用户名: 密码: 验证码:
应变硅器件低场迁移率模型和新结构SGOI器件的性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着CMOS (Complementary Metal Oxide Semiconductor,互补式场效应晶体管)器件尺寸进入亚微米,深亚微米领域,传统器件所采用的材料和器件结构将会接近或达到它们的极限。要克服由于基本的物理问题对传统的MOSFET器件结构的发展所造成的障碍,需要从引入新的材料和采用新的器件结构两方面进行创新。基于SOI (silicon On Insulator,绝缘体上硅)技术和应变硅技术(Si)结合体的新型器件SGOI(SiGe On Insulator绝缘体上硅锗)被认为是纳米范围内最具有应用前景的器件结构。本文从器件结构、物理模型和可靠性等方面对SGOI MOSFET进行了分析研究。主要的研究工作和成果如下:
     1.论文通过合理地引入数学表达式,考虑了纯硅和掺杂硅中由于声子边界散射引起热导率的减小。在温度范围从300到1000K,硅膜厚度从10nm到1μm之间应用该模型得到的结果和实验数据比较吻合。该代数式模型不仅和实验数据吻合,也和基于积分形式的热导率以及玻尔兹曼传输方程获得预测值一致。该数值热导率的建模和ISE-TCAD电热模拟结果显示,如果不考虑声子边界散射引起的热导率的减小,SOI晶体管的电学和热学性能的评估都会受到比较大的影响。
     2.从能带角度定性地分析了应力对Si中载流子迁移率的影响,经过分析研究提出了弛豫Si1-xGex层上应变Si n型金属氧化物半导体场效应晶体管(nMOSFET)低场电子迁移率模型,该模型计算得到的结果与报道的实验数据以及ISE模拟得到的结果一致。此外研究了温度和应变Si膜厚度对Si/Si1-xGex nMOSFET中电子迁移率的影响。研究结果显示:由于温度的升高会增加声子与电子的散射概率,导致声学声子散射迁移率降低。阱内的量子效应使得载流子随着厚度的减小而减小,引起载流子通过低迁移率的弛豫Si1-xGex层进行传导,并且弛豫SiGe层和栅氧化层之间非常靠近,这样沟道中界面态密度大大增加,也会降低器件的迁移率。该模型可以模拟任意锗(Ge)组分下的迁移率,数学表达式简单,易于嵌入到器件模拟器中,为设计和优化应变硅电路提供很好的理论支持。
     3.为了减小SGOI器件的自加热效应,从改进器件结构的角度提出了一种新型的SGOI器件结构,称之为双台阶式埋氧SGOI MOSFET。研究了该器件的工艺流程,使用器件模拟器ISE对该新型器件结构的电学以及热学特性进行了深入的研究,模拟中考虑了边界声子散射引起热导率的减小以及该热导率随温度的变化关系。研究结果表明:由于沟道与漏端交界处电场强度最大,因此该区域会产生大量热量,迁移率退化最严重。通过减小沟道下埋氧层厚度,沟道区域热量可以很快通过薄的埋氧层传送到衬底,有效地降低了器件的自加热效应,也不会对器件的电容特性造成影响,同时该器件的关态电流,输出特性退化,迁移率的退化以及DIBL效应都得到了明显地抑制。因此,采用沟道下薄埋氧的SGOI MOSFET能够提高器件的整体性能和长期可靠性。
     4.随着沟道长度的减小,纳米级SGOI器件对沟道区域电荷的控制能力持续下降,会出现由于短沟道效应(SCE)引起的DIBL效应(Drain Induced Barrier Lowering effect,沟致势垒降低效应)。在纳米级双台阶式埋氧SGOI MOSFET中引入接地平面(Ground Plane)技术减小短沟道效应对器件性能的影响,分析了引入该技术前后,不同沟道应变下不同栅长下该器件电学性能的差异。研究结果表明:当引入Ground Plane技术后,由于吸引了更多来自于漏端电力线的条数,减小了进入沟道区域的边缘电力线的条数,削弱了平行于沟道的横向电场对沟道区域电荷的作用,降低了沟道与漏端之间空间电荷区的宽度,提高了栅对沟道电荷的控制能力,减小了器件的DIBL效应,抑制了泄漏电流,降低了阈值电压的起伏。这为实现纳米级SGOI器件提供了很好的解决方案。
     5.为了减小SGOI器件的自加热效应,从引入新的高热导率埋氧层材料的角度提出了一种新的器件结构,称之为SGSOAN(SiGe-silicon-on-aluminum nitride)。在这部分研究中先介绍了这种新型器件的制备工艺流程,接着使用器件模拟器ISE,分析了SGSOAN nMOSFET的电学和热学方面的性能,并和传统的SGOI器件的性能进行了比较。研究结果显示:SGSOAN nMOSFET的输出特性的退化程度远小于SGOI nMOSFET输出特性的退化程度;SGSOAN nMOSFET的跨导高于SGOI nMOSFET的跨导;热阻小于SGOI nMOSFET的热阻一个数量级。此外,研究了Si缓冲层对SGSOAN器件的影响,在Si缓冲层对SGSOAN器件的影响研究中发现:薄Si缓冲层和高Ge组分能够减小器件的阈值电压,提高器件的输出电流。因此,SGSOAN器件结构可以很好地减小SGOI的自加热效应,同时不会影响到器件的电学性能,扩大了其应用的领域。
     综上所述,本文在SGOI MOSFET结构的基础上,提出了几种新型器件结构,通过数值仿真和物理建模对其进行了深入的理论分析,研究了它们的器件性能,得到了一些有意义的结果,为纳米SGOI MOSFET的实用化提供了指导。
As the size of complementary metal-oxide-semiconductor transistor enters into the submicron, even deep submicron regime according to the scaling rule, material and device structure in conventional device is approaching, or reaching to their limitation. All these inherent physical limits place the restrictions on the development of the traditional MOSFET device. To overcome this barrier, one desirable solution to these problems is to introduce new material and change the structure of the devices. The new device named SiGe On Insulator (SGOI) originated from combination of SOI and strained silicon (Si) technology has been regarded as a promising device in the nanometer regime and it is investigated in the ways of device structure, physical modeling and reliability for the novel SGOI MOSFET in this thesis, respectively. The major research work and results are as follows:
     1. This section develops algebraic expressions to account for the reduction in thermal conductivity due to the phonon-boundary scattering for pure and doped silicon layers. The model applies to the temperature range of 300-1000K for silicon layer thicknesses fromlOnm to 1μm, which agrees well with the experimental data. In addition, the algebraic model has an excellent agreement with both the experimental data and predictions of thin-film thermal conductivity based on thermal conductivity integral and Boltzmann transport equation. The analytical thermal modeling and ISE-TCAD electrothermal simulations confirm that both the electrical and thermal performances of SOI transistor can be largely affected if the reduced thermal conductivity of the silicon due to phonon boundary scattering is not properly taken into consideration.
     2. First of all, the effect of strain on the carrier mobility in Si material is analyzed qualitatively from the standpoint of the band. Then, a low field electron mobility model for strained Si grown on relaxed Si1-xGex layer is proposed. The results using this model are in well agreement with the reported experimental results and simulation results from ISE device simulator. Furthermore, the effects of temperature and strained Si film thickness on the electron mobility in Si/Si1-xGex nMOSFET are also investigated. The results indicate, the rise in temperature increases the scattering ratio between phonon and electron, leading to the degradation in acoustic phonon scattering mobility. It is shown that the quantum effect in well leads to the degradation in mobility resulting from decreasing thickness, therefore, many electrons are forced to conduct through the low mobility relaxed SiGe layer. And increased interface state density due to the close proximity of the oxide to the SiGe will also limit the performance of the device. This mobility in any germanium (Ge) content can be reflected using this model. Mathematical expression of the mobility is so easy that can be incorporated in general device simulator without difficulty.
     3. For reducing the heating effect of SGOI devices, a novel SGOI device structure called SGOI MOSFET with double step buried oxide is proposed from the angle of improving device structure. Firstly, the process flow for this device is outlined. Then, the electrical and thermal characteristics for this device have been studied using device emulator ISE. During the simulation, the decrease in thermal conductivity due to the boundary phonon scattering and dependence of thermal conductivity on temperature have been taken into accounted. The research results indicate that, because the peak electric field occurs in the junction of channel and drain terminal, large amount of heat is generated in this region, therefore, the degradation in mobility at which is most serious. By reducing buried oxide thickness below the channel can eliminate heating effect of the device and has not degraded capacitive characteristics of this device greatly. In the meanwhile, standoff current, output characteristics degradation, the mobility degradation and DIBL effect have been suppressed efficiently. Therefore, employing SGOI MOSFET with a moderate thickness of buried oxide can improve overall device performance and long-term reliability.
     4. With the decrease of the channel length, control ability nanoscale SGOI devices over electron charge in the channel begins to drop, leading to drain induced barrier lowering (DIBL) effect caused by short channel effect (SCE). We introduce ground plane (GP) technology to decrease this negative effect on performance of the device, analyze the difference in electrical properties of the device with different Ge content and different gate length.The results of the study indicate that, when introducing ground plane technology, more electric field lines coming from the drain region are inclined to extend toward substrate. The number of electric field lines entering the channel region decreases. The effect of the transverse electric field parallel to channel on the charge in the channel is eliminated. The width of space charge region is narrowed. The control ability of the gate electrode over channel charge has been improved due to the decreased electric field lines penetration through buried oxide layer, weakening DIBL effect of the device, suppressing the leakage current, lowering the threshold voltage fluctuations. This comes up with a good solution to realizing nanoscale SGOI device.
     5. In order to reduce the heating effect of SGOI devices, a new kind of device structure called SGSOAN (SiGe-silicon-on-aluminum nitride) is put forward in terms of introducing a new buried oxide layer material with high conductivity. In this part of the study, the process flow of this new device is presented first, then electrical and thermal properties of this device is analyzed using device emulator and compared with the performance of the traditional SGOI devices. Research results show that the degradation in output characteristics of SGSOAN nMOSFET is far less than that of SGOI nMOSFET. The transconductance of SGSOAN nMOSFET is higher than that of SGOI nMOSFET. And thermal resistance of SGSOAN is less than one order of magnitude of that of SGOI nMOSFET. In addition, the effect of Si buffer layer on the performance of SGSOAN device is also studied. Results show that, both thin Si buffer layer and high Ge content decrease device threshold voltage, improve the output current. Therefore, SGSOAN device structure can not only reduce the heating effect of SGOI, but also will not affect the electrical properties.
     In the conclusion, several novel SGOI MOSFETs are proposed and studied on the device characteristics in this dissertation. The quantitative theoretical analyses are taken through numerical simulation and modeling methods to a great deal of basic mechanism problems. A lot of meaningful results are obtained and the guideline for the Nanometer SGOI MOSFET is presented in this thesis.
引文
[1.1]G. E. Moore, Lithography and the future of Moore's law, presented at Advances in Resist Technology and Processing XII,1995
    [1.2]S. I. A. (SIA), International Roadmap for Semiconductors 2004 Edition, International SEMATECH, Austin, TX,2004
    [1.3]http://www.itrs.net/reports.html
    [1.4]P. M. Zeitzoff and J. E. Chung, Weighing in on logic scaling trends, IEEE Circuits & Devices,2002,18:18
    [1.5]Hon-Sum Philip Wong, D. J. Frank, P.M.Solomon, et al., Nanoscale CMOS. Proceeding of the IEEE,1999,87:537
    [1.6]P. K. Chatterjee, R. R. Doering, The future of microelectronics, Proceeding of the IEEE,2002,86:176
    [1.7]J. Zheng, and L. Hsia, Challenges in sub-0.13μm frond-end-of-line process, Proceeding of 6th International Conference on Solid-State and Integrated Circuit Technology,2001,52
    [1.8]Y. Taur, D. A. Buchanan, C. Wei, et al., CMOS scaling into nanometer regime, Proceeding of the IEEE,2002,85:486
    [1.9]A. F. Tasch, The challenges in achieving sub-100nm MOSFETs, Proceeding of second annual IEEE international conference on innovative system in silicon,1997, 52
    [1.10]周润德.超大规模集成电路与系统导论.北京:电子工业出版社,2006:147
    [1.11]H.-S. P. Wong, Beyond the conventional transistor, IBM Journal of Research and Development,2002,46:133
    [1.12]N. Bresson, S. Cristoloveanu, C. Mazure, et al., Integration of buried insulators with high thermal conductivity In SOI MOSFETs:Thermal properties and short channel effects, Solid-State Electronics,2005,49:1522
    [1.13]J. R. Schwank, V. Ferlet-Cavrois, M. R. Shaneyfelt, et al., Radiation effects in SOI technologies, IEEE Transactions on Nuclear Science,2003,50:522
    [1.14]G. E. Davis, L. R. Hite, T. G. Blake, et al., Transient radiation effects in SOI Memories, IEEE Transactions on Nuclear Science,1985, NS-32:4432
    [1.15]O. Musseau, Single-event effects in SOI technologies and devices, IEEE Transactions on Nuclear Science,1996,43:60
    [1.16]Liu S T, Liu H Y, Anthony D, et al., Proton-induced upset in SOI CMOS SRAMS, IEEE Trans. Nuclear Science,2004,51(6):3475
    [1.17]黄如,张国艳,李映雪等SOI CMOS技术与其应用,第一版,北京:科学出版社,2005:12
    [1.18]S. A. Fortuna, X.Li, GaAs MESFET with a high-mobility self-assembled planar nanowire channel, IEEE Electron Device Letters,2009,30(6):593
    [1.19]H. C. Lin, T. Yang, H. Sharfi, et al., Enhancement-mode GaAs metal-oxide-semiconductor high-electron-Mobility transistors with atomic layer deposited Al2O3 as gate dielectric, Applied Physics Letters,2007,91:212101
    [1.20]B. Meyerson, Innovation:The future of silicon technology, Proc. IEF,2004
    [1.21]G. D. Zhan, B. Y. Nguten, T. White, et al., Embeded SiGe S/D PMOS on thin body SOI substrate with drive current enhancement, Proc Symp VLSI Technol. Kyoto, Japan,2005:26227
    [1.22]T. Ghani, Armstrong M, Auth C, et al., A 90nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors, IEDM.Washington, USA,2003:11.6.1
    [1.23]G. H. Yan, I. R. Mal, S. Narasimha, et al., Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing, Tec.h Dig. IEEE Int. Elec. Dev. Mee. San Francisco, USA,2004:107521077
    [1.24]P. Grudowski, V. Adams, X.BO, et al.,1-D and 2-D geometry effects in uniaxially-strained dual etch stop layer st ressor integrations, Proc Symp VLSI Technol. Honolulu, USA,2006:62263
    [1.25]W. Chee, Maikop S, Yu C.-Y, Mobility-enhancement technologie, IEEE Circuits and Device MaDevices Magazine,2005
    [1.26]H.-S. P. Wong, Beyond the conventional transistor, IBM J. Res. Develop.,2002,46: 133168
    [1.27]M. Tanaka, T.Sadoh, and M. Miyao, Relaxation mechanism of SiGe-on-Insulator by oxidation-induced Ge condensation with H irradiation and postannealing, J. Electrochem. Soc.2010,157:991
    [1.28]M. Tanaka, T.Sadoh, and M. Miyao, Abnormal oxidation characteristics of SiGe/Si-on-insulator structures depending on piled-up Ge fraction at SiO2/SiGe interface, J. Appl. Phys.,2008,103:054909
    [1.29]M. Miyao, M. Tanaka, I. Tsunoda, et al., Highly strain-relaxed ultrathin SiGe-on-insulator structure by Ge condensation process combined with H+ irradiation and postannealing, Appl. Phys. Lett.,2006,88(142105)
    [1.30]Sugiyama, N. Nakaharai, S. Hirashita, et al., Formation of SGOI Structures with Low Dislocation Density by Two Step Oxidation and Condensation Method, This paper appears in:SiGe Technology and Device Meeting,2006. ISTDM 2006. Third International,1
    [1.31]Balakumar, S. Ongu, C.S. Tung, et al., Effects of Annealing and Temperature on SGOI Fabrication Using Ge Condensation, Physical and Failure Analysis of Integrated Circuits,2006.13th International Symposium on the,2006,150
    [1.32]Irisawa, T. Numata, T. Tezuka, et al., High-Performance uniaxially strained SiGe-on-Insulator pMOSFETs fabricated by lateral-strain-relaxation technique,2006, 53(11):2809
    [1.33]Wang, GH. Toh Eng-Huat Du, A. Lo Guo-Qiang Samudra, et al.,Strained Silicon-Germanium-On-Insulator n-MOSFET with embedded silicon source-and-drain stressors, Electron Device Letters,2008,29(1):77
    [1.34]http://www.electronics.ca/
    [1.35]徐世六,谢孟贤,张正璠SiGe微电子技术,第一版,北京:国防工业出版社2007:358
    [1.36]L. J. Huang, J. O. Chu, D. F. Canaperi, et al., SiGe-on-insulator prepared by wafer bonding and layer transfer for high-performance field-effect transistors, Applied Physics Letters,2001,78:1267
    [1.37]L. J. Huang, J. O. Chu, S. Goma, et al., Carrier mobility enhancement in strained Si-on-insulator fabricated by wafer bonding, presented at VLSI Technology,2001
    [1.38]T. Mizuno, N. Sugiyama, A. Kurobe, et al., Advanced SOI p-MOSFETs with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology, IEEE Transactions on Electron Devices,2001,48:1612
    [1.39]T. Tezuka, N. Sugiyama, and S. Takagi, Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction, Applied Physics Letters, 2001,79:1798
    [1.40]Z. Y. Cheng, M. T. Currie, C. W. Leitz, et al., SiGe-On-Insulator (SGOI):substrate preparation and MOSFET fabrication for electron mobility evaluation, presented at SOI Conference,2001
    [1.41]http://www.chips.ibm.com/bluelogic/showcase/soi/
    [2.1]K. A. Jenkins, and K. Rim, Measurement of the effect of self-heating instrained-silicon MOSFETs, IEEE Electron Device Lett.,2002,23(6):360
    [2.2]J. L. Hoyt, H. M. Nayfeh, S.Eguchi, et al., Strained silicon MOSFETs technology, in Pro. Int. Electron Dev. Meeting, San Francisco, CA,2002:23
    [2.3]K. Etessam-Yazdani and M. Asheghi, Ballistic phonon transport on strained Si/SiGe nanostructures with an application to strained-Silicon transistors, in Proc. ITHERM, 2004:424
    [2.4]W. Liu and M. Asheghi, Thermal modeling of self-heating instrained Silicon MOSFETS, in Proc. ITHERM,2004:605
    [2.5]S. M. Sze, Physics of Semiconductor Devices, Hoboken, NJ:Wiley,1981, ch.3
    [2.6]K. Mistry, T. Ghani, M.Armstrong, et al., Scalability revisited:100nm PD-SOI transistor and implications for 50nm devices, in VLSI Symp.Tech. Dig.,2000:204
    [2.7]J. L. Pelloie, O. Faynot, C. Raynaud, et al., A scalable SOI technology for three successive generations:0.18,0.13 and 0.1 μm for low-voltage and low-power applications, in Proc. IEEE Int. SOI Conf.,1996:118
    [2.8]F. Assaderaghi, G. G. Shahidi, L. Wagner, et al., Transient pass-transistor leakage current in SOI MOSFETs, IEEE Electron Device Lett.,1997,18(6):241
    [2.9]Y. Chen, S. Ma, Kuo, Z.Yu, and R.W. Dutton, An analytical drain current model considering both electron and lattice temperatures simultaneously for deep submicron ultra-thin SOI NMOS devices with self-heating, IEEE Trans. Electron Devices, 1995,42(5):899
    [2.10]G. Shahidi, A. Ajmera, F. Assaderaghi, et al., Device and circuit design issues In SOI technology, in Proc. IEEE Custom Integr. Circuits,1999,15.1.1
    [2.11]G. O. Workman, J. G. Fossum, S. Krishnan, et al., Physical modeling of temperature dependences of SOI CMOS devices and circuits including self-heating, IEEE Trans. Electron Devices,1998,45(1):125
    [2.12]B. M. Tenbroek, M. S. L. Lee, W. Redman-White, et al., Measurement and simulation of self-heating in SOI CMOS analogue circuits, in Proc. IEEE Int. SOI Conf., 1997,156
    [2.13]B. M.Tenbroek, W. Redman-White, M. S. L. Lee, et al., Characterization of layout dependent thermal coupling in SOI CMOS current mirrors, IEEE Trans. Electron Devices,1996,43(12):2227
    [2.14]M. Asheghi, B. Behkam, K. Yazdani, et al., Thermal conductivity model for thin silicon-on-insulator layers at high temperatures, in Proc. IEEE Int. SOI Conf.,2002, 51
    [2.15]M. Asheghi, M. N. Touzelbaev, K. E. Goodson, et al., Temperature dependent thermal conductivity of single-Crystal silicon layers in SOI substrates, J. Heat Transfer,1998, 120(1):30
    [2.16]M. Asheghi, Y. K. Leung, S. S. Wong, et al., Phonon-boundary scattering in thin silicon layers, Appl. Phys. Lett.,1997,71(13):1798
    [2.17]M. Asheghi, K. Kurabayashi, R. Kasnavi, et al., Thermal conduction in doped single-crystal silicon films, J. Appl. Phys.,2002,91(8):5079
    [2.18]W. Liu, Keivan Etessam-Yazdani, Rozana Hussin, et al., Modeling and data for thermal conductivity of ultrathin Single-Crystal SOI layers at high temperature, IEEE Transactions on Electron Devices,2006,53(8):1866
    [2.19]M. G. Holland, Analysis of lattice thermal conductivity, Phys. Rev.,1963,132 (6): 2461
    [2.20]P. G. Klemens, The scattering of low-frequency lattice waves by static imperfections, Proc. R. Soc. Lond.,1955,68(12):1113
    [2.21]M. Asheghi, Thermal transport properties of silicon films, Ph.D.dissertation, Stanford Univ., Stanford, CA,1999
    [2.22]E. H. Sondheimer, The mean free path of electrons in metals, Adv. Phys.,1952, 1(1):1
    [2.23]W. Liu and M. Asheghi, Thermal conductivity of measurements of ultra-thin single crystal silicon layers,2006, J. Heat Transfer,128(1):75
    [2.24]Y. S. Ju and K. E. Goodson, Phonon scattering in silicon film with thickness of order 100nm, Appl. Phys. Lett.,1999,74(20):3005
    [2.25]L. Weber and E. Gmelin, Transport properties of silicon, Appl. Phys. A, Solids Surf, 1991,53:136
    [2.26]G. Slack, Thermal conductivity of pure and impuresilicon,silicon Carbide and diamond, J. Appl. Phys.,1964,35(12):3460
    [2.27]K. E. Goodson, M. I. Flik, L. T. Su, et al., Prediction and measurement of temperature fields in silicon-on-insulator electronic circuits, J. Heat Transfer,1995, 117(3):574
    [2.28]K. Etessam-Yazdani, R. Hussin, and M. Asheghi, Impact of thermal sub-continuum effects on electrical performance of silicon-on-insulator transistors, in Proc. ASME/Pacific Rim Techn. Conf. Exhibition Integr. Packag. MEMS, NEMS, and Electron. Syst.,2005
    [3.1]Vogelsang T, Hofman K R, Electron transport in strained Si layers on Si1-xGex substrate, Appl. Phys. Lett.,1993,63:186
    [3.2]Roldan J B, Gamiz F, Lopez-Villanueva J A, et al., A Monte Carlo study on the electron-transport properties of high-performance strained-Si on relaxed Si1-xGex channel MOSFETs, J. Appl. Phys.1996,80:5121
    [3.3]Song J J, Zhang H M, Hu H Y, et al., Determination of conduction band edge characteristics of strained Si/Si1-xGex, Chin. Phys.,2007,16:3827
    [3.4]E. A. Fitzgerald, Y.-H.Xie, M.L.Green, et al., Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates, Appl. Phys. Lett.,1991, 59,811
    [3.5]K. Ismall, S. F. Nelson, J. O. Chu, et al., Electron transport properties of Si/SiGe heterostructures:Measurements and device implications, Appl. Phys. Lett., 1993,63:660
    [3.6]N. Sugii, K. Nakagawa, Y. Kimura, et al., High electron mobility in strained Si channel of Sil-x/Si/Sil-xGex heterostructure with abrupt interface, Semicon. Sci. Technol.,1998,13:A140
    [3.7]Leitz C W, Currie M T, Lee M L, et al., Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors, J. Appl. Phys.,2002,92(7): 3745
    [3.8]Fitzgerald E A, Xie Y H, Green M L, et al., Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates, Appl. Phys.Lett.,1991,59(7): 811
    [3.9]Welser J, Hoyt J L, Gibbons J F, Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors, IEEE Electron Devices Lett., 1994,15(3):100
    [3.10]K. Rim, S. Koester, M. Hargrove, et al., Strained Si NMOSFET's for high performance CMOS technology, in Symp, VLSI Technol. Dig. Tech. Papers,2001: 59
    [3.11]J.Welser, J. L. Hoyt, S. Takagi, et al., Strained dependence of the performance enhancement in strained-Si nMOSFETs, in IEDM Tech. Dig.,1994:373
    [3.12]M. A. Armstrong, D. A. Antoniadis, A. Sadek, Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors, in IEDM Tech. Dig.,1995: 761
    [3.13]Lombardi C, Manzini S, Saporito A, et al., A physically based mobility model for numerical simulation of nonplanar devices, IEEE Transactions on Computer-Aided Design,1988,7(11):1164
    [3.14]Darwish M N, Lentz J L, Pinto M R, et al., An improved electron and hole mobility model for general purpose device simulation, IEEE Trans. Electron Devices,1997, 44(9):1529
    [3.15]Liang R, Li D B, Xu J, A universal electron mobility model of strained Si MOSFETs based on variational wave functions, Solid-State Electronics,2008,52:863
    [3.16]K. K. Rim, J. L. Hoyt, and J. F. Gibbons, Fabrication and analysis of deep submicron strained-Si N-MOSFET's, IEEE Transactions on Electron Devices,2000,47:1406
    [3.17]R. People, Physics and Applications of GexSi1-x/Si Strained-layer Heterostructures, IEEE Journal of Quantum Electronics,1986,22:1696
    [3.18]G. Abstreiter, H. Brugger, T. Wolf, et al., Strain-induced two-dimensional electron-gas in selectively doped Si/SixGe1-x superlattices, Physical Review Letters,1985,54: 2441
    [3.19]S. I. Takagi, J. L. Hoyt, J. J. Welser, et al., Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors, Journal of Applied Physics,1996, 80:1567
    [3.20]S. Takagi, A. Toriumi, M. Iwase, et al., On the universality of inversion layer mobility in Si MOSFET's:Part I-effects of substrate impurity concentration, IEEE Trans. Electron Devices,1994,41(12):2357
    [3.21]C. G. Sodini, T. W. Ekstedt, and J. L. Moll, Charge accumulation and mobility in thin dielectric MOS-Transistors, Solid-State Electronics,1982,25:833
    [3.22]Sah C T, Ning T H, Tschopp L L, The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface, Surface Sci.,1972, 32:561
    [3.23]Schwarz S A, Russek S, Semi-empirical equations for electron velocity in silicon: Part II-MOS inversion layer, IEEE Trans. Electron Devices,1983,30(12):1634
    [3.24]Currie M T, Leitz, Langdo T A, et al., Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates, J. Vac. Sci. Technol. B, 2001,19:2268
    [3.25]S. J. Kim, T. H. Shim, K. R.Choi, et al., Comparative study of self-heating effect on electron mobility in nano-scale strained silicon-on-insulator and strained silicon grown on relaxed SiGe-on-insulator n-metal-oxide-semiconductor field-effect transistors, Semicond. Sci. Technol.,2009,24:035014.1
    [3.26]J. B. Roldan, F. Gamiz, Simulation and modelling of transport properties in strained-Si and strained-Si/SiGe-on-insulator MOSFETs, Solid-State Electronics, 2004,48:1347
    [3.27]Tezuka T, Nakaharai S, Moriyama Y, Hirashita N, et al., Hole-mobility enhancement in Ge-rich strained SiGe-on-Insulator pMOSFETs at high temperatures,2007 IEEE Trans. Electron Devices 54(5):1249
    [3.28]Y. Matsumoto and Y. Uemura, Scattering mechanism and low temperature mobility of MOS inversion layers, Jpn.J. Appl. Phy. Suppl.2,1974, Pt.2:363
    [3.29]T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two dimensional systems, Rev. Mod. Phys.,1982,54:437
    [3.30]Masetti G, Severi M, Solmi S, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Trans. Electron Devices,1983,30(7):764
    [3.31]F. Gamiz, J. B. Roldan, J. A. Lopez-Villanueva, et al., Coulomb scattering in strained-silicon inversion layers in Si1-xGex substrate, Appl. Phys. Lett.,1996,69: 797
    [3.32]ISE 10.0 USER manual, Integr. Syst. Eng., Inc., San Jose, CA 95113
    [3.33]Ancona M G, Tiersten H F, Macroscopic physics of the silicon inversion layer, Physical Review B,1987,135(5):7959
    [3.34]Ancona M G, Iafrate G J, Quantum correction to the equation of state of an electron gas in a semiconductor, Physical Review B,1989,39(13):9536
    [4.1]H. Yang, D. Wang, H. Nakashima, et al., Influence of top surface passivation on bottom-channel hole mobility of ultrathin SiGe- and Ge-on-insulator, Appl. Phys. Lett.,2008,93:072104
    [4.2]T. Sadi and R. W. Kelsall, Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on-insulator metal-oxide field-effect transistors, J. Appl. Phys.,2010,107:064506
    [4.3]G. H. Wang, Toh Eng-Huat Du, A. Lo Guo-Qiang Samudra, et al., Strained silicon-germanium-on-insulator n-MOSFET with embedded silicon source-and-drain stressors, IEEE Electron Device Lett.,2008,29(1):77
    [4.4]X. Ma, W. Liu, X Liu, et al., Strain stability and carrier mobility enhancement in strained Si on relaxed SiGe-on-Insulator, J. Electrochem. Soc.,2010,157(1):104
    [4.5]W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, Modeling and data for thermal conductivity of ultra thin single-crystal SOI layers at high temperature, IEEE Trans. Electron Devices,2006,53(8):1868
    [4.6]K. E.Yazdani, Y. Yang, M. Asheghi, Ballistic phonon transport and self-heating effects in strained-silicon transistors, IEEE Trans. Components and Packaging Technology,2006,29 (2):254
    [4.7]Z. X. Zhang, Q. Lin, M. Zhu, et al., A new structure of SOI MOSFET for reducing self-heating effect, Ceramics International 2004,30(7):1289
    [4.8]L. T. Su, K.E. Goodson, D. A. Abtoniadis, et al., Measurement and modeling of self-heating effects in SOI n-MOSFETs, IEDM Conf.,1992,357
    [4.9]J. S. Lim, S. E. Thompson, and J. G Fossum, Comparison of threshold-Voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs, IEEE Electron Device Lett., 2004,25(11):731
    [4.10]W. Zhang and J. G. Fossum, On the threshold voltage of strained-Si/Si1-xGex MOSFETs, IEEE Trans. Electron Devices,52(2):263
    [4.11]T. Numata, T. Mizuno, T. Tezuka, et al., Control of threshold voltage and short-channel effects in ultrathin strained-SOI CMOS devices, IEEE Trans. Electron Devices,2005,52(8):1780
    [4.12]MEDICI 4.0, Technology Modeling Associates, Inc., PaloAlto, CA,1997
    [4.13]ATLAS Users Manual, Silvaco International, Santa Clara, CA,2000
    [4.14]K. K.Young, Short-channel effect in fully depleted SOI MOSFETs, IEEE Trans. Electron Devices,1989,36(2):399
    [4.15]S. A. Loan, S. Qureshi, and S. S. KumarIyer, A numerical simulation study of a nanoscaled side selective buried oxide MOSFET, Electron Devices and Solid-State Circuits,2008. EDSSC 2008. IEEE International Conference,2008,1
    [4.16]F. K. LeGoues, L. Rosenberg, T. Nguyen, et al., Oxidation studies of SiGe, J. Appl. Phys.,1989,65(4):1724
    [4.17]Zhi-Yuan Chang, M. T. Currie, C.W. Leitz, et al., SiGe-on-insulator(SGOI):substrate preparation and MOSFET fabrication for electron mobility evaluation, Massachusetts Institute of Technology, Microsystems Technology Laboratories, Cambridge
    [4.18]C. W. Liu, S. Maikap, and Y. Yu, Mobility-enhancement technologies:recent progress using new materials, process-induced strain, and package strain, IEEE Circuits & Devices Magazine,2005,21
    [4.19]K. Brunner, H. Dobler, G. Abstreiter, H. Schafer, et al., Molecular beam epitaxy growth and thermal stability of Si1-xGex layers on extremely thin silicon-on-insulator substrates, Thin Solid Films,1998,321(1):245
    [4.20]J. P. Dismukes, Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 K, Journal of Applied Physics,1964,35(10):2899
    [4.21]H. O. Joachim, Y. Yamaguchi, K. Ishikawa, et al., Simulation and two-dimensional analytical modeling of subthreshold slope in ultrathin-film SOI MOSFET's down to 0.1 pm gate length, IEEE Trans Electron Devices,1993,40(10):1812
    [4.22]T. Sakurai, A. Matsuzawa, T. Douseki, Fully-depleted SOI CMOS circuits and technology for ultra-low power application, Netherlands:Springer,2006:390
    [4.23]黄如,张国艳,李映雪等,SOI CMOS技术与其应用,第一版,北京:科学出版社,2005:262
    [4.24]C. Fiegna, Y. Yang, E. Sangiorgi, et al., Analysis of self-heating effects in ultrathin-body SOI MOSFETs by device simulation, IEEE Trans. Electron Devices, 2008,55(1):233
    [4.25]W. Xiong and J. P. Colinge, Self-aligned implanted ground-plane fully depleted SOI MOSFET, Electron Lett.,1999,35(23):2059
    [4.26]W. Xiong, K. Ramkumar, S. J. Jang, et al., Self-Aligned ground-plane FD SOI MOSFET, in Proc. IEEE Int. SOI.Conf.,2002,23
    [4.27]S. Yanagi, A. Nakakubo, and Y. Omura, Proposal of partial-ground-plane(PGP) silicon-on-insulator (SOI) MOSFET for deep sub-0.1-μm channel regime, IEEE Electron Device,2001,22(6):278
    [4.28]T. Ernst, C. Tinella, C. Raynaud, et al., Fringing fields in sub-0.1μm fully depleted SOI MOSFETs:optimization of the device architecture, Solid-State Electron 2002, 46:373
    [4.29]M. J. Kumar, M. Siva, The ground plane in buried oxide for controlling short-channel effects in nanoscale SOI MOSFETs, IEEE Trans. Electron Devices,2008,55(6): 1554
    [4.30]王晓燕,张鹤鸣,王冠宇等,漏致势垒降低效应对短沟道应变硅金属氧化物半导体场效应管阂值电压的影响,物理学报,2011,61(2):027102
    [5.1]Huang, R. Wang, R.S. Zhuge, J. Yu, et al., Self-heating effect and characteristic variability of gate-all-around silicon nanowire transistors for highly-scaled CMOS technology (invited), SOI Conference (SOI),2010 IEEE International,1
    [5.2]Etessam-Yazdani K, Yang Y, Asheghi M, Ballistic phonon transport and self-heating effects in strained-silicon transistors, IEEE Trans Components and Packaging Technology,2006,29(2):254
    [5.3]T. Sadi and R. W. Kelsall, Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on-insulator metal-oxide field-effect transistors, J. Appl. Phys.,2010,107:064506
    [5.4]K. Sawano, A. Fukumoto, Y. Hoshi, Y. Shiraki, et al., Strained Si n-channel metal-oxide-semiconductor field-effect transistors formed on very thin SiGe relaxed layer fabricated by ion implantation technique, Appl. Phys. Lett.,2007,90:202101
    [5.5]N. Bresson, S.Cristoloveanu, C. Mazure, F.Letertre, et al., Integration of buried insulators with high thermal conductivity in SOI MOSFETs:Thermal properties and short channel effects, Solid-State Electronics,2005,49:1522
    [5.6]Bryan A, Biegel, Mohamed Osman.[C]. Analysis of aluminum-nitride SOI for high-temperature electronics,5th HiTEC, NASA Ames Research Center,2000
    [5.7]Kaya K, Kanno Y, Takahashi I, et al., Synthesis of A1N thin films on sapphire substrates by chemical vapor deposition of AlCl3-NH3 system and surface acoustic wave properties, Japanese Journal of Applied Physics, Part 1:Regular Papers&Short, Notes&Review Papers,1996,35(5A):2782
    [5.8]Kaya K, Takahashi H, Shibata Y, et al., Synthesis and surface acoustic wave properties of A1N thin films fabricated on (001)and (110) sapphire substrates using chemical vapor deposition of AlCl3-NH3 system, Japanese Journal of Applied Physics, Part 1:Regular Papers & Short, Notes & Review Papers,1997,36(5A):2837
    [5.9]Zollner S, Konkar A, Greqory R B, et al., Dielectric function of A1N grown on Si(111) by MBE, Materials Research Society Symposium-Proceedings,1999,572:231
    [5.10]Zhang W, Someno Y, Sasaki M, et al., Low-temperature epitaxial growth of A1N films on sapphire by electron cyclotron Resonance plasma-assisted chemical vapor deposition, Journal of Crystal Growth,1993,130(1-2):308
    [5.11]Werbowy A, Olszyna, A, Zdunek K, et al., Peculiarities of thin film deposition by means of reactive impulse plasma assisted chemical vapor deposition (RIPACVD) method, Thin Solid Films,2004,459(1-2):160
    [5.12]Gurumurugan K, Chen H, Harp G R, et al., Growth and characterization of amorphous A1N thin films by reactive magnetron sputtering at low temperature, Materials Research Society Symposium-Prceedings,1999,535:213
    [5.13]封国根, 顾华英,邵光杰编译.铝合金的离子渗氮,国外金属热处理,2000,21(3):22
    [5.14]工力衡,黄运添,郑海涛.薄膜技术,北京:清华大学出版社,1991,25,29, 32-34
    [5.15]刘海涛,杨郦,张树安等.无机材料合成,北京:化学工业出版社,2003,272
    [5.16]唐伟忠.薄膜材料制备原理、技术及应用.第二版.北京:冶金工业出版社。2003.151,77
    [5.17]Zhu M, Chen P, Fu R K, Numerical study of self-heating effects of MOSFETs fabricated on SOAN substrate, IEEE Trans on Electron Devices 2004,51(6):901
    [5.18]Yazdani K E, Yang Y Z, Asheghi M, IEEE Trans Components and Packaging Technology 2006,29(2):254
    [5.19]Dessis User Guide, ISE TCAD Release 10.0. Integrated Systems Engineering Zurich, Switzerland.2004
    [5.20]Song Z R, Yu Y H, Zou S C, et al., Simulation and characterization on properties of AIN films for SOI application, Thin Solid Film 2004,459:41
    [5.21]Kim S J, Shim T H, Choi K R, Park J G, Comparative study of self-heating effect on electron mobility in nano-scale strained silicon-on-insulator and strained silicon grown on relaxed SiGe-on-insulator n-metal-oxide-semiconductor field-effect transistors, Semiconductor Science and Technology,2009,24(3):035014
    [5.22]J. B. Roldan, F. Gamiz, Simulation and modeling of transport properties in strained-Si and strained-Si/SiGe-on-insulator MOSFETs, Solid-State Electronics, 2004,48:1347
    [5.23]Balestra F, Cristoloveanu S, Special mechanisms in thin-film SOI MOSFETs Microelectronics and Reliability 1997,37(9):1341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700