用户名: 密码: 验证码:
人4-1BBL/抗CD20融合蛋白增强抗CD3/抗CD20双功能抗体的细胞毒作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,①常规的放、化疗方案选择性较差;②肿瘤细胞产生耐药性;③肿瘤发生微小转移是困扰肿瘤的临床治疗三大难题,双功能抗体或融合蛋白因其具有同时与肿瘤相关抗原和免疫效应细胞表面分子标记结合,并能有效地使效应细胞靶向杀灭肿瘤细胞的作用而倍受关注,最有希望成为解决这些问题的一条新途径。
     在抗肿瘤免疫反应中,细胞介导的免疫反应起着重要作用。肿瘤免疫治疗的目标就是产生肿瘤特异性的具有长期持续性杀伤活性的激活的CD8+T细胞。初始T细胞的完全激活需要双重信号刺激,即T细胞受体与抗原肽-MHC分子复合物结合的第一信号,又必须有T细胞和抗原提呈细胞表面多种共刺激分子相互作用提供的共刺激信号即第二信号。T细胞激活诱导阶段若缺乏共刺激信号,会引起T细胞通过活化诱导的细胞死亡途径凋亡和克隆特异性无反应性,进而导致抗肿瘤免疫功能低下,而通过低表达共刺激分子降低免疫原性,使得识别它的抗原提呈细胞或淋巴细胞得不到充分的活化信号,是肿瘤细胞免疫逃逸的重要机制之一,临床实践中,这类肿瘤的治疗效果和预后不佳。共刺激信号途径在T细胞的活化和增殖过程中起着重要作用。CD28/B7分子是研究最多的协同刺激分子,认为是初始T细胞激活发生最主要的机制,然而,近来研究的4-1BB/4-1BBL是TNFR/TNF配体家族的成员,它们分别表达在T细胞和抗原提呈细胞上,被确定有助于扩增和多元化T细胞反应,深入增强和延伸T细胞激活的功能,许多动物实验表明干预4-1BB/4-1BBL共刺激途径可调节T细胞和抗原呈递细胞的功能产生抗肿瘤免疫作用,为肿瘤的免疫治疗提供了新的靶点。
     CD20主要表达在前B细胞和成熟B细胞及95%以上的NHL淋巴瘤细胞,是可以用来作为肿瘤定向免疫治疗的抗原。为了特异性定向肿瘤细胞和激活肿瘤特异性T细胞,抗肿瘤免疫性能够被诱导和恢复,利用双特异抗体针对肿瘤相关抗原与效应细胞相连,共同作用于肿瘤细胞,实现肿瘤的靶向治疗,我们已成功构建了抗CD3/抗CD20的diabody表达载体和人4-1BBL胞外区基因表达载体pAYZ4-1BBL并进行了体内外生物活性测定,前者有的抑制肿瘤生长的活性而后者则能抑制激活的T细胞凋亡,增强基于PBL的抗肿瘤效应。然而全身性的T细胞激活将导致不需要的临床副作用,应用4-1BBL和CD3单克隆抗体可代替专职抗原提呈细胞的刺激能力,因此基于4-1BBL和CD3双信号所必须严格定位在肿瘤位点,本实验在此基础上构建了人4-1BBL胞外区/抗CD20融合蛋白,获得可溶性表达在2-3mg/l,流式间接免疫荧光实验及玫瑰花环实验均证实了人4-1BBL胞外区/抗CD20融合蛋白具有与CD20+的Raji细胞和4-1BB+的Jurkat细胞结合活性。研究结果表明人4-1BBL胞外区/抗CD20融合蛋白能增强抗CD3/抗CD20 diabody介导PBLs对靶细胞Raji细胞的杀伤作用,其机制是上调抗凋亡相关基因bcl-xL和bfl-1mRNA的表达,促进淋巴细胞增殖,减少细胞死亡,促进IL-2分泌及上调穿孔素和颗粒酶mRNA表达,更有效导致PBLs杀伤肿瘤细胞。应用裸鼠移植瘤模型也表明联合应用人4-1BBL/CD20融合蛋白和抗CD20diabody能明显抑制肿瘤生长,这充分说明基于4-1BBL和CD3双信号作用能更有效地激发PBLs的活性,从而清除肿瘤。
     因此,人4-1BBL胞外区/抗CD20融合蛋白作为一种靶向性免疫调节融合蛋白,能够调节PBL的活化程度,进而增强基于PBL的靶向性的抗肿瘤治疗的效果,是一个有望用于B细胞恶性肿瘤临床治疗的特异性融合蛋白。
The three main drawbacks in conventional chemotherapy and radiotherapy of cancer are the lack of specificity of the currently available therapeutic agents, multidrug resistance of tumor cells and tumor micrometastases. So, antibodies represent a unique class of new therapeutics owing to their high specificity for a defined antigen. Recent clinical success with antibody-based therapeutics has led to an upsurge in the development of these agents. Bispecific antibodies, with one binding arm to surface markers on tumor cells and the other to molecules on effector cells, represent an alternative approach to the conventional antibody-based cancer therapeutics
     Cell-mediated responses play a central role in antitumor immunity. The aim of tumor immunotherapy has been to generate long-lasting functionally active CD8+ T cells specific for the tumor cells. In order to activate a naive T cell, two signals are thought to be requisite.The primary signal or signal one occurs through the TCR:MHC:Ag (antigen) complex while the second signal or signal two is provided through costimulation. If costimulatory signal was not served to activated T lymphocyte, T cell may lead to activation induced cell death (AICD) or annergy which finally impair antitumor immunity. Tumor cells often expressed low level of costimulatory molecules to provide insufficient signals to antigen presenting cells or lymphocytes, hence to escape immunosurveilence. Such kind of tumors usually manifestated poor therapeutic outcomes and prognosis.Therefore, costimulatory pathway in T cell activation and proliferation plays an important role. CD28/B7 pathway is one of the most importment costimulatory pathways that promote the naive T cell activation. However, a number of molecules have been identified which function to further enhance and extend the activation of T cells. These include the more recently described 4-1BB/4-1BB ligand (4-1BBL) molecules that regulate T cell activation by means of increasing cell proliferation, prolonging cell survival, even increase the intracellular storage of perforin and granule enzyme. All of these characters provide a new target in cancer immunotherapy.
     The CD20 antigen is an attractive target for specific treatment of B-cell lymphoma as it is expressed in pre-B cells, mature B cells and more than 95% of B-cell lymphoma. To specifically target B-cell lymphoma via the TAA CD20, we before engineered a bispecific diabody recognizing the CD3-TCR complex, as well as CD20 (anti-CD3/anti-CD20 diabody) and constructed the human extracellular domain of 4-1BBL(ex4-1BBL). They can be used not only to redirect preactivated cytotoxic T cells toward the tumor, but, moreover, are able to stimulate resting or even anergic T cells if sufficient costimulatory signaling (for example, via the 4-1BB/4-1BBL pathway) is provided. Artificial signaling via the CD3 antigen mimicks the physiological antigen-specific activation of T lymphocytes by MHC-bound antigen. On the other hand. The simultaneous use of CD3 and 4-1BB monoclonal antibodies may, thus, substitute for the T-cell stimulatory capacity of professional antigen-presenting cells. However, to avoid a systemic T-cell activation that may result in undesirable clinical side effects, the CD3/4-1BB signaling has to be localized strictly to the tumor site. To provide tumor-specific 4-1BB costimulation, here we constructed and produced a recombinant human 4-1BB ligand (4-1BBL) /anti-CD20 fusion protein and examined its antitumor activity, alone and in combination with an anti-CD3/anti-CD20 bispecific diabody. The 4-1BBL/anti-CD20 fusion protein retained both the costimulatory activity of 4-1BBL on T cells and the tumor-targeting ability of CD20 antibody on B cells. The fusion protein bound as efficiently to 4-1BB- and CD20-positive cells as its respective parental antibodies, and was capable of cross-linking human T lymphocytes and CD20-positive tumor cells. We continued to identify that combination treatment with the 4-1BBL/anti-CD20 fusion protein and the anti-CD3/anti-CD20 diabody led to significantly increased T cell cytotoxicity to human B lymphoma cells in vitro and drastically more potent tumor inhibitory activity in vivo in xenografted B-cell lymphoma in SCID mice. Mechanistic studies revealed that the combination treatment remarkably inhibited apoptosis of human peripheral blood lymphocytes, accompanied by up-regulation of Bcl-xL and Bf1-1, perforin and granzyme B mRNA and increased IL-2 production.
     Our results demonstrated that 4-1BBL/CD20, as a targeted immunoadjuvant, can modulate the PBL activation and enhance the outcomes of PBL-based antitumor biotherapy. The combined administration of 4-1BBL/CD20 and diabody could strongly potentiate the antitumor activity of the diabody, thus may have significant clinical application in the treatment of human CD20-positive B cell malignancies.
引文
1. Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science.2001;291(5512):2413-2417.
    2. Ayanlar-Batuman O, Ebert E, Hauptman SP. Defective interleukin-2 production and responsiveness by T cells in patients with chronic lymphocytic leukemia of B cell variety. Blood.1986;67(2):279-284.
    3. Dutcher J. Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Huntingt).2002;16(11):4-10.
    4. Bossi G, Trambas C, Booth S, Clark R, Stinchcombe J, Griffiths GM. The secretory synapse:the secrets of a serial killer. Immunol Rev.2002;189(1):152-160.
    5. Canevari S, Mezzanzanica D, Menard S, Ferrini S, Moretta L, Colnaghi MI. Possible targets on carcinoma for bMAb retargeting of lymphocyte or drug cytotoxicity. Int J Cancer Suppl.1992;7:42-44.
    6. Lu D, Kotanides H, Jimenez X, Zhou Q, Persaud K, Bohlen P, Witte L, Zhu Z. Acquired antagonistic activity of a bispecific diabody directed against two different epitopes on vascular endothelial growth factor receptor 2. J Immunol Methods. 1999;230(1-2):159-171.
    7. Xiong D, Xu Y, Liu H, et al. Efficient inhibition of human B-cell lymphoma xenografts with an anti-CD20×anti-CD3 bispecific diabody. Cancer Lett 2002;177(1):29-39.
    8. Cochlovius B, Kipriyanov SM, Stassar MJ, Schuhmacher J, Benner A, Moldenhauer G, Little M. Cure of Burkitt's lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 x CD19 tandem diabody, and CD28 costimulation. Cancer Res.2000; 60(16):4336-4341.
    9. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol.2001;2(3):255-260.
    10. Holliger P, Manzke O, Span M, Hawkins R, Fleischmann B, Qinghua L, Wolf J, Diehl V, Cochet O, Winter G, Bohlen H. Carcinoembryonic antigen (CEA)-specific
    T-cell activation in colon carcinoma induced by anti-CD3 x anti-CEA bispecific diabodies and B7 x anti-CEA bispecific fusion proteins. Cancer Res. 1999;59(12):2909-2916.
    11. Kocak E. Lute K. Chang X. et al. Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res.2006;66 (14):7276-7284
    12. Habib-Agahi M, Phan TT, Searle PF. Co-stimulation with 4-1BB ligand allows extended T-cell proliferation, synergizes with CD80/CD86 and can reactivate anergic T cells. Int Immunol.2007;19(12):1383-1394.
    13. Bukczynski J, Wen T, Watts TH. Costimulation of human CD28- T cells by 4-1BB ligand. Eur J Immunol.2003;33(2):446-454.
    14. Myers L, Takahashi C, Mittler RS et al. Effector CD8 T cells possess suppressor function after 4-1BB and Toll-like receptor triggering. Proc Natl Acad Sci U S A. 2003;100(9):5348-5353.
    15. Melero I, Bach N, Hellstrom KE et al. Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand:synergy with the CD28 co-stimulatory pathway. Eur J Immunol.1998;28(3):1116-1121.
    16. Van de Velde AL, Berneman ZN, Van Tendeloo VF. Immunotherapy of hematological malignancies using dendritic cells. Bull Cancer.2008;95(3):320-326.
    17. Di Mauro ME, Ager A. T-lymphocyte proliferation stimulated by alpha beta TCR/CD2 bispecific antibody is dependent on LFA-1/ICAM-1 recognition of accessory cells. Adv Exp Med Biol.1995;378:381-383.
    18. Lu D, Jimenez X, Witte L, Zhu Z. The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody. Biochem Biophys Res Commun.2004;318(2):507-513.
    19. Holliger P, Prospero T, Winter G "Diabodies":small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A.1993;90(14):6444-6448.
    20. Zhu Z, Lewis GD, Carter P. Engineering high affinity humanized anti-p185HER2/anti-CD3 bispecific F(ab')2 for efficient lysis of p185HER2 overexpressing tumor cells. Int J Cancer.1995;62(3):319-324.
    21. Tedder TF, Streuli M, Schlossman SF et al. Isolation and structure of a cDNA encoding the B1(CD20) cell-surface antigen of human B lympho cytes. Pro.Natl.Acad.Sci USA.1988;85(1):208-212.
    22. Einfeld DA, Brown JP, Valentine MA et al. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. Embo J.1988; 7(3):711-717.
    23. Stamenkovix I, Seed B. et al. Analysis of two cDNA clones encoding the B lympocyte antigen CD20(B1,Bp35). a type Ⅲ intergral membrane protein. J Exp.Med.1988; 167(6):1975-1980.
    24. Nadler LM, Karsmeyer SJ, Anderson KC, et al. B cell origin of non-T cell acute lymphoblastic leukemia. A model for discrete stages of neoplastic and normal pre-B cell differentiation. J.Clin.Invest.1984;74(2):332-340.
    25. Stashenko p., Nsdler LM, Hardy R, et al. Expression of cell sur-face markers of ter humen B lymphcyte activation. Proc.Natl.Acad.Sci.USA 1981;78(6):3848-3852.
    26. Rosenthal P, Rimm IJ, Umiel T, et al. Ontogeny of human hematopoietic cells: analysis utilizing monoclonal antibodies. J.Immunol.1983;131(1):232-237.
    27. Liu AY, Robinson RJ, Murvay ED, et al. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J.Immunol.1987;139(10):3521-3526.
    28. Lum LG, Le Fever AV, Treisman JS, Garlie NK, Hanson Jr JP. Immune Modulation in Cancer Patients After Adoptive Transfer of Anti-CD3/Anti-CD28-Costimulated T Cells-Phase I Clinical Trial. J Immunother.2001;24(5):408-419.
    29. Manzke O, Tesch H, Lorenzen J, Diehl V, Bohlen H. Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation. Ⅱ. Assessment of cellular immune responses. Int J Cancer. 2001;91(4):516-522.
    30. Whitton JL, Fujinami RS. Viruses as triggers'of autoimmunity:facts and fantasies. Curr Opin Microbiol.1999;2(4):392-397.
    31. (18old) Pardoll D. Releasing the brakes on antitumor immune response. Science. 1996;271(5256):1691.
    32. Antonia SJ, Seigne J, Diaz J, Muro-Cacho C, Extermann M, Farmelo MJ, Friberg M, Alsarraj M, Mahany JJ, Pow-Sang J, Cantor A, Janssen W. Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol. 2002; 167(5):1995-2000.
    33. Horig H, Lee DS, Conkright W, Divito J, Hasson H, LaMare M, Rivera A, Park D, Tine J, Guito K, Tsang KW, Schlom J, Kaufman HL. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother. 2000;49(9):504-514.
    34. Von Mehren M, Arlen P, Tsang KY, Rogatko A, Meropol N, Cooper HS, Davey M, McLaughlin S, Schlom J, Weiner LM. Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res. 2000;6(6):2219-2228.
    35. Lum LG, Le Fever AV, Treisman JS, Garlie NK, Hanson Jr JP. Immune Modulation in Cancer Patients After Adoptive Transfer of Anti-CD3/Anti-CD28-Costimulated T Cells-Phase I Clinical Trial. J Immunother.2001;24(5):408-419.
    36. Manzke O, Tesch H, Lorenzen J, Diehl V, Bohlen H. Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation. Ⅱ. Assessment of cellular immune responses. Int J Cancer. 2001;91(4):516-522.
    37. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science.2002;298(5594):850-854.
    38. Strome SE, Martin B, Flies D, Tamada K, Chapoval AI, Sargent DJ, Shu S, Chen L. Enhanced therapeutic potential of adoptive immunotherapy by in vitro CD28/4-1BB costimulation of tumor-reactive T cells against a poorly immunogenic, major histocompatibility complex class I-negative A9P melanoma. J Immunother. 2000;23(4):430-437.
    39. Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci.1975;53(1):27-42.
    40. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol.1996;14:233-258.
    41. Chambers CA, Allison JP. Co-stimulation in T cell responses.Curr Opin Immunol. 1997;9(3):396-404.
    42. Watts TH, DeBenedette MA.T cell co-stimulatory molecules other than CD28. Curr Opin Immunol.1999;11(3):286-293.
    43. Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A.1989;86(6):1963-1967.
    44. Kwon BS, Kozak CA, Kim KK, Pickard RT. Genomic organization and chromosomal localization of the T-cell antigen 4-1BB. J Immunol. 1994;152(5):2256-2262.
    45. Schwarz H, Tuckwell J, Lotz M A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene.1993;134(2):295-298.
    46. Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B, Roux E, Baker E, Sutherland GR, Din WS. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol.1994;24(9):2219-2227.
    47. Schwarz H, Arden K, Lotz M. CD 137, a member of the tumor necrosis factor receptor family, is located on chromosome 1p36, in a cluster of related genes, and colocalizes with several malignancies. Biochem Biophys Res Commun. 1997;235(3):699-703.
    48. Zhou Z, Kim S, Hurtado J, Lee ZH, Kim KK, Pollok KE, Kwon BS. Characterization of human homologue of 4-1BB and its ligand. Immunol Lett. 1995;45(1-2):67-73.
    49. Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA, Maliszewski CR, Brannan CI, Copeland NG, Jenkins NA, et al. Molecular cloning of
    a ligand for the inducible T cell gene 4-1BB:a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol. 1993;23(10):2631-2641.
    50. Kwon BS, Kestler DP, Eshhar Z, Oh KO, Wakulchik M. Expression characteristics of two potential T cell mediator genes. Cell Immunol.1989; 121 (2):414-422.
    51. Vinay DS, Kwon BS.Role of 4-1BB in immune responses. Semin Immunol. 1998; 10(6):481-489.
    52. Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS. Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol. 1993;150(3):771-781.
    53. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS.4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol.1994;24(2):367-374.
    54. Melero I, Johnston JV, Shufford WW, Mittler RS, Chen L. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol.1998;190(2):167-172.
    55. Futagawa T, Akiba H, Kodama T, et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol.2002;14(3):275-286.
    56. Heinisch IV, Daigle I, Knopfli B, Simon HU. CD137 activation abrogates granulocyte-macrophage colony-stimulating factor-mediated anti-apoptosis in neutrophils. Eur J Immunol.2000;30(12):3441-3446.
    57. Lindstedt M, Johansson-Lindbom B, Borrebaeck CA.Expression of CD137 (4-1BB) on human follicular dendritic cells. Scand J Immunol.2003;57(4):305-310.
    58. Kienzle G, von Kempis J. CD137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int Immunol.2000;12(1):73-82.
    59. Broll K, Richter G, Pauly S, Hofstaedter F, Schwarz H.CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol. 2001;115:543-549.
    60. Michel J, Langstein J, Hofstadter F, Schwarz H. A soluble form of CD 137
    (ILA/4-1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis. Eur J Immunol.1998;28(1):290-295.
    61. Kim KM, Kim HW, Kim JO, et al. Induction of 4-1BB(CD137) expression by DNA damaging agents in human T lymphocytes. J Immunol.2002;107(4):472-479.
    62. Kim JO, Kim HW, Baek KM, Kang CY. NF-kappaB and AP-1 regulate activation-dependent CD137 (4-1BB) expression in T cells. FEBS Lett. 2003;541:163-170.
    63. Turka LA, Ledbetter JA, Lee K, June CH, Thompson CB. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J Immunol.1990;144:1646-1653.
    64. Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol.2002;3:33-41.
    65. McHugh RS, Shevach EM. Cutting edge:depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol.2002;168:5979-5983.
    66. DeBenedette MA, Shahinian A, Mak TW, Watts TH. Costimulation of CD28- T lymphocytes by 4-1BB ligand. J Immunol.1997;158:551-559.
    67. Salih HR, Schmetzer HM, Burke C, et al. Soluble CD137(4-1BB) ligand is released following leukocyte activation and is found in sera of patients with hematological malignancies. J Immunol.2001; 167:4059-4066.
    68. Salih HR, Kosowski SG, Haluska VF, et al. Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J Immunol. 2000; 165:2903-2910.
    69. Lenschow DJ, Ho SC, Sattar H, et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med.1995; 181(3):1145-1155.
    70. Kwon BS, Hurtado JC, Lee ZH, et al. Immune responses in 4-1BB (CD137)-deficient mice. J Immunol.2002;168:5483-5490.
    71. Cannons JL, Choi Y, Watts TH. Role of TNF receptorassociated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune
    response. J Immunol.2000; 165:6193-6204.
    72. Shuford WW, Klussman K, Tritchler DD, et al.4-1BB costimulatory signals preferentially induce CD8+T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med.1997;186(1):47-55.
    73. Lee HW, Park SJ, Choi BK, et al.4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol. 2002;169:4882-4888.
    74. Kim YJ, Brutkiewicz RR, Broxmeyer HE. Role of 4-1BB(CD137) in the functional activation of cord blood CD28(-) CD8(+) T cells. Blood.2002;100(9):3253-3260.
    75. Laderach D, Movassagh M, Johnson A, Mittler RS, Galy A.4-1BB co-stimulation enhances human CD8(+) T cell priming by augmenting the proliferation and survival of effector CD8(+) T cells. Int Immunol.2002;14(10):1155-1167.
    76. Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med.1997;3:682-685.
    77. Wiethe C, Dittmar K, Doan T, Lindenmaier W, Tindle R. Provision of 4-1BB ligand enhances effector and memory CTL responses generated by immunization with dendritic cells expressing a human tumor-associated antigen. J Immunol. 2003;170:2912-2922.
    78. Giuntoli RL, Lu J, Kobayashi H, Kennedy R, Celis E. Direct costimulation of tumor-reactive CTL by helper T cells potentiate their proliferation, survival, and effector function. Clin Cancer Res.2002;8:922-931.
    79. Zhu G, Flies DB, Tamada K, et al. Progressive depletion of peripheral B lymphocytes in 4-1BB(CD137) ligand/IEalpha)-transgenic mice. J Immunol. 2001;167:2671-2676.
    80. Kwon B, Lee HW, Kwon BS. New insights into the role of 4-1BB in immune responses:beyond CD8+ T cells. Trends Immunol.2002;23(8):378-380.
    81. DeBenedette MA, Wen T, Bachmann MF, et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol.1999;163:4833-4841.
    82. Tan JT, Whitmire JK, Murali-Krishna K, et al 4-1BB costimulation is required for protective anti-viral immunity after peptide vaccination. J Immunol. 2000; 164:2320-2325.
    83. Lord, SJ, Rajotte, RV, Korbutt, GS, and Bleackley. Molecular Ordering of the Caspase Activation Cascade Initiated by the Cytotoxic T Lymphocyte/Natural Killer (CTL/NK) Protease Granzyme B. J Immunol.2003,193,31-38
    84. Hurtado JC, Kim SH, Pollok KE, Lee ZH, Kwon BS. Potential role of 4-1BB in T cell activation. Comparison with the costimulatory molecule CD28. J Immunol. 1995;155(7):3360-3367.
    85 Hurtado JC, Kim YJ, Kwon BS. Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol.1997;158(6):2600-2609.
    86. Kim YJ, Kim SH, Mantel P, Kwon BS. Human 4-1BB regulates CD28 co-stimulation to promote Thl cell responses. Eur J Immunol.1998;28:881-890.
    87. Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (NY),1991, 9(2):157-162.
    88. Li Q, Carr A, Ito F et al. Polarization effects of 4-1BB during CD28 costimulation in generating tumor-reactive T cells for cancer immunotherapy. Cancer Res. 2003;63(10):2546-2552
    89. Ye Z, Hellstrom I, Hayden-Ledbetter M, Dahlin A et al. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med.2002;8(4):343-348.
    90. Martinet O, Divino CM, Zang Y et al. T cell activation with systemic agonistic antibody versus local 4-1BB ligand gene delivery combined with interleukin-12 eradicate liver metastases of breast cancer. Gene Ther.2002;9(12):786-792
    91. Melero I, Bach N, Hellstrom KE et al. Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand:synergy with the CD28 co-stimulatory pathway. Eur J Immunol.1998;28(3):1116-1121.
    1. Schwarz H, Valbracht J, Tuckwell J, von Kempis J, Lotz'M. ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages.Blood. 1995;85(4):1043-52.
    2. Zhou Z, Kim S, Hurtado J, Lee ZH, Kim KK, Pollok KE, Kwon BS. Characterization of human homologue of 4-1BB and its ligand. Immunol Lett. 1995;45(1-2):67-73.
    3. Tan JT, Whitmire JK, Murali-Krishna K, Ahmed R, Altman JD, Mittler RS, Sette A, Pearson TC, Larsen CP 4-1BB costimulation is required for protective anti-viral immunity after peptide vaccination. J Immunol.2000; 164(5):2320-5.
    4. Kim YJ, Mantel PL, June CH, Kim SH, Kwon BS.4-1BB costimulation promotes human T cell adhesion to fibronectin. Cell Immunol.1999;192(1):13-23.
    5. Tan JT, Ha J, Cho HR, Tucker-Burden C, Hendrix RC, Mittler RS, Pearson TC, Larsen CP. Analysis of expression and function of the costimulatory molecule 4-1BB in alloimmune responses. Transplantation.2000;70(1):175-83.
    6. Gramaglia I, Cooper D, Miner KT, Kwon BS, Croft M. Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol.2000;30(2):392-402.
    7. Sabel MS, Conway TF, Chen FA, Bankert RB Monoclonal antibodies directed against the T-cell activation molecule CD 137 (interleukin-A or 4-1BB) block human lymphocyte-mediated suppression of tumor xenografts in severe combined immunodeficient mice. J Immunother.2000;23(3):362-8.
    8. Salih HR, Kosowski SG, Haluska VF, Starling GC, Loo DT, Lee F, Aruffo AA, Trail PA, Kiener PA:Constitutive expression of functional 4-1BB (CD 137) ligand on carcinoma cells. J Immunol.2000;165(5):2903-10
    9. Chen SH, Pham-Nguyen KB, Martinet O, Huang Y, Yang W, Thung SN, Chen L, Mittler R, Woo SL. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther. 2000;2(1):39-46.
    10. Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R, Shu SDivergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res.2001;61(5):2031-7.
    11. Kienzle G, von Kempis J. CD 137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int Immunol.2000;12(1):73-82.
    12. Langstein J, Michel J, Schwarz H.CD137 induces proliferation and endomitosis in monocytes. Blood.1999;94(9):3161-8
    13. Langstein J, Schwarz H. Identification of CD137 as a potent monocyte survival factor. J Leukoc Biol.1999;65(6):829-33.
    14. Michel J, Pauly S, Langstein J, Krammer PH, Schwarz H CD137-induced apoptosis is independent of CD95. Immunology.1999;98(1):42-6.
    15. Michel J, Schwarz H. Expression of soluble CD137 correlates with activation-induced cell death of lymphocytes. Cytokine.2000;12(6):742-6.
    16. Michel J, Langstein J, Hofstadter F, Schwarz H. A soluble form of CD137 (ILA/4-1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis. Eur J Immunol.1998;28(1):290-5.
    17. Cheuk AT, Mufti GJ,Guinn BA. Role of4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther.2004;11(3):215-226.
    18. Sollner L, Shaqireen DO, Kwajah MM, Wu JT, et al. Signal transduction mechanisms of CD137 ligand in human monocytes. Cell Signal.2007;19(9): 1899-1908.
    19. Lee HW, Park SJ, Choi BK, et al.4-1BB promotes the survival of CD8 T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol. 2002;169(9):4882-4888.
    20. Wilcox RA, Tamada K, Flies DB, et al.Ligation of CD137 receptar prevents and reverses established anergy of CD8 cytolytic Tlymphocytes in vivo. Blood. 2004;103(1):177-184.
    21. Guinn BA, Bertram EM, DeBenedette MA, et al.4-1BBL enhances antitumor responses in the presence or absence of CD28 but CD28 is required for protective immunity against parental tumors. Cell Immunol.2001;210(1):56-65.
    22. Gramaglia I, Cooper D, Miner KT, et al. Co-stimulation of antigen-specific CD4 T ceils by 4-1BBligand. Eur J Immunol.2000;30(2):392-402.
    23. Sun Y, Lin X, Chen HM.et al. Administration of agonistic anti-4-lBBmonodonal antibody leads to the amelioration of experimental autoimmtme encephalomyelitis. J Immunol.2002;168(3):1457-1465
    24. Foulds KE, Zenewicz LA, Shedlock DJ, et al. Cutting edge:CD4 and CD8T cells are intrinsically diferent in their proliferative responses. J Immunol. 2002;168(4):1528-1532.
    25. LeeHW, ParkSJ, Choi BK, etal.4-1BB promotes the survival of CD8 T lymphoeytes by increasing expression of Bcl-xL and Bfl-1. J Immunol.2002;169(9): 4882-4888.
    26. Lee HW, Nam KO, Seo SK, et al.4-1BB cross- linking enhances the survival and cell cycle progression of CD4 T lymphocytes. Cell Immunol.2003; 223(2):143-150.
    27. Myers L, Takahashi C, Mittler RS, et al. Effector CD8 T cells possess suppressor function after 4-1BB and Toll-like receptor triggering [J]. Proc Nail Acad Sci USA. 2003;100(9):5348-5353.
    28. Kim YJ, Mantel PL, June CH, Kim SH, Kwon BS.4-1BB costimulation promotes human T cell adhesion to fibronectin. Cell Immunol.1999;192(1):13-23.
    29. Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS.4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol.2002;169(9):4882-4888.
    30. Lee HW, Nam KO, Seo SK, Kim YH, Kang H, Kwon BS.4-1BB cross-linking enhances the survival and cell cycle progression of CD4 T lymphocytes. Cell Immunol.2003;223(2):143-150
    31. Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, Bangia N, DeBenedette MA, Mak TW, Choi Y, Watts TH CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med.
    1998;187(11):1849-1862.
    32. Cannons JL, Hoeflich KP, Woodgett JR, Watts TH. Role of the stress kinase pathway in signaling via the T cell costimulatory receptor 4-1BB.J Immunol. 1999;163(6):2990-2998.
    33. Ye H, Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell.1999;4(3):321-330.
    34. Diehl L, van Mierlo GJ, den Boer AT, van der Voort E, Fransen M, van Bostelen L, Krimpenfort P, Melief CJ, Mittler R, Toes RE, Offringa R.In vivo triggering through 4-1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J Immunol.2002;168(8):3755-3762.
    35. Wilcox RA, Tamada K, Strome SE, Chen L. Signaling through NK cell-associated CD 137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol.2002;169(8):4230-4236
    36. Li Q, Carr A, Ito F, Teitz-Tennenbaum S, Chang AE.Polarization effects of 4-1BB during CD28 costimulation in generating tumor-reactive T cells for cancer immunotherapy. Cancer Res.2003;63(10):2546-2552
    37. Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS. Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol. 1993;150(3):771-781
    38. DeBenedette MA, Shahinian A, Mak TW, Watts TH. Costimulation of CD28- T lymphocytes by 4-1BB ligand. J Immunol.1997;158(2):551-559.
    39. May KF Jr, Chen L, Zheng P, Liu Y.Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res.2002;62(12):3459-3465.
    40. Miller RE, Jones J, Le T, Whitmore J, Boiani N, Gliniak B, Lynch DH. 4-1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40-dependent manner. J Immunol.2002;169(4):1792-1800
    41. Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological
    ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest. 2002; 109(5):651-659.
    42. Vinay DS, Kwon BS. Relative abilities of 4-1BB (CD137) and CD28 to co-stimulate the response of cytokine deflected Thl and Th2 cells. Immunobiology. 1999;200(2):246-263
    43. Vinay DS, Kwon BS. Differential expression and costimulatory effect of 4-1BB (CD137) and CD28 molecules on cytokine-induced murine CD8(+) Tc1 and Tc2 cells. Cell Immunol.1999; 192(1):63-71
    44. Nam KO, Kang H, Shin SM, et al.Cross-linking of 4-1BB activates TCR signaling pathways in CD8 T lymphocytes [J]. JImmunol.2005;174(4):1898-1905.
    45. Takabashi C, Mittler RS, Vella AT. Cutting edge:4-1BB is a bona fide CD8 T cell survival signal.[J]. J Immunol.1999; 162 (9):5037-5040.
    46. J Ju Sa, Lee SC, Kwon TH, et al.Immunity to melanoma mediated by 4-1 BB is associated with enhanced activity of tumour-infiltrating lymphocytes. Immunol Cell Biol.2005;83(4):344-351.
    47. Myers L, Lee SW, Rossi RJ, et al. Combined CD137(4-1BB) and adjuvant therapy generates a developing pool of peptide- specific CD8 memory T cells. Int Immunol. 2006;18(2):325-333.
    48. Pulle G, Vidric M, Watts TH. IL-15-dependent induction of 4-1 BB promotes antigen-independent CD8 memory T cell survival. J Immunol.2006; 176(5): 2739-2748.
    49. Li Q, Carr A, Ho F, et al. Polarization efects of 4-1BB during CD28 costimulation in generating tumor reactive T cells for can cer immunotherapy. Cancer Res.2003; 63(10):2546-2552.
    50. W ilcox RA, Flies DB, Zhu G, et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly imrnunogenic tumors. J Clin Invest.2002; 109 (5):651-659.
    51. Zhu G, Flies DB, Tamada K, et al. Progressive Depletion Of Peripheral B Lymphocytes in 4-1BB(CD137)Legend/I-Ea-Transgenic Mice. J Immunol. 2001;167(5):2671-2676.
    52. Ye Z, Hellstom I, Hayden-Ledbetter M, et al. Gene therapy for cancer using single-chain Fv fragments specific for CD137. Nat Med.2002;8(4):343-348.
    53. Leath CA 3rd, Douglas JT, Curiel DT, et al. Single-chain anti-bodies:A therapeutic modality for cancer gene therapy. Int JOncol,2004,24(4):765-771.
    54. Zhang H, Knutson KL, Hellstrom KE, et al. Antitumor eficacy of CD137 ligation is maximized by the use of a CD137 single-chainFv-expressing whole-cell tumor vaccine compared with CD137-specific monoclonal antibody infusion. Mol Cancer Ther.2006;5(1):149-155.
    55. Yang Y, Yang S, Ye Z, et al.Tumor cells expressing anti-CD137scFv induce a tumor destructive environment.Cancer Res.2007; 67(5):2339-2234.
    56. Mogi S, Sakurai J, Kohsaka T, et al. Antitumour rejection by gene transfer of 4-1BB ligand into a CD80+ murine squamous cell carcenorna and the requirements of co-stimulatory molecules on tumour and host ceils. Immunology.2000; 101 (4): 541-547.
    57. YoshidaH, KatayoseY, UnnoM, et al. A noval adenovirus expressing human 4-1BB ligand enhances antittmaor immunity. Cancar ImmunoI Immunother.2003;52(2): 97-106.
    58. Maus MV, ThomasAK, LeonardDG, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor CD28 and 4-1BB. Nat Biotechnol.2002;20(2):143-148.
    59. Wilcox RA, Flies DB, Zhu G, et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest. 2002; 109(5):651-659.
    60. Ito F, Li Q, Shreiner AB, et al. Anti-CD137 monoclonal antibody administration augments the antitumor eficacy of dendritic cell-based vaccines. Cancer Res.2004; 64(22):8411-8419.
    61. Ko E, Luo W, Peng L, et al. Mouse dendritic-endothelial cell hybrids and 4-1 BB costimulation elicit antitumor effects mediated by broad antiangiogenic immunity. Cancer Res.2007; 67(16):7875-7884.
    62. Xu DP, Sauter BV, Huang TG, et al. The systemic administration of Ig-4 -1 BB
    ligand in co mbination with IL-12 gene transfer eradicates hepatic colon carcinoma. Gene Ther.2005;12(20):1526-1533.
    63. Lu ZY, Condomines M, Tarte K, et al. B7-1 and 4-1BB ligand expression on a myeloma cell line makes it possible to expand autologous tumor-specific cytotoxic T cells in vitro. Exp Hematol.2007; 35(3):443-453.
    64. Li B, Lin J, Vanroey M, et al. Established B16 tumors ale rejected following treatment with GM-CSF-secreting tumor cell immuno-therapy in combination with anti-4-1 BB mAb. Clin Immunol.2007;125(1):76-87.
    65. Kocak E, Lute K, Chang X, et al. Combination therapy with anti-CTL an tigen-4 and anti-4-1 BB antibodies enhan ces can cer immunity and reduces autoimmunity[J]. Cancer Res.2006;66(14):7276-7284.
    66. Uno T, Takeda K, Koima Y, et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med.2006;12(6):693-698.
    67. McMillin DW, Hewes B, Gangadharan B, et al. Complete regression of large solid tumors using engineered drugresistant hematopoietic cells and anti-CD 137 immunotherapy. Hum GeneTher.2006; 17(8):798-806.
    68. Shi W, Siemann DW. Augmented antitumor efects of radiation therapy by 4-1 BB antibody(BMS-469492)treatment. Anticancer Res,2006,26(5):345-3453.
    69. Salih HR, Schmetzer HM, Burke C, et al. Soluble 4-1BB (4-1BB)ligand is released following leukocyte activation and is found in sera of patients with hematological malignancies. Immunol.2001;167(7):4059-4066.
    70. Nozawa K, Ohata J, Sakurai J, Hashimoto H, Miyajima H, Yagita H, Okumura K, Azuma M. Preferential blockade of CD8(+) T cell responses by administration of anti-CD137 ligand monoclonal antibody results in differential effect on development of murine acute and chronic graft-versus-host diseases. J Immunol. 2001;167(9):4981-6.
    71. 71. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA. Ligation of 4-1BB (CDwl37) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol.2001;166(5):3174-83。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700