用户名: 密码: 验证码:
人工蜂群算法及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何设计有效的算法,求解科学研究和工程实践中遇到的大量优化问题,一直是众多领域研究的热点.近年来,进化算法在求解不连续、不可微、多峰等复杂优化问题上表现出色,受到了国内外研究人员的广泛关注.目前,进化算法已经在许多领域得到了十分广泛的应用.
     人工蜂群算法(Artifcial Bee Colony Algorithm,简称为ABC)是进化算法的一个分支,它主要模拟蜂群的智能采蜜行为.由于该算法具有结构简单、易于实现、参数较少等特点,一经提出便受到众多学者的关注和研究.然而,目前关于人工蜂群算法的研究与应用还处于初级阶段,尚有很多问题有待解决.例如,与其他进化算法类似,标准ABC算法也存在收敛速度慢、对过于复杂的问题可能搜索不到最优解、计算精度不高等问题.针对这些问题,本文以提高算法的通用性、高效性和鲁棒性为主要目标,提出了几种改进的人工蜂群算法,主要工作如下:
     1.针对人工蜂群算法的搜索方程探索能力强,开发能力弱的特点,受差分进化算法变异方程的启发,提出了两个新算法ABC/best/1和ABC/best/2.这两个算法的搜索方程只在最优位置附近产生新的候选解,从而提高了算法的开发能力.通过26个测试函数的仿真实验,结果表明ABC/best/1和ABC/best/2性能要优于其他两个人工蜂群算法.
     2.为了进一步提高算法的开发能力,提出了一个新的搜索方程.通过该搜索方程产生的候选解不仅围绕在最优解附近,并且搜索方向受最优解的引导,从而大大地提高了算法的开发能力.进一步,为了充分利用和平衡标准ABC搜索方程和所提出搜索方程的探索能力和开发能力,通过引入选择概率进而提出了一个新的人工蜂群算法(MABC).通过28个测试函数的仿真实验,结果表明所提的算法性能优于其他几种比较算法.
     3.提出了一个新的ABC改进版本(简称为EABC).在这个算法里,根据采蜜蜂和观察蜂在搜索过程中的侧重点不同,提出了两个不同的搜索方程分别被采蜜蜂和观察蜂用来产生新的候选解.从整体上看,新算法更注重于挖掘问题的特征信息.最后,通过48个测试函数的仿真实验,结果表明EABC性能优于,或至少可与标准的或改进的人工蜂群算法、差分进化算法和粒子优化算法相媲美.同时, EABC在高维测试函数上也表现出了优越的性能.
     4.首先,受遗传算法杂交算子的启发,通过设计一个新的搜索方程产生候选解,进而提出一种新的人工蜂群算法(简称为CABC)以提高算法的搜索性能.进一步,为了充分利用搜索空间中的有用信息,通过正交设计构造一个正交学习策略.由于正交学习策略利用了正交设计小样本特性,它可以产生更有前途的候选解.接着,结合正交学习策略提出了一种提高人工蜂群算法搜索性能的通用框架,得到了三种新颖的算法(分别记为OABC、OGABC和OCABC).对22个测试函数的仿真实验,结果验证了新搜索方程和正交学习策略的有效性.通过与几个具有代表性的进化算法比较结果表明,所提出的算法显著地提高了人工蜂群算法的性能.
     5.为了解决混沌系统控制与同步问题,提出一种改进的人工蜂群算法(简称为IABC).该算法在ABC/best/1和ABC/rand/1的基础上,引入参数M以提高它们的搜索能力.进一步,为了充分利用这两个搜索方程的优点,克服它们的缺点,按照一定的概率引入这两个搜索方程来产生候选解.以典型He′non Map系统为例进行仿真,验证了IABC算法的有效性与稳定性.
How to design an efcient algorithm to solve the problems in various scientifc andengineering felds is essential in science and real applications. Recently, evolutionary al-gorithms (EAs) have shown considerable success in solving optimization problems charac-terized as nonconvex, discontinuous, nondiferentiable, and so on and attracted more andmore attention in recent years. At present, EAs have been broadly applied to diversifedfelds and the research fruits of EAs have already permeated into many disciplines.
     Artifcial bee colony algorithm (ABC), which belongs to the family of EAs, is basedon simulating the foraging behavior of the honeybee swarm. Due to its simplicity, easeof implementation and few parameters, ABC has captured much attention and has beenapplied to solve many practical optimization problems since its invention. However, atpresent, the research and application on artifcial bee colony algorithm is still in primitivestage. There are still many problems to be studied and solved. For example, similar toother EAs, ABC also faces up to the poor convergence and the low calculating accuracyin solving complex optimization problems. To address these concerning issues, someimproved ABCs for global optimization are proposed in the dissertation for the majorpurpose of increasing the universality, efciency and robustness. The main contributionsand original ideals included in the dissertation are summarized as follows:
     1. There is still an insufciency in the ABC regarding its solution search equation,which is good at exploration but poor at exploitation. Inspired by diferential evolution(DE), we propose two modifed ABCs (denoted as ABC/best/1and ABC/best/2), whichare based on that each bee searches only around the best solution of the previous iterationin order to improve the exploitation. Experiments are conducted on a set of26benchmarkfunctions. The results demonstrate good performance of ABC/best in solving complexnumerical optimization problems when compared with two ABC based algorithms.
     2. In order to further improve the exploitation of the algorithm, a novel solutionsearch equation is proposed. In the new search equation, the generated candidate solu-tion is not only around the best solution, but also its search direction is guided by thebest solution, which results in the strong exploitation. Then, to make full use of and bal-ance the exploration of the solution search equation of ABC and the exploitation of theproposed solution search equation, we introduce a selective probability and get the newsearch mechanism (MABC). Experiments are conducted on a set of28benchmark func-tions. The results demonstrate good performance of MABC in solving complex numerical optimization problems when compared with the others algorithms.
     3. A novel ABC method is presented called as EABC to improve the performanceof ABC. In this method, according to diferent emphases of employed bees and onlookersin the search process, two new search equations for solution update of employed bees andonlookers respectively are proposed to balance exploration and exploitation. Overall, thenew version puts more emphasis on exploiting the domain-specifc knowledge. Finally,simulation results show that EABC is better than, or at least comparable to, other classicor modifed ABC, diferential evolution and particle swarm optimization algorithms fromthe literature in terms of convergence performance for a set of48benchmark functions.EABC also shows promising results for relatively high dimensional problems.
     4. Inspired by the crossover of genetic algorithm, we frst propose an improvedABC method called as CABC where a modifed search equation is applied to generatea candidate solution to improve the search ability of ABC. Furthermore, we use theorthogonal experimental design (OED) to form an orthogonal learning (OL) strategy forvariant ABCs to discover more useful information from the search experiences. Owing toOED’s good character of sampling a small number of well representative combinations fortesting, the OL strategy can construct a more promising and efcient candidate solution.In this paper, the OL strategy is applied to three versions of ABC, i.e., the standardABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, andOCABC, respectively. The experimental results on a set of22benchmark functionsdemonstrate the efectiveness and efciency of the modifed search equation and the OLstrategy. The comparisons with some other ABCs and several state-of-the-art algorithmsshow that the proposed algorithms signifcantly improve the performance of ABC.
     5. To solve the control and synchronization problems of chaotic dynamical systems,we propose an improved ABC (IABC). In IABC, a parameter M is applied to ABC/rand/1and ABC/best/1. Then, in order to take advantage of them and avoid the shortages ofthem, we use a selective probability to control the frequency of introducing ABC/rand/1and ABC/best/1and get a new search mechanism. Numerical simulation based on He′nonMap and comparisons with some typical existing algorithms demonstrate the efectivenessand robustness of the proposed approach.
引文
[1] J. Holland, Adaptation in natural and artifcial systems. Ann Arbor: The University ofMichigen Press,1975.
    [2] H.P. Schwefel, Numerical optimization ofcomputer models. Chichester: Wiley,1981.
    [3] L.J. Fogel, A.J. Owens, M.J. Walsh, Artifcial intelligence through simulated evolution.New York: John Wiley,1966.
    [4] J.R. Koza, Genetic programming: On the programming of computers by means of naturalevolution, MIT Press, Massachusetts,1992.
    [5] M. Dorigo, T. Stutzle, Ant Colony Optimization, Cambridge, MA MIT Press,2004.
    [6] R. Storn, K. Price, Diferential Evolution-A Simple and Efcient Heuristic for global Op-timization over Continuous Spaces, Journal of Global Optimization23(2010)689-694.
    [7] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proc. IEEE Int. Conf. NeuralNetw.4(1995)1942-1948.
    [8] R.G. Robert, An introduction to cultural algorithms. In: Proceedings of the3rd AnnualConference on Evolutionary Programming, Singapore: World Scientifc Publishing,1994.PP.131-136.
    [9] D. Simon, Biogeography-based optimization, IEEE Transactions on Evolutionary Compu-tation12(2008)702-713.
    [10] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algo-rithm:harmony search, Simulation200176(2)60―68.
    [11] W.M. Shen, Y. Lu, P. Will, Hormone-based control for self-reconfgurable robots, In:Proceedings of International Conference on Autonomous Agents, Barcelona, Spain,2000,PP.1-8.
    [12] L.N. De Castro, J. Timmis, Artifcial immune systems: A new computational intelligenceApproach. London, U.K.:Springer-Verlag,1996.
    [13] S. He, Q.H. Wu, J.R. Saunders, Group search optimizer―an optimization algorithm in-spired by animal searching behaviour, IEEE Transactions on Evolutionary Computation200913(5)973-990.
    [14] A. Loengarov, V. Tereshko, Phase transitions and bistability in honeybee foraging dynam-ics, Artifcial Life2008l4(1) ll1-120.
    [15] Y.S. Ong, A.J. Keane, Meta-lamarckian learning in memetic algorithm, IEEE Transactionson Evolutionary Computation20048(2)99-ll0.
    [16]周永华,毛宗源,一种新的全局优化搜索算法-人13迁移算法,华南理工大学学报自然科学版200331(3)1-5.
    [17]李晓磊,一种新型的智能优化方法-人工鱼群算法.杭州:浙江大学.博士学位论文,2003.
    [18] K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and con-trol,IEEE Control Systems Magazine200222(3)52-67.
    [19] D. Karaboga, An idea based on honey bee swarm for numerical optimization, ErciyesUniversity, Kayseri, Turkey, Technical Report-TR06,2005.
    [20] A.Y.S. Lam, V.O.K. Li, Chemical-Reaction-Inspired Metaheuristic for Optimization, IEEETransactions on Evolutionary Computation201014(3)381-398.
    [21] R. Storn, K.V. Price, J. Lampinen, Diferential evolution―A practical approach to globaloptimization. Berlin, Germany: Springer-Verlag,2005.
    [22]王勇,基于进化算法求解复杂连续优化问题的研究.博士论文,中南大学,2011.
    [23]张晓伟,全局优化的若干随机性算法.博士论文,西安电子科技大学,2011.
    [24] J. L. Gould, C. G. Gould, The Honey Bee, New York, Scientifc American Library,1988.
    [25] P, K. Visscher, Animal behaviour: How self-organization evolves, Nature,2003421799-800.
    [26] K. M. Passino, T. D. Seeley, P. K. Visscher, Swarm cognition in honey bees, Behavioralecology and sociobiology,200862(3)401-414.
    [27] T. D. Seeley, The Wisdom of the Hive, Cambridge, MA: Hmward University Press,1995.
    [28] D. Karaboga, B. Basturk, On the performance of artifcial bee colony (ABC) algorithm,Applied Soft Computing20088(1)687-697.
    [29]康飞,大坝安全监测与损伤识别的新型计算智能方法.博士论文,大连理工大学,2009.
    [30]暴励,人工蜂群算法的混合策略研究.硕士论文,太原科技大学,2010.
    [31] D. Karaboga, B. Basturk, A comparative study of Artifcial Bee Colony algorithm, AppliedMathematics and Computation2009214(1)108-132.
    [32] R. A. Vural, T. Yildirim, T. Kadioglu, A. Basargan, Performance Evaluation of Evolu-tionary Algorithms for Optimal Filter Design, IEEE Transactions on Evolutionary Com-putation201216(1)135-147.
    [33] F. S. Abu-Mouti, M.E. El-Hawary, Optimal Distributed Generation Allocation and Sizingin Distribution Systems via Artifcial Bee Colony Algorithm, IEEE Transactions on PowerDelivery201126(4)2090-2101.
    [34] Q. K. Pan, L. Wang, K. Mao, J. H. Zhao, M. Zhang, An Efective Artifcial Bee ColonyAlgorithm for a Real-World Hybrid Flowshop Problem in Steelmaking Process, IEEETransactions on Automation Science and Engineering201310(2)307-322.
    [35] Y. J. Wang, W. Chen, C. Tellambura, An Efective Artifcial Bee Colony Algorithm fora Real-World Hybrid Flowshop Problem in Steelmaking Process, IEEE Transactions onWireless Communications20109(10)2994-2999.
    [36] T. J. Hsieh, W. C. Yeh, Knowledge Discovery Employing Grid Scheme Least Squares Sup-port Vector Machines Based on Orthogonal Design Bee Colony Algorithm, IEEE Trans-actions on Systems, Man, and Cybernetics, Part B: Cybernetics20109(10)2994-2999.
    [37] P. Mukherjee, L. Satish, Construction of Equivalent Circuit of a Single and Isolated Trans-former Winding From FRA Data Using the ABC Algorithm, IEEE Transactions on PowerDelivery201227(2)963-970.
    [38] S. Samanta, S. Chakraborty, Parametric optimization of some non-traditional machin-ing processes using artifcial bee colony algorithm, Engineering Applications of ArtifcialIntelligence201124(6)946-957.
    [39] M. Manuel, E. Elias, Design of frequency response masking FIR flter in the Canonic SignedDigit space using modifed Artifcial Bee Colony algorithm, Engineering Applications ofArtifcial Intelligence201326(1)660-668.
    [40] X. L. Wang, X. Z. Xie, T.C.E. Cheng, A modifed artifcial bee colony algorithm for orderacceptance in two-machine fow shops, International Journal of Production Economics2013141(1)14-23.
    [41] Z. C. Zhang, J. Lin, Y. W. Shi, Application of Artifcial Bee Colony Algorithm to MaximumLikelihood DOA Estimation, International Journal of Production Economics2013141(1)14-23.
    [42] R. Zhang, S. J. Song, C. Wu, A hybrid artifcial bee colony algorithm for the job shopscheduling problem, International Journal of Production Economics2013141(1)167-178.
    [43] T. Singh, A. Chatterjee, MMSE design of nonlinear Volterra equalizers using artifcial beecolony algorithm, Measurement201346(1)210-219.
    [44] S. Biswas, A. Chatterjee, S. K. Goswami, An artifcial bee colony-least square algorithmfor solving harmonic estimation problems, Applied Soft Computing201313(5)2343-2355.
    [45] W. F. Gao, S. Y. Liu, L. L. liu, An improved artifcial bee colony algorithm for directingorbits of chaotic systems, Applied Mathematics and Computation2011218(7)3868-3879.
    [46] Y. C. Li, Y. L. Wang, B. Li, A hybrid artifcial bee colony assisted diferential evolutionalgorithm for optimal reactive power fow, International Journal of Electrical Power&Energy Systems201352(2)25-33.
    [47] M. H. Horng, Multilevel thresholding selection based on the artifcial bee colony algorithmfor image segmentation, Expert Systems with Applications201138(11)13785-13791.
    [48] N. Karaboga, F. Latifoglu, Elimination of noise on transcranial Doppler signal using IIRflters designed with artifcial bee colony-ABC-algorithm, Digital Signal Processing201323(3)1051-1058.
    [49] F. Kang, J. J. Li, Q. Xu, Structural inverse analysis by hybrid simplex artifcial bee colonyalgorithms, Computers&Structures200987(13)861-870.
    [50] W. D. Chang, Nonlinear CSTR control system design using an artifcial bee colony algo-rithm, Simulation Modelling Practice and Theory201331(1)1-9.
    [51] W. Y. Szeto, Y. Z. Wu, S. C. Ho, An artifcial bee colony algorithm for the capacitatedvehicle routing problem, European Journal of Operational Research2011215(1)126-135.
    [52] G. P. Zhu, S. Kwong, Gbest-Guided Artifcial Bee Colony Algorithm for Numerical Func-tion Optimization, Applied Mathematics and Computation2010217(7)3166-3173.
    [53] A. Banharnsakun, T. Achalakul, B. Sirinaovakul, The best-so-far selection in artifcial beecolony algorithm, Applied Soft Computing201011(2)2888-2901.
    [54] G.Q. Li, P.F. Niu, X.J. Xiao, Development and investigation of efcient artifcial beecolony algorithm for numerical function optimization, Applied Soft Computing201212(1)320-332.
    [55] P.W. Tsai, J.S. Pan, B.Y. Liao, S.C. Chu, Enhanced artifcial bee colony optimization,International Journal of Innovative Computing, Information and Control20095(12)1-12.
    [56] L. S. Coelho and P. Alotto, Gaussian artifcial bee colony algorithm approach applied toloney’s solenoid benchmark problem, IEEE Transactions on Magnetics201147(5)1329-1329.
    [57] W. F. Gao and S. Y. Liu, Lingling Huang. A global best artifcial bee colony algorithmfor global optimization, Journal of Computational and Applied Mathematics2012236(11)2741-2753.
    [58] W. F. Gao and S. Y. Liu, Improved artifcial bee colony algorithm for global optimization,Information Processing Letters2011111(17)871-882.
    [59] W. F. Gao, S. Y. Liu, L. L. Huang, A novel artifcial bee colony algorithm based onmodifed search equation and orthogonal learning, IEEE Transactions on Cybernetics43(2013)1011-1024.
    [60] Y. F. Xu, P. Fan, and L Yuan, A Simple and Efcient Artifcial Bee Colony Algo-rithm, Mathematical Problems in Engineering Volume2013, Article ID526315,9pageshttp://dx.doi.org/10.1155/2013/526315.
    [61] F. Kang, J.J. Li, Q. Xu, Structural inverse analysis by hybrid simplex artifcial bee colonyalgorithms, Computers and Structures200987(13)861-870.
    [62] D. Karaboga, B. Basturk, A modifed Artifcial bee colony algorithm for real-parameteroptimization, Information Sciences2012129(1)120-142.
    [63] F. Kang, J.J. Li, Z.Y. Ma, Rosenbrock artifcial bee colony algorithm for accurate globaloptimization of numerical functions, Information Sciences2011181(16)3508-3531.
    [64] F. Kang, J.J. Li, H. J. Li, Artifcial bee colony algorithm and pattern search hybridizedfor global optimization, Applied Soft Computing201313(4)1781-1791.
    [65] B. Alatas, Chaotic bee colony algorithms for global numerical optimization, Expert Sys-tems with Applications201037(8)5682-5687.
    [66] M. S. Kiran and M. Gunduz, A recombination-based hybridization of particle swarm opti-mization and artifcial bee colony algorithm for continuous optimization problems, AppliedSoft Computing201313(4)2188-2203.
    [67] B. Wu, C. H. Qian, W. H. Ni, S. H. Fan, Hybrid harmony search and artifcial bee colonyalgorithm for global optimization problems, Computers&Mathematics with Applications201264(8)2621-2634.
    [68] W. L. Xiang, M. Q. An, An efcient and robust artifcial bee colony algorithm for numericaloptimization, Computers&Operations Research201340(5)1256-1265.
    [69] H. Zhao, Z. Pei, J. Jiang, R. Guan, C. Wang and X. Shi, A hybrid swarm intelligentmethod based on genetic algorithm and artifcial bee colony, Lect. Notes Comput. Sci.,vol.6145,2010, pp.558-565.
    [70] H. B. Duan, C. F. Xu and Z. H. Xing, A hybrid artifcial bee colony optimization and quan-tum evolutionary algorithm for continuous optimization problems, International Journalof Neural Systems201020((1)39-50.
    [71] X. Shi, Y. Li, H. Li, R. Guan, L. Wang, and Y. Liang, An integrated algorithm based onartifcial bee colony and particle swarm optimization,” in Proc. IEEE Int. Conf. NeuralNetw., vol.5,2010, pp.2586-2590.
    [72] C. Sumpavakup, S. Chusanapiputt and I. Srikun, A hybrid cultural-based bee colonyalgorithm for solving the optimal power fow, in Proc. IEEE Int. Mid. Symp. CircuitsSyst.,2011, pp.1-4.
    [73] D. Karaboga and B. Akay, A modifed Artifcial Bee Colony (ABC) algorithm for con-strained optimization problems, Applied Soft Computing201111(3)3021-3031.
    [74] E.M. Montes, et al., Elitist artifcial bee colony for constrained real-parameter optimiza-tion, in Proceedings of the IEEE Congress on Evolutionary Computation11(2010)1-8.
    [75] W. C. Yeh and T. J. Hsieh, Solving reliability redundancy allocation problems using anartifcial bee colony algorithm, Computers&Operations Research201138(11)1465-1473.2011.
    [76] S. L. Sabat, S. K. Udgata, and A. Abraham, Artifcial bee colony algorithm for smallsignal model parameter extraction of MESFET, Engineering Applications of ArtifcialIntelligence201023(5)689-694.
    [77] J. Q. Li, Q. K. Pan, S. X. Xie, and S. Wang, A hybrid artifcial bee colony algorithm forfexible job shop scheduling problems, International Journal of Computers, Communica-tions and Control20116(2)286-296.
    [78] M. H. Kashan, N. Nahavandi, and A. H. Kashan, DisABC: a new artifcial bee colonyalgorithm for binary optimization, Applied Soft Computing201212(1)342-352.
    [79] W. Y. Szeto, Y.Wu, and S. C. Ho, An artifcial bee colony algorithm for the capacitatedvehicle routing problem, European Journal of Operational Research2011215(1)126-135.
    [80] Q. K. Pan, M. F. Tasgetiren, P. N. Suganthan, and T. J. Chua, A discrete artifcial beecolony algorithm for the lot-streaming fow shop scheduling problem, Information Sciences2011181(12)2455-2468.
    [81] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artifcialbee colony (ABC) algorithm and applications, Artifcial Intelligence Review2011DOI10.1007/s10462-012-9328-0.
    [82] M.M. Ali, C. Khompatraporn, Z.B. Zabinsky, A Numerical Evaluation of Several Stochas-tic Algorithms on Selected Continuous Global Optimization Test Problems, Journal ofGlobal Optimization31(2005)635-672.
    [83] Y.W. Shang, Y.H. Qiu, A note on the extended Rosenbrock function, Evolutionary Com-putation14(2006)119-26.
    [84] L. Wang, L.L. Li, F. Tang, Directing orbits of chaotic systems using a hybrid optimizationstrategy, Physics Letters A324(2004)22-25.
    [85] B. Liu, L. Wang, Y.H. Jin, D.X. Hunag, F. Tang, Control and synchronization of chaoticsystems by diferential evolution algorithm, Chaos, Solitons&Fractals.34(2007)412-419.
    [86] B. Liu, L. Wang, Y.H. Jin, F. Tang, D.X. Hunag, Directing orbits of chaotic systems byparticle swarm optimization, Chaos Solitons&Fractals29(2006)454-461.
    [87] Z.H. Cui, X.J. Cai, Integral Particle Swarm Optimization with Dispersed AcceleratorInformation, Fundamenta Informaticae95(2009)427-447.
    [88] L. S. Coelho, D. L. A. Bernert, An improved harmony search algorithm for synchronizationof discrete-time chaotic systems, Chaos Solitons&Fractals41(2009)2526-2532.
    [89] J. Kennedy, R.C. Eberhart, Particle swarm optimization, In: Proceedings IEEE Interna-tional Conference on neural networks;1995, WA, Australia, pp.1942-1948.
    [90] A. Ratnaweera, S.K. Halgamuge, H.C. Watson, Self-organizing hierarchical particle swarmoptimizer with time-varying acceleration coefcients, IEEE Trans. Evol. Comput.8(2004)240-255.
    [91] J.C. Zeng, Z.H. Cui, Particle swarm optimizer with integral controller. in: ProceedingsInternational2005Conference on neural networks and brain;2005, Beijing, China. pp.1840-1842.
    [92] Z. H. Zhan, J. Zhang, Y. Li, Y. H. Shi,“Orthogonal learning particle swarm optimization,”IEEE Trans. Evol. Comput., vol.15, no.6, pp.832-847, Dec.2011.
    [93] S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho,“OPSO: Orthogonal particle swarmoptimization and its application to task assignment problems,” IEEE Trans. Syst., Man,Cybern. A, vol.38, no.2, pp.288-298, Mar.2008.
    [94] Q. F. Zhang and Y. W. Leung,“An orthogonal genetic algorithm for multimedia multicastrouting,” IEEE Trans. Evol. Comput., vol.3, no.1, pp.53-62, Apr.1999.
    [95] Y. Wang, Z. X. Cai, Q. F. Zhang,“Enhancing the search ability of diferential evolutionthrough orthogonal crossover,” Inform. Sciences, vol.185, no.1, pp.153-177, Feb.2012.
    [96] Y. W. Leung and Y. Wang,“An orthogonal genetic algorithm with quantization for globalnumerical optimization,” IEEE Trans. Evol. Comput., vol.5, no.1, pp.41-53, Feb.2001.
    [97] Y. P. Wang and C. Y. Dang,“An Evolutionary Algorithm for Global Optimization Basedon Level-Set Evolution and Latin Squares,” IEEE Trans. Evol. Comput., vol.11, no.5,pp.579-595, Oct.2007.
    [98] C. Y. Lee and X. Yao,“Evolutionary programming using mutations based on the levyprobability distribution,” IEEE Trans. Evol. Comput., vol.8, no.1, pp.1-13, Feb.2004.
    [99] X. Yao, Y. Liu, and G. M. Lin,“Evolutionary programming made faster,” IEEE Trans.Evol. Comput., vol.3, no.2, pp.82-102, Jul.1999.
    [100] Q. Zhang, J. Sun, E. Tsang, and J. Ford,“Hybrid estimation of distribution algorithm forglobal optimization,” Eng. Comput., vol.21, no.1, pp.91-107,2004.
    [101] K. Chellapilla,“Combining mutation operators in evolutionary programming,” IEEETrans. Evol. Comput., vol.2, pp.91-96, Sept.1998.
    [102] J. Brest, S. Greiner, B. Boskovic, M.Mernik, V. Zumer,“Selfadapting control parametersin diferential evolution: A comparative study on numerical benchmark problems,” IEEETrans. on Evol. Comput., vol.10, no.6, pp.646-657, Dec.2006.
    [103] A. K. Qin, V. L. Huang, and P. N. Suganthan,“Diferential evolution algorithm withstrategy adaptation for global numerical optimization,” IEEE Trans. on Evol. Comput.,vol.13, no.2, pp.398-417, Apr.2009.
    [104] J. Zhang and A. C. Sanderson,“JADE: Adaptive diferential evolution with optionalexternal archive,” IEEE Trans. on Evol. Comput., no.5, pp.945-958, Oct.2009.
    [105] W.Y. Gong, Z.H. Cai, C.X. Ling, and H. Li,“Enhanced diferential evolution with adaptivestrategies for numerical optimization,” IEEE Trans. Syst., Man, Cybern. B, Vol.41, no.2, pp.397-413, Apr.2011.
    [106] R. Mendes, J. Kennedy, and J. Neves,“The fully informed particle swarm: Simpler, maybebetter,” IEEE Trans. Evol. Comput., vol.8, no.3, pp.204-210, Jun.2004.
    [107] A. Ratnaweera, S. Halgamuge, and H. Watson,“Self-organizing hierarchical particle swarmoptimizer with time-varying acceleration coefcients,” IEEE Trans. Evol. Comput., vol.8,no.3, pp.240-255, Jun.2004.
    [108] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,“Comprehensive learning particleswarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evol.Comput., vol.10, no.3, pp.281-295, Jun.2006.
    [109] M.A.M. de Oca, T. Stutzle, M. Birattari, M. Dorigo, Frankenstein’s PSO: A compositeparticle swarm optimization algorithm, IEEE Transaction on Evolutionary Computation13(2009)1120-1132.
    [110] Z.H. Zhan, J. Zhang, Y. Li, Y.H. Shi, Orthogonal learning particle swarm optimization,IEEE Transaction on Evolutionary Computation15(2011)832-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700