用户名: 密码: 验证码:
电液可变气门系统用高速开关阀及其电—机械转换器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车发动机变气门技术的发展已有相当长的历史,但由于采用凸轮轴驱动气门启闭方式配气一直存在高能耗和高污染的问题。随着电液可变气门技术的出现,汽车发动机气门配气方式以及可调节性都得到了很大的提高,发动机燃油经济性、动力性也得到了很大的改善。但电液可变气门技术目前由于受到控制元件操作频率低的限制一直无法满足高转速发动机的使用要求,因而本文提出采用高速开关阀控制电液可变气门系统,并且将重点放在高频电-机械转换器的研制上。
     本文通过对比不同电-机械转换器的优缺点并结合电液可变气门系统的高频响要求,决定采用螺管式电磁铁配以小匝数、大电流以及反接卸荷回路PWM控制电路实现高速开关阀的高频响要求,并且借助Ansoft电磁场有限元仿真软件,对隔磁角、隔磁长度、衔铁长度等影响开关电磁铁性能的并且通过经验公式无法获得的结构参数进行优化设计,最终确定了高频电磁铁的所有结构参数。
     本文通过对高速开关阀不同阀芯结构的优缺点分析,决定采用传统的滑阀式阀芯结构,从而有效避免了高频响条件下液动力的影响。通过阀芯结构改进,有效地降低了阀芯质量,并且通过对比弹簧和液压力两种回复方式的优缺点,最后决定采用优化刚度的弹簧回复,有效地平衡了阀芯开启和关闭时间。在AMESim环境下搭建了高速开关阀的空载流量特性、空载压力特性以及带负载条件下的仿真模型。通过仿真分析,优化了高速开关阀的结构参数,并建立了空载流量-占空比特性和空载压力-占空比特性曲线。在有负载仿真模型的分析中,液压缸的最大行程达到了10mm,能够满足电液可变气门升程要求。此外,本文还将液压力回复模型下的仿真结果与弹簧回复模型下的仿真结果进行了对比,结果表明:弹簧回复比液压力回复具备更好的响应特性,并且系统压力不会受到限制。
     通过Fluent软件的前处理器Gambit建立了高速开关阀内部流道流场仿真模型,通过仿真分析获得了不同阀口开度下的稳态液动力、瞬态液动力随阀口开度的变化曲线,获得了不同阀口开度时流道内油液压力分布图以及油液流速变化图,通过分析对阀内油液的湍流、漩涡以及致噪因素等方面有了更为直观的认识。
     设计高频电磁铁以及高速开关阀的特性实验,通过实验获得了高频电磁铁的静态力-位移曲线和动态电流上升曲线。实验结果表明,该电磁铁达到1.4mm行程只需2.0ms左右的时间,并且静态下最大输出力达到了295N。搭建了高速开关阀的空载流量特性实验台,通过实验获得了高速开关阀的空载流量特性曲线,实验结果与仿真分析结果基本吻合,文章还对两种方法获得的结果进行了对比分析。将所设计的高速开关阀应用于电液可变气门系统进行实验研究,实验结果表明:在输入信号频率为133Hz,输入电压幅值为5V,弹簧刚度35N/mm,预紧力265N,系统压力8.5MPa,流量20L/min的条件下,弹簧回复的气门最大升程(10mm)比液压力回复的气门最大升程(8mm)高出25%,从而证实了高速开关阀及其电-机械转换器的有效性。最后,本文还对200Hz信号输入下的电液可变气门系统进行了实验研究,结果表明:采用本文研制的高速开关阀,在其它条件不变的情况下,气门最大升程可以达到5mm。并且根据仿真结果和实验结果的吻合情况,本文推论出:将系统压力提高到10MPa,气门回复弹簧刚度提高到70N/mm时,气门最大升程可以达到8mm,能够满足6000rpm转速发动机电液可变气门系统的频响以及升程要求。
The development of Automobile Engine Variable Valve Technology has been a rather long history, but the traditional camshaft-driven valve system has resulted into great energy consumption and high pollution. With the emerging of electro-hydraulic variable valve timing technology, the methods of automotive engine valve gas distribution and its scalability have been greatly improved, and the fuel economy as well as the power has been greatly magnified. But due to the restriction of the low operating frequency with the core control components, the electro-hydraulic variable valve timing technology has currently not been able to meet the requirements of the high rotation speed of automotive engine. And thus this paper put forward using high-speed On/Off valve to control the electro-hydraulic variable valve timing system with its focus concentrated on the design and development of its high-frequency electric-mechanical converter.
     In order to meet the high frequency requirement of the electro-hydraulic variable valve timing system, a spiral tube solenoid based on a PWM driven circuit with a small number of turns, great current and reversed polarity discharge was successfully developed by comparing the advantages and disadvantages of different electric-mechanical actuators. Based on Ansoft finite element simulation software, part of the critical structural parameters, such as the taper angle, the length of the armature and non-magnetic length which affect the performance of On/Off electromagnet in a great deal but could not be obtained through traditional empirical formula, were finally obtained.
     Based on comparison of the strengths and weaknesses of different valve spool structure, the traditional slide-valve spool structure was adopted to avoid the influence of high flow force resulted from high-frequency dynamic response condition. The spool quality was effectively reduced by structural improvements. An optimized spring stiffness recovery methods was chosen to recover valve spool instead of adopting hydraulic pressure force based on comparison of their advantages and disadvantages, which could effectively balance the opening and closing time of the valve spool. A high-speed On/Off valve model and its unloaded flow rate characteristics as well as pressure characteristics versus duty cycle ratio simulation models were established in AMESim software environment. The structural parameters of the valve were optimized by simulation analysis, and finally a no-load flow rate versus duty cycle ratio curve as well as pressure versus duty cycle ratio curve were obtained. In addition, the maximum stroke of 10mm was reached by the hydraulic cylinder in the simulation model of the electro-hydraulic variable valve timing system. In addition, the simulation results of both liquid pressure recovery method and spring recovery method were compared, results showed that spring recovery method has a better response characteristic, and the system pressure will not be restricted.
     An internal flow field simulation model of the high speed On/Off valve was established by the pre-processor Gambit of the Fluent software. Curves of the static hydro-dynamic force as well as the transient hydro-dynamic force versus different valve port openings were obtained. Besides, the static/total pressure distribution and the oil flow velocity maps were shown and analyzed to get an intuitive understanding of the turbulence, swirls and the caused noises.
     In order to examine the characteristics of the high-speed On/Off valve as well as the high-frequency electromagnet, test methods were designed to get the dynamic current rising curve and static force versus displacement descending curve of the high-frequency electromagnet, experimental results show that the high-frequency electromagnet could accomplish a 1.4mm stroke within 2.2ms and the maximum magnetic force output reached 295N. A high-speed On/Off valve flow characteristic test bench was established, and its no-load flow rate versus cyclic ratio curve was obtained, which agreed quiet well with the simulation results. Under the conditions of 133Hz excitation frequency, 5V voltage amplitude input, 35N/mm spring stiffness with 265N preload, 8.5MPa system pressure with a flow rate of 20L/min, the hydraulic cylinder with spring recovery spool could achieve a maximum stroke of 10mm, which is 25% higher than that of liquid pressure recovery method, which testified the effectiveness of the high-speed On/Off valve as well as its electric-mechanical converter, and the experimental results agreed with the simulation results to a large extent. In addition, the paper made a further research to the maximum valve lift under 200Hz signal input, and the experimental results showed that the maximum valve lift under the same external condition could achieve 5mm. Based on the comparison between simulation results and experimental results of the loaded electro-hydraulic variable valve timing system, the paper inferred that a maximum valve lift of 8mm, which could meet the frequency response and valve lift requirements of the electro-hydraulic variable valve with an 6000rpm engine speed, could be achieved when the system pressure was improved to 10MPa and the valve recovery spring stiffness be increased to 70N/mm.
引文
[1]陈勤学,崔可润,朱国伟.中压共轨电控柴油机可变气门执行系统研制.高等学校工程热物理研究会第九届全国学术会议.2002
    [2]Mathieson M F et al.A Hydraulic Tappet with Variable Timing Properties.SAE paper 930823
    [3]Gray C.A Review of Variable Engine Valve Timing.SAE paper 880386
    [4]Y.Urata,H.Umiyama,Shimizu,Y.Fujiyoshi,H.Sono,K.Fukuo.A Study of Vehicle Equipped with Non-Throttling S.I Engine with Early Intake Valve Closing Mechanism.SAE paper 930820
    [5]Dresner T,Barkan P.A Review and Classification of Variable Valve Timing Mechanism.SAE paper 890674
    [6]王韬,秦德.发动机可变气门正时技术的研究[J].小型内燃机与摩托车,2003,32(3):20-22
    [7]H.Sono,H.Umiyama.A Study of Combustion Stability of Non-throttling S.I.Engine with Early Intake Valve Closing Mechanism.SAE paper 945009
    [8]李红艳,赵雨东.发动机无凸轮轴气门驱动的研究与进展[J].车用发动机,2001(4):1-5
    [9]Wright,Schecter,Levin.Integrated Hydraulic System for Electrohydraulic Valvetrain and Hydraulically Assisted Turbocharger:US,5,375,419A[P].1994.
    [10]Sturman.Hydraulic Actuator for an Internal Combustion Engine:US,5,638,781[P].1997.
    [11]王立彪,何邦全,谢辉等.发动机可变气门技术的研究进展.汽车技术.2005(12):4—9
    [12]Schechter M M,Levin Michael B.Camless Engine[C].SAE Paper,No.960581,1996.
    [13]K.Hatno,K.Iida,H.Higashia,S.Murata.Development of a New Multi-Mode Variable Valve Timing Engine.SAE paper 930878
    [14]T.Dresner,P.Barkan.A Review of Variable Timing Benefits and Modes of Operation.SAE paper 891676
    [15]Kreuter et al.Strategies to Improve SI--Engine Performance by means of Variable Intake Lift,Timing and Duration.SAE paper 920449
    [16]王韬,秦德,郝志勇.发动机可变气门正时技术的研究.小型内燃机与摩托车.2003,32(3):20-23
    [17]Ma T.H.Effect of Variable Valve Timing on Fuel Economy.SAE paper 880390.
    [18]Klein F,Kuhn M,Weimann H J,et al.The Influence of the Valve Stroke.Design in Variable Valve Timing Systems on Load Cycle,Mixture Formationand the Combustion Process in Conjunction with Throttle-Free Load Governing[C].SAE paper 981030,1998.
    [18]刘洲辉,罗寥,柴陆路.汽车发动机可变气门技术.汽车工程师.June,2009
    [20]郑中.上海通用雪佛兰科鲁兹新技术剖析.汽车维修技师.2009.Vol(7):14—16
    [21]Ronald J Pierik,James F Burkhard.Design and Development of a Mechanical Variable Valve Actuation System.SAE paper 2000-01-1221
    [22]Allen J et al.Production Electro-Hydraulic Variable ValveTrain for a New Generation of I.C.Engine.SAE paper 2002-01-1109
    [23]冯迎霞,俞水良.车用发动机可变气门驱动技术进展.机电工程技术.2005,34(1):22-25
    [24]李莉.电磁驱动机构的设计开发和实验研究.浙江大学博士学位论文.2004
    [25]王希珍.电磁全可变气门的仿真控制及相关研究.浙江大学博士学位论文.2003
    [26]Glodste R J.Variables of Electromagnetic Valve Actuator Performance[J].Engine Technology International,1997(11):84-88
    [27]Gottschalk,M.Electromagnetic Valve Actuator Drives Variable Valvetrain[J].Design News,1993(1 ):123-125
    [28]Schulz V F.Seitz W E.Gently Does It[J].Engine Technology International.1998(annual review):116-119
    [29]乔安平,郝琳佳.无凸轮电磁驱动可变气门(EMVA)技术.客车技术.2009(1):11-13
    [30]Chihaya Sugimoto,Hisao Sakai,Atsushi Umemoto等.电磁式可变气门正时系 统的研究.国外内燃机.2006(4):6-11
    [31]Gould L A,Richeson W E,Erichson F L.Performance Evaluation of a Camless Engine Using Valve Actuators with programmable Timing[C].SAE Paper 910450,1991
    [32]Bokulich FBMW Returns to Formula One with V10[J].Automotive Engineering International.2000(3):2
    [33]Anon.Surbey of Variable Valve Actuation.Automotive Engineering.1990
    [34]Stefan Fankhauser,Klaus Heim.The Sulzer RT-flex launching the era of Common Rail on low speed Engine.CIMAC 2001,Hamburg
    [35]Diehl et al.Internal Combustion Engine.US Patent:US6,701,879,2004
    [36]J.E.Mardell.An Integrated,Full Authority,Electrohydraulic Engine Valve and Diesel Fuel injection System.S AE880602.1988
    [37]John S B.Development of a Piezoelectric Controlled Hydraulic Actuator for a Camless Engine.University of South Carolina.2001
    [38]张纪鹏,姜惠,张洪信等.发动机排气门电液驱动可变配气相位机构的设计.内燃机工程.2008(1):34—36
    [39]李志锐等.基于电液驱动的内燃机无凸轮配气机构的设计与控制研究.天津大学硕士学位论文.2005
    [40]王云开,于秀敏,郭英男等.无凸轮轴电液配气机构性能试验.汽车技术.2008(5):45—47
    [41]王东,首天成等.数字液压阀的发展和研究.流体传动与控制.May,2008(3):18—21
    [42]田新民译.无需凸轮轴的电动液压气门定时机构.国外内燃机.2000
    [43]刘少军.高速开关电磁阀的现状及应用.液压与气动.1995(6):12-13
    [44]石延平,张永忠.一种新型液压高速开关阀的设计与研究.机械科学与技术.Vol,23,No.1.January.2004
    [45]汪志刚,张敬国.高速强力电磁阀的研究现状.车用发动机.2003(1):1-2
    [46]李其朋,丁凡,王传礼.耐高压双向比例电磁铁的研究.浙江大学学报(工学版).2006,2(40):322-325
    [47]张小军,朱国伟,崔可润.高速大流量二位三通开关式电磁阀.阀门.2001(2)
    [48]夏胜枝,周明,李希浩,欧阳明.高速强力电磁阀的动态响应特性.清华大学学报(自然科学版).2002,42(2):258-261
    [49]黄增,侯保国,方群,王学星.射流管式与喷嘴挡板式电液伺服阀之比较.流体传动与控制.2007,4(23):43—44
    [50]张德虎,朱建公.芯套双动高速开关阀的设计与液动力分析.西南科技大学学报.2006,21(3):65—67
    [51]袁永香,陈宝江.单阀芯多阀口液压高速开关阀的设计与仿真实验研究.机械设计.Vol(25):310-314
    [52]欧阳小平,杨华勇,蒋昊宜等.新型压电高速开关阀仿真研究.科学通报.2008,Vol53(14):1737-1741
    [53]杨旭霞,陈道炯,单世宝等.压电式微驱动器的应用研究.上海理工大学学报.Vol.27,No.5,2005
    [54]鄂世举,吴博达,杨志刚.压电式微小驱动器的发展及应用.Vol.24,No.6,Dec.2002
    [55]马元,沈建兴,闫春雷.PFW-PZT压电陶瓷性能的研究.山东轻工业学院学报.2009,3(23):59-61
    [56]金国庆,方昌林.高速开关阀压电驱动器的性能研究.机床与液压.2003.No.3:213—215
    [57]夏春林,丁凡.超磁滞伸缩材料驱动器实验研究.电工技术学报.1998.8
    [58]夏春林,丁凡,陈大军,戴旭涵.超磁滞伸缩材料在流体控制元件中的应用研究展望.液压气动与密封.1997,5
    [59]李国平,魏燕定,陈子辰.超磁滞伸缩驱动器的输出特性研究.农业机械学报.Vol,35,No.3.May.2004
    [60]谢鹏程,邓荣坚,杨卫民等.超磁滞伸缩材料微位移驱动器的设计与实验研究.宇航学报.Vol,29,No,3.May,2008
    [61]唐志峰,程耀东,项占琴,吕福在.超磁滞伸缩执行器的基础理论与实验研究.2005.8
    [62]丁胜华,史大光.超磁滞伸缩致动器参数设计及其特性研究.2006.5
    [63]陈似竹,赵雨东,付雨民.发动机电磁气门驱动中的电磁铁结构方案分析.车用发动机.2003,6(3):25-28
    [64]曾文武.基于PWM高速开关阀控制的旋转平台液压系统的研究.液压气动与密封.2009(3):40-42
    [65]孔成通,任好玲.常开式高速开关阀电磁铁的设计与性能仿真.机械设计.2009,6(26):10—13
    [66]黄荣纬,赵雨东,陈似竹.发动机电磁气门驱动中的电磁铁特性分析.内燃机工程.2007,2(28):31—34
    [67]满军,丁凡,李其朋等.圆锥和平面形磁极高速电磁铁动态特性对比.农业机械学报.2009,3(40):213-217
    [68]聂聆聪,姚晓先等.一种螺管式电磁铁的测试与仿真.机床与液压.Vol.36No.11,Nov.2008
    [69]李庆民,钱家骊,刘卫东等.高压开关操作电磁铁动态特性逆分析的研究.中国电机工程学报.Vol.24,No.6,Jun,2004
    [70]Park S H,Lee J H,Yoo J S,et al.A Developing Process of Newly Developed Electromagnetic Valve Actuator[C].SAE Paper,No.2002-01-2817,2002.
    [71]Wang Y,Megli T,Haghgooie M,et al.Modeling and Control Electromechanical Valve Actuator[C].SAE Paper,No.2002-01-1106,2002.
    [72]路甬祥,胡大肱.电液比例控制技术[M].北京:机械工业出版社,1988.
    [73]陈海燕,杨庆新.螺管式步进比例电磁铁的设计计算[J].河北工业大学学报,2000(3):63—65.
    [74]赵延心.长行程直流电磁铁设计及应用[J].低压电器,1991(6):19-23.
    [75]娄路亮,王海洲.电磁阀设计中电磁力的工程计算方法[J].导弹与航天运载技术,2007(1):40-45.
    [76]黄荣伟,赵雨东等.发动机电磁气门驱动中的电磁铁特性分析[J].内燃机工程,2007(2):31-34.
    [77]刘金榕.基于高速电液阀的变气门执行系统关键技术研究.浙江大学博士学位论文.2009
    [78]张冠生,陆建国.电磁铁与自动电磁元件[M].北京:机械工业出版社,1982.
    [79]王扬彬,刘英杰等.基于Ansoft及AMESim的电磁铁动态特性仿真分析[J].机床与液压,2008,36(9).
    [80]何存兴.液压元件[M].北京:机械工业出版社,1981.
    [81]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [82]王扬斌,徐兵,刘英杰.基于Ansoft及AMESim的电磁铁动态特性仿真分析.机床与液压.Sep,2008.Vol,36(9):104—108
    [83]申水文,张建武,葛安林等.提高高速开关阀性能的仿真研究.机床与液压.1998,Vol(5):25-26
    [84]夏胜枝,周明,李希浩等.高速强力电磁阀的动态响应特性.清华大学学报(自然科学版).2002,Vol.42(2):258-261
    [85]张文华.仿真高速开关阀设计浅析.应用能源技术.2005年第5期:14-16
    [86]陈宝江,杨树兴,曹泛.PWM高速开关阀特性分析.Journal of Beijing Institute of Technology.1993,Vol.13(3):355—360
    [87]杜巧连,陈旭辉,吴文山等.PWM高速开关阀的特性分析与应用研究.液压气动与密封.June,2002.No,3:10—11
    [88]田静.高速开关阀非定常磁场的有限元计算.中国民航学院学报.Dec,2002.Vol(6):25-28
    [89]张胜昌,许仰曾,钟廷修等.基于新性能预测方法的超高速电磁开关阀的研究.液压气动与密封.Dec,2001.Vol(6):1—4
    [90]张文华.仿真高速开关阀设计浅析.应用能源技术.2005,Vol(5):14—18
    [91]张蕊,魏建华,邵微.高速电液执行器的仿真研究.机电工程.2006.Vol23(6):28-33
    [92]刘忠,廖亦凡.高速开关阀先导控制的液压缸位置控制系统建模与仿真研究.中国机械工程.Apr,2006.Vol17(7):745—748
    [93]冀宏.液压阀芯节流槽气穴噪声特性的研究.浙江大学博士学位论文.杭州.浙江大学机械与能源学院,2004
    [94]冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究[J].机械工程学报.2003,39(6):13-17
    [95]高殿荣,王益群.液压控制锥阀内流场的数值模拟与试验可视化研究[J].机械工程学报.2002,38(4):66-70
    [96]王福军.计算流体动力学分析.北京.清华大学出版社,2004
    [97]任玉新,陈海昕.计算流体力学基础[M].北京,清华大学出版社,2006
    [98]FLUENT 6 User's Guide,Fluent Inc.2001
    [99]罗亚敏,刘晓红,于兰英,石复元.液压比例阀阀芯V形槽口的CFD解析[J].流体传动与控制,2007,5:17-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700