nakae S, Iikura M, Suto H, Akiba H, Umetsu DT, Dekruyff RH et al. TIM-1 and TIM-3enhancement of Th2 cytokine production by mast cells. Blood 2007; 110: 2565-2568.
    [25] Hein RM, Woods ML. TIM-1 regulates macrophage cytokine production and B7 family memberexpression. Immunology letters 2007; 108: 103-108.
    [26] Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, Umetsu SE et al. TIM-1 andTIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity2007; 27: 927-940.
    [27] Yamanishi Y, Kitaura J, Izawa K, Kaitani A, Komeno Y, Nakamura M et al. TIM1 is anendogenous ligand for LMIR5/CD300b: LMIR5 deficiency ameliorates mouse kidneyischemia/reperfusion injury. The Journal of experimental medicine 2010; 207: 1501-1511.
    [28] Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F et al. Functional analysis ofactivating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3. The Journal ofbiological chemistry 2007; 282: 17997-18008.
    [29] Yamanishi Y, Kitaura J, Izawa K, Matsuoka T, Oki T, Lu Y et al. Analysis of mouseLMIR5/CLM-7 as an activating receptor: differential regulation of LMIR5/CLM-7 in mouseversus human cells. Blood 2008; 111: 688-698.
    [30] Santiago C, Ballesteros A, Tami C, Martinez-Munoz L, Kaplan GG, Casasnovas JM. Structuresof T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immuneresponses by the TIM receptor family. Immunity 2007; 26: 299-310.
    [31] Wilker PR, Sedy JR, Grigura V, Murphy TL, Murphy KM. Evidence for carbohydraterecognition and homotypic and heterotypic binding by the TIM family. Internationalimmunology 2007; 19: 763-773.
    [32] Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM et al. TIM-2 is expressed on B cellsand in liver and kidney and is a receptor for H-ferritin endocytosis. The Journal of experimentalmedicine 2005; 202: 955-965.
    [33] Chakravarti S, Sabatos CA, Xiao S, Illes Z, Cha EK, Sobel RA et al. Tim-2 regulates T helpertype 2 responses and autoimmunity. The Journal of experimental medicine 2005; 202: 437-444.
    [34] Kumanogoh A, Marukawa S, Suzuki K, Takegahara N, Watanabe C, Ch'ng E et al. Class IVsemaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 2002; 419:629-633.
    [35] Rennert PD, Ichimura T, Sizing ID, Bailly V, Li Z, Rennard R et al. T cell, Ig domain, mucindomain-2 gene-deficient mice reveal a novel mechanism for the regulation of Th2 immuneresponses and airway inflammation. J Immunol 2006; 177: 4311-4321.
    [36] Knickelbein JE, de Souza AJ, Tosti R, Narayan P, Kane LP. Cutting edge: inhibition of T cellactivation by TIM-2. J Immunol 2006; 177: 4966-4970.
    [37] Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B et al. Interleukin-23 rather thaninterleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003;421: 744-748.
    [38] Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C et al. Promotion oftissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science(New York, NY 2007; 318: 1141-1143.
    [39] Wang F, He W, Zhou H, Yuan J, Wu K, Xu L et al. The Tim-3 ligand galectin-9 negativelyregulates CD8+ alloreactive T cell and prolongs survival of skin graft. Cellular immunology2007; 250: 68-74.
    [40] Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al. The Tim-3 ligandgalectin-9 negatively regulates T helper type 1 immunity. Nature immunology 2005; 6: 1245-1252.
    [41] Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmuneencephalomyelitis. The Journal of clinical investigation 2006; 116: 1317-1326.
    [42] Yang L, Anderson DE, Kuchroo J, Hafler DA. Lack of TIM-3 immunoregulation in multiplesclerosis. J Immunol 2008; 180: 4409-4414.
    [43] Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. Immune invasion of the centralnervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyteextravasation from blood, are prevented in macrophage-depleted mice. J Immunol 1998; 161:3767-3775.
    [44] Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB et al. Cuttingedge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innateimmunity. J Immunol 2006; 176: 6411-6415.
    [45] Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA, Cihakova D, Barrett MA et al. Cuttingedge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences ininflammatory heart disease. J Immunol 2007; 178: 6710-6714.
    [46] Wada J, Kanwar YS. Identification and characterization of galectin-9, a novel beta-galactosidebindingmammalian lectin. The Journal of biological chemistry 1997; 272: 6078-6086.
    [47] Lipkowitz MS, Leal-Pinto E, Cohen BE, Abramson RG. Galectin 9 is the sugar-regulated uratetransporter/channel UAT. Glycoconjugate journal 2004; 19: 491-498.
    [48] Spitzenberger F, Graessler J, Schroeder HE. Molecular and functional characterization ofgalectin 9 mRNA isoforms in porcine and human cells and tissues. Biochimie 2001; 83: 851-862.
    [49] Sato M, Nishi N, Shoji H, Seki M, Hashidate T, Hirabayashi J et al. Functional analysis of thecarbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophilchemoattractant activity. Glycobiology 2002; 12: 191-197.
    [50] Suk K, Hwang DY, Lee MS. Natural autoantibody to galectin-9 in normal human sera. Journalof clinical immunology 1999; 19: 158-165.
    [51] Matsumoto R, Matsumoto H, Seki M, Hata M, Asano Y, Kanegasaki S et al. Human ecalectin, avariant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes.The Journal of biological chemistry 1998; 273: 16976-16984.
    [52] Yoshida H, Imaizumi T, Kumagai M, Kimura K, Satoh C, Hanada N et al. Interleukin-1betastimulates galectin-9 expression in human astrocytes. Neuroreport 2001; 12: 3755-3758.
    [53] Dai SY, Nakagawa R, Itoh A, Murakami H, Kashio Y, Abe H et al. Galectin-9 inducesmaturation of human monocyte-derived dendritic cells. J Immunol 2005; 175: 2974-2981.
    [54] Tanikawa R, Tanikawa T, Okada Y, Nakano K, Hirashima M, Yamauchi A et al. Interaction ofgalectin-9 with lipid rafts induces osteoblast proliferation through the c-Src/ERK signalingpathway. J Bone Miner Res 2008; 23: 278-286.
    [55] Saita N, Goto E, Yamamoto T, Cho I, Tsumori K, Kohrogi H et al. Association of galectin-9 witheosinophil apoptosis. International archives of allergy and immunology 2002; 128: 42-50.
    [56] Kashio Y, Nakamura K, Abedin MJ, Seki M, Nishi N, Yoshida N et al. Galectin-9 inducesapoptosis through the calcium-calpain-caspase-1 pathway. J Immunol 2003; 170: 3631-3636.
    [57] Asakura H, Kashio Y, Nakamura K, Seki M, Dai S, Shirato Y et al. Selective eosinophiladhesion to fibroblast via IFN-gamma-induced galectin-9. J Immunol 2002; 169: 5912-5918.
    [58] Kageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi N et al. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance.International journal of cancer 2002; 99: 809-816.
    [59] Irie A, Yamauchi A, Kontani K, Kihara M, Liu D, Shirato Y et al. Galectin-9 as a prognosticfactor with antimetastatic potential in breast cancer. Clin Cancer Res 2005; 11: 2962-2968.
    [60] Liang M, Ueno M, Oomizu S, Arikawa T, Shinonaga R, Zhang S et al. Galectin-9 expressionlinks to malignant potential of cervical squamous cell carcinoma. Journal of cancer research andclinical oncology 2008; 134: 899-907.
    [61] Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H et al. Galectin-9increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity viagalectin-9-Tim-3 interactions. J Immunol 2008; 181: 7660-7669.
    [62] Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, Watanabe K et al. Galectin-9 suppressesthe generation of Th17, promotes the induction of regulatory T cells, and regulates experimentalautoimmune arthritis. Clinical immunology (Orlando, Fla 2008; 127: 78-88.
    [63] Wang F, He W, Yuan J, Wu K, Zhou H, Zhang W et al. Activation of Tim-3-Galectin-9 pathwayimproves survival of fully allogeneic skin grafts. Transplant immunology 2008; 19: 12-19.
    [64] Naka EL, Ponciano VC, Cenedeze MA, Pacheco-Silva A, Camara NO. Detection of the Tim-3ligand, galectin-9, inside the allograft during a rejection episode. Internationalimmunopharmacology 2009; 9: 658-662.
    [65] Sehrawat S, Suryawanshi A, Hirashima M, Rouse BT. Role of Tim-3/galectin-9 inhibitoryinteraction in viral-induced immunopathology: shifting the balance toward regulators. JImmunol 2009; 182: 3191-3201.
    [66] Anderson DE. TIM-3 as a therapeutic target in human inflammatory diseases. Expert opinion ontherapeutic targets 2007; 11: 1005-1009.
    [67] Koguchi K, Anderson DE, Yang L, O'Connor KC, Kuchroo VK, Hafler DA. Dysregulated T cellexpression of TIM3 in multiple sclerosis. The Journal of experimental medicine 2006; 203:1413-1418.
    [68] Zhao J, Lei Z, Liu Y, Li B, Zhang L, Fang H et al. Human pregnancy up-regulates Tim-3 ininnate immune cells for systemic immunity. J Immunol 2009; 182: 6618-6624.
    [69] Zhang W, Gao L, Qi S, Liu D, Xu D, Peng J et al. Blocking of CD44-hyaluronic acid interactionprolongs rat allograft survival. Transplantation 2000; 69: 665-667.
    [70] Firan M, Dhillon S, Estess P, Siegelman MH. Suppressor activity and potency among regulatoryT cells is discriminated by functionally active CD44. Blood 2006; 107: 619-627.
    [71] Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. NatRev Mol Cell Biol 2003; 4: 33-45.
    [72] Katoh S, Ishii N, Nobumoto A, Takeshita K, Dai SY, Shinonaga R et al. Galectin-9 inhibitsCD44-hyaluronan interaction and suppresses a murine model of allergic asthma. Americanjournal of respiratory and critical care medicine 2007; 176: 27-35.
    [73] Niwa H, Satoh T, Matsushima Y, Hosoya K, Saeki K, Niki T et al. Stable form of galectin-9, aTim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions: a potent therapeutic toolfor Th1- and/or Th17-mediated skin inflammation. Clinical immunology (Orlando, Fla 2009;132: 184-194.
    [74] Rodriguez-Manzanet R, Meyers JH, Balasubramanian S, Slavik J, Kassam N, Dardalhon V et al.TIM-4 expressed on APCs induces T cell expansion and survival. J Immunol 2008; 180: 4706-4713.
    [75] Mizui M, Shikina T, Arase H, Suzuki K, Yasui T, Rennert PD et al. Bimodal regulation of T cellmediatedimmune responses by TIM-4. International immunology 2008; 20: 695-708.
    [76] Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L et al. TIM-4 expressed by mucosaldendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinalallergy. Gastroenterology 2007; 133: 1522-1533.
    [77] Park D, Hochreiter-Hufford A, Ravichandran KS. The phosphatidylserine receptor TIM-4 doesnot mediate direct signaling. Curr Biol 2009; 19: 346-351.
    [78] Savill J, Gregory C. Apoptotic PS to phagocyte TIM-4: eat me. Immunity 2007; 27: 830-832.
    [79] Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as aphosphatidylserine receptor. Nature 2007; 450: 435-439.
    [80] Asano K, Miwa M, Miwa K, Hanayama R, Nagase H, Nagata S et al. Masking ofphosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production inmice. The Journal of experimental medicine 2004; 200: 459-467.
    [81] Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA et al. Delayedapoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membranetyrosine kinase. The Journal of experimental medicine 2002; 196: 135-140.
    [82] Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407: 784-788.
    [83] Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Naturereviews 2007; 7: 964-974.
    [84] Bratton DL, Henson PM. Apoptotic cell recognition: will the real phosphatidylserine receptor(s)please stand up? Curr Biol 2008; 18: R76-79.
    [85] Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z et al. BAI1 is an engulfmentreceptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450:430-434.
    [86] Park SY, Jung MY, Kim HJ, Lee SJ, Kim SY, Lee BH et al. Rapid cell corpse clearance bystabilin-2, a membrane phosphatidylserine receptor. Cell death and differentiation 2008; 15:192-201.
    [87] Wang Y, Meng J, Wang X, Liu S, Shu Q, Gao L et al. Expression of human TIM-1 and TIM-3 onlymphocytes from systemic lupus erythematosus patients. Scandinavian journal of immunology2008; 67: 63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700