用户名: 密码: 验证码:
核机器学习方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪60年代始,人们开始研究基于数据的机器学习问题理论,直至上世
    纪九十年代,在Vapnik等人的努力下,基于数据的机器学习理论得到了长足的发
    展,形成了一门比较完善的统计学习理论,并在此基础上创建了一类全新的通用
    的有效的机器学习算法:支撑矢量机。统计学习理论的精髓在于引入了假设函数
    集容量控制的概念,学习机为了获得好的推广能力,需在假设函数集容量控制和
    最小化经验风险之间作一个好的折衷。在统计学习理论出现和完善之前,在机器
    学习中引入核函数,更广义地说就是引入非线性映射和非线性函数技术早已有之。
    但核函数真正在机器学习中获得成功应用始于支撑矢量机。其原因就是由于引入
    了非线性函数,使得学习机假设函数集太大,容易导致学习机的过拟合而降低推
    广能力。正是统计学习理论和核技术的结合,才触发了从上世纪九十年代中期开
    始的核机器的出现和快速成功的发展。目前主要的核机器技术包括支撑矢量机、
    核Fisher分类器和核主分量分析等。本论文的所有工作正是在上述结合点上展开,主要包括两大部份的内容:支撑矢量机算法分析和改进方面以及基于统计学习理
    论的新核机器算法方面。
    在支撑矢量机算法分析和改进方面,本论文主要作了以下四方面的工作:第一、分析了支撑矢量机的基本几何性质。我们针对模式识别和回归估计两
    类支撑矢量机,分别分析和证明了它们的一些基本几何性质,基于这些性质讨论
    了支撑矢量机对新增样本的推广能力,得到了一些非常有价值的结论。从这些结
    论可以看出支撑矢量机对新增样本具有良好的推广能力,并且支撑矢量机是一种
    可积累的学习模型。
    第二、提出了线性规划支撑矢量机。我们通过对统计学习理论中一些重要结论,特别是线性假设函数集VC维数的分析,得到了一类线性规划支撑矢量机。在线性
    规划支撑矢量机中,以对VC维数界作适当放宽为代价,从而降低支撑矢量机的求
    解复杂度。在该章最后对人工和实际样本的实验结果说明了线性规划支撑矢量机
    采用放宽VC界对学习机推广能力的影响是可以接受的,而在计算复杂度上明显优
    于原支撑矢量机。
    第三、提出了无约束规划回归估计支撑矢量机。当采用高斯损失函数时,我们
    提出了一种无约束支撑矢量机回归估计算法,并证明了该算法具有严格的凸性,不存在局部极小解。该算法较标准支撑矢量机而言,由于不存在线性约束,可以
    雷达信号处理重点实验室
    
    
    
    
    
    II核机器学习方法研究
    采用快速的多维搜索数值方法,如最陡下降法、Newton法和共轭梯度法等具有较
    快的优化速度,而且能够直接推广到复数域中。
    第四、提出了自适应支撑矢量机算法。通常无线通信信道具有时变性,要求多
    用户检测算法具有自适应性。我们提出了一种自适应支撑矢量机方法,并把它用
    于信道时变情况下的多用户检测。一方面由于支撑矢量机引入结构风险,使得支
    撑矢量机多用户检测的推广能力较好且对训练要求的样本数也大大下降;另一方
    面由于支撑矢量机的非线性特性可以比线性检测器更好地逼近最佳检测器。
    在新的基于统计学习理论的核机器方面,本论文主要作了以下四方面的工作。
    第一、提出了一种新的支撑矢量机模型选择准则。支撑矢量机模型选择由于
    其高度的非线性一直是一个非常困难的公开问题。我们通过对支撑矢量机推广能
    力的分析,提出了一种构造性的与样本分布有关的推广能力衡量准则。该准则与
    统计学习理论中的推广能力准则具有几何上的一致性,由样本的二阶统计量构成,比已有的完全不依赖于样本分布的推广能力上界更能反映学习过程的收敛性和收
    敛速率。较为重要的一点是该准则在学习过程之前是可处理的,所以它可以用作
    所有分类器中数据预处理的准则,同时也可以为支撑矢量机模型的选择提供依据。
    第二、提出了复值支撑矢量机算法。支撑矢量机由于采用了Vapnike-不敏感
    损失函数和数值优化算法,不能简单地推广到复数域。为了使支撑矢量机适用于
    复值样本的处理,我们发展了模式识别复值支撑矢量机和回归估计复值支撑矢量
    机。首先我们受到数字通信中相位调制方法的启示,定义了复平面上的N进制复
    值符号函数。然后基于所定义的复值符号函数提出并推导了复数域的二分和四分
    模式识别支撑矢量机。对于复数域的二分模式识别问题,我们证明了二分模式识
    别复值支撑矢量机与采用增维方法的实值支撑矢量机等效,因而它仅具数学意义。
    对于复数域的四分模式识别问题,四分模式识别复值支撑矢量机与数字通信中
    4-QAM解调决策完全一致,因此将具有良好的实用价值。我们进一步在模式识别
    复值支撑矢量机中通过引入复核函数及其对应的核函数组得到了非线性模式识别
    复值支撑矢量机,并讨论了几种典型的复核函数和核函数组。另一方面,严格地
    说复值样本的回归估计并不能简单地分解为分别对实部和虚部的回归估计。我们
    针对复值样本的回归估计提出了线性回归估计复值支撑矢量机,并类似模式识别
    复值支撑矢量机进一步通过引入复核函数以及对应的核函数组得到了非线性回归
    估计复值支撑?
In the early of 1960s the theory of machine learning based on the databegan to be studied. It had not been well developed until Vanpik et al completed Statistical Learning Theory (SLT) and proposed a new general and efficient machine learning algorithm.Support Vector Machines (SVMs) in the 1990s. The concept of capacity control of a learning machine plays an important role in the SLT. It is necessary for a learning machine to achieve a good balance between theempirical risk and capacity control of it to obtain a good generalization performance. Before SLT was presented and accomplished, kernel functions had been introduced into machines learning. In other words, the techniques of nonlinear mapping and nonlinear function had been used in machine learning. However the first example of thesuccessful applications of kernel functions in machine learning is the SVMs. That is because the introduction of nonlinear functions into machines leaning makes the set ofhypothesis function without capacity control become very wide, thus the overfitting problem and the decrease the generalization occursineluctably. It is the combination of SLT and kernel method that spring the appearance of kernel machine and its rapid development. At present, the main kernel machine includes SVM, kernel Fisher classifier, kernel principal component analysis (PCA), etc. From the viewpoint of the combination of SLT and kernel method, this dissertation studied the analysis and the improvement of SVMs and new kernel machines. In the aspect of the analysis and the improvement of SVMs, four parts work are studiedas follows.
    1.Some geometry ofSVMs for classification and regression is described and proven. And then the generalization performance of SVMs on new-added samples is discussed. Through the analysis of the property of new-added samples and the effect of them on support vectors and non-support vectors, some valuable results are presented. These enable us to conclude that SVM has a good compatibility, adaptability and generalization performance for new-added samples and is a hereditable learning model.
    2.Based on the analysis of the conclusions in the statistical learning theory, especially the VC dimension of linear functions, linear programming SVMs are presented. In linear programming SVMs, the bound of the VC dimension is loosened 西安电子科技大学博士学位论文
    
    
    
    
    
    目录V
    properly. Simulation resultsfor both artificial and real data show the generalization performance of our method is a good approximation of SVMs and the computation complex is largely reduced by our method.
    3.An unconstrained convex quadratic programming for support vector regression (SVR) is proposed, in which Gaussian loss function is adopted.Due to no linear constraint some classical multi-dimensions optimization algorithms such as steepest descend method, Newton method, conjugate gradation method and so on can be used to solve the convex quadratic programming for SVR.Compared with standard SVR, this method has a fast training speed and can be generalized into the complex-valued field directly. Experimental results confirm the feasibility and the validity of our method.
    4.Generally the wireless channel varies with time. Therefore it is necessary for a multi-user detection algorithm to have acapacity ofadaptation. Adaptive SVMs are presented for multi-user detection.Structural Risk introduced in SVMs leads to the more generalization and less training samples to be required than the other learning models and the nonlinear SVMs can approximate optimum multi-user detector when the adaptive SVMs is used for multi-user detection. In the other aspect of new kernel machines based on SLT, Four algorithms are described. 1.A new constructiveprinciple, which depends on the distribution of examples, for measuring the generalization performance is proposed based on the analysis of the generalization performance of SVMs.Our principle is consistencyin geometry with that in statistical learning theory, composed of two-order statistic of samples and shows the convergence
引文
[1]Turing A., Computing machinery and intelligence. MIND, 1950, 59: 433-460.
    [2]Rich E.,Artificial Intelligence. McGraw-Hill, Inc., 1983.
    [3]Schalkopf R. J.,Artificial Intelligence in Engineering Approach. McGraw-Hill, Inc., 1990.
    [4]McCulloch W. S. and Pitts W. Bull., Math. Biophys., 1943, 5:115-133.
    [5]Hebb D. O.,The Organization of Behavior. Wiley, New York, 1949.
    [6]Rosenblatt F.,Principle of Neurodynamics. Spartan, New York, 1962.
    [7]Novikoff A. B. J., On convergence proofs on perceptrons.Proceedings of the Symposium on the Mathematical Theory of Automata, Polytechnic Institute of Brooklyn, 1962, Ⅶ: 615-622.
    [8]Aizerman M. A., Braverman E. M. and Rozonoer L. I., Theoretical foundation of potential function method in pattern recognition learning.Automation and Remote Control, 1964, 25:821-837.
    [9]Widrow B. and Sterns S.,Adaptive Signal Processing. Prentice-Hall, 1985.
    [10]Minsky M. and Papert S.,Perceptrons, MIT Press, 1969.
    [11]Kohonen T., Self-Organization and Associative Memory, Springer, Berlin, 1984.
    [12]Fukushima K., Cognitron: a self-organizing multilayered neural network, Biol.Cyber., 1975, 20(3): 121-136.
    [13]Grossberg S., Adaptive pattern classification and universal recoding.Biological Cybernetics, 1976, 23:187-202.
    [14]Hopfield J. J., Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., U.S.A., 1982, 79: 2554-2558.
    [15]Hinton G. E., Sejnowskii T. J. and Achley D. H., Boltzmann machine: constraint satisfaction networks that learn.Technology Report CMU-CS-84-119, Carnegie-Mellon Univ., 1984.
    [16]LeCun Y., Learning progressin an asymmetric threshold network.Disordered Systems and Biological Organizations, Les Houches, Fance, Springer, 1986, pp. 233-240.
    [17]Rumelhart D. E., Hinton G. E. and Williams R. J., Learning internal representations by error propagation. Parallel distributed processing:Explorations in macrostructure of cognition, Vol.Ⅰ, Badford Books, Cambridge, MA, 1986, pp. 318-362.
    
    
    
    
    
    [18]Pearl J.,Probabilistic Reasoning in Intelligence Systems. Kaufmann Press, 1988.
    [19]Lauritzen S. L. and Spiegelhalter D. J., Local computations with probabilities on graphical structures and their application to expert systems.J Roy. Statist. Soc.Series B, 1988, 50:157-224.rd [20]Vovk V., Aggregating strategies. In M. Fulk and J. Case, editors,Procs of 3 Workshop on Computational Learning Theory, Kaufmann Press, CA, 1990, pp.371-383.
    [21]Tikhonov A. N., On solving ill-posed problem and method of regularization.Doklady Aksdemii Nauk USSR, 1963, 153: 501-504.
    [22]Ivanov V. V., On linear problems which are not well-posed. Soviet Math. Docl., 1962, 3(4): 981-983.
    [23]Phillips D. Z,. A technique for numerical solution of certain integral equation of the first kind. J. Assoc. Comput. Math., 1962, 9: 84-96.
    [24]Vapnik V., Anoverview ofstatistical learning theory.IEEE Transactions on NeuralNetworks, 1999,10(5): 988-999.
    [25]Vapnik V., The Nature of Statistical Learning Theory. Springer-Verlag, N.Y., 1995.
    [26]Vapnik V.,Statistical Learning Theory. Wiley-Interscience Publication,1998.
    [27]Vapnik V.and ChervonenkisA.J., On the uniform convergence of relative frequencies of events to their probabilities. Doklady Akademii Nauk USSR, 1968, 181(4). (English translation: Sov. Math. Dokl.)
    [28]VapnikV.N. and ChervonenkisA.J., On the uniform convergence of relative frequencies of events to their probabilities. Theory Probability Application, 1971, 16:264-280.
    [29]VapnikV.N. and ChervonenkisA.J., Theory of Pattern Recognition(in Russian).Nauka, Moscow, 1974. (German translation: W.N. Wapnik, A.J. Tschervonenkis, Theorie der Zeichenerkennung, Akademia, Berlin, 1979).
    [30]VapnikV.N.,Estimation of dependencies based on empirical data (in Russian).Nauka, Moscow, 1979. (English translation: VapnikV.N. Estimation of dependencies based on empirical data. Springer, New York, 1982.)
    [31]VapnikV.N. and ChervonenkisA.J., The necessary and sufficient conditions for uniform consistency of the method of empirical risk minimization(in Russian).Yearbook of Academy of Sciences of the USSR on Recognition, Classification and Forecasting, Nauka Moscow,1989, 2:217-249. (English translation: The necessary and sufficient conditions for consistency of method of empirical risk minimization. Pattern Recognition And Image Analysis,1991, 1(3):284-305.
    
    
    
    
    
    
    [32]Sch.lkopfB., BurgesC.J.C. and SmolaA.J., Advances in Kernel Methods.Support Vector Learning. MIT Press, Cambridge, MA, 1999.
    [33]Sch.lkopfB., Support Vector Learning. Oldenbourg Verlag, Munich, 1997.
    [34]CortesC. and VapnikV.N., Support vector networks.Machine Learning, 1995, 20:273-297.
    [35]CristianiniN.and Shawe-TaylorJ., An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK, 2000.
    [36]Sch.lkopf B.and SmolaA. J., Learning with Kernels. 2002.
    [37]MüllerK.-R.,MikaS., R.tschG.and et al. An introduction to kernel-based learning algorithms.IEEE Transactions on Neural Networks, 2001, 12(2):181-201.
    [38]Campbell C., An introduction to kernel methods. In R.J. Howlett and L.C. Jain, editors, Radial Basis Function Networks: Design and Applications, Springer Verlag, Berlin, 2000, pp. 155-192.
    [39]SmolaA.J., Learning with Kernels. PhD thesis, Technische Universit.t Berlin, 1998.
    [40]Mercer J., Functions of positive and negative type and their connection with the theory of integral equations.Philos. Trans. Roy. Soc. London, 1909, A 209:415-446.
    [41]Aronszajn N., Theory of reproducing kernels.Trans. Amer. Math. Soc., 1950,686: 337-404.
    [42]Boser B.E., Guyon I.M. and VapnikV.N., A training algorithm foroptimal thmargin classifiers. In D. Haussler, editors,Proceedings of the 5 Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, 1992, pp.144-152.
    [43]Osuna E.,Freund R. andGirosi F., Support vector machines: Training and applications. Technical Report AIM-1602, MIT A.I.Lab., 1996.
    [44]Hearst M.A.,Sch.lkopf B.,Dumais S. andet al., Trends and controversies-support vector machine.IEEE Intelligent Systems, 1998, 13(4): 18-28.
    [45]Saunders C., Stitson M.O.,Weston J. andet al., Support vector machine---reference manual.Technical Report CSD-TR-98-03, Department of Computer Science, Royal Holloway, University of London, Egham, UK, 1998.
    [46]Burges C. J. C., A tutorial onsupport vector machines forpattern recognition.Data Miningand Knowledge Discovery, 1998, 2(2):121-167.
    
    
    [47]Sch.lkopf B., Smola A. J., WilliansonR. andet al., New support vector algorithms.Neural Computation, 2000, 12: 1207-1245.
    [48]Smola A.and Sch.lkopf B., A tutorial on support vector regression. NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 1998. Available http://www.kernel-machines.org/
    [49]SmolaA. J.,Regression estimation with support vector learningmachines.Master.s thesis. Technische Universit.t München, 1996. Available http://www.kernel-machines.org/
    [50]Drucker H., Burges C. J.C., Kaufman L. andet al., Support vector regression machines. Advances in Neural Information Processing Systems, 1997, 9:155-161.
    [51]Vapnik V., Three remarks on the support vector method of function estimation. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods --- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp.25-42.
    [52]Sch.lkopf B., Williamson R. C., Smola A. J. and et al., Support vector method for novelty detection. In Advances in Neural Information Processing Systems 12, MIT Press, 2000, pp. 582-588.
    [53]Campbell C. and Bennett K. P., A linear programming approach to novelty detection. In Advance in Neural Information Processing Systems 14, MIT Press, 2001, pp. 395-401.
    [54]Vapnik V. andMukherjee S., Support vector method for multivariate density estimation. In Neural Information Processing Systems, 1999.
    [55]Weston J., Gammerman A., Stitson M. andet al., Support vector density estimation. In B.Sch.lkopf, C.J.C. Burges and A.J. Smola, editors,Advances in Kernel Methods --- Support Vector Learning, Cambridge, MA: MIT Press,1999, pp. 293-306.
    [56]Bradley P., Mathematical Programming Approaches to Machine Learning and Data Mining. PhD thesis, University of Wisconsin, Computer Sciences Department, Madison, WI, USA, 1998.
    [57]Kaufman L., Solving the quadratic programming problem arising in support vector classification. In B. Sch.lkopf, C.J.C. Burges and A.J. Smola, eds.,Advances in Kernel Methods- Support Vector Learning, MIT Press, 1999, pp.147-168.
    [58]Pontil M., Rogai S. and Verri A., Support vector machines: a large scale QP. In R.DeLeone etal., editor,High Performance Algorithms and Software in Nonlinear Optimization, Kluwer Academic Publishers, 1998, pp. 315-336.
    
    
    
    
    
    [59]Lin Chih-Jen., Formulations of support vector machines:a note from an optimization point of view. Technical report, National Taiwan University, Dept. of Computer Science, 1999.
    [60]Keerthi S. S., Shevade S. K., Bhattacharyya C. and et al., A fast iterative nearest point algorithm for support vector machine classifier design.Technical Report TR-ISL-99-03, Dept of CSA, IISc, Bangalore, India, 1999.
    [61]Campbell C., Algorithmic approaches to training support vector machines: A survey. In Proceedings of ESANN2000, 2000, pp. 27-36.
    [62]Ferris M. C. and Munson T. S., Interior point methods for massive support vector machines. Technical Report 00-05, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, May 2000. Available ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-05.ps .
    [63]Osuna E., Freund R., Girosi G., Improved training algorithm for support vector machines. Proc. IEEE NNSP.97. Amelia Island. 1997, pp. 24-26.
    [64]Osuna E. and Girosi F., Reducing run-time complexity in SVMs. In Proceedings of the 14th International Conf. on Pattern Recognition, Brisbane, Australia, 1998.
    [65]Joachims T., Making large-scale SVM learning practical. In B. Sch.lkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Methods--- Support Vector Learning, Cambridge, MA: MIT Press,1999, pp. 169-184.
    [66]PlattJ., Fast training of support vector machines using sequential minimal optimization. In B. Sch.lkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Methods—Support Vector Learning, Cambridge,MA: MIT Press,1999, pp. 185-208.
    [67]Keerthi S. S., Shevade S. K.,Bhattacharyya C. and et al., Improvements to platt's SMO algorithm for SVM classifier design. Technical report, Dept of CSA, IISc, Bangalore, India, 1999.
    [68]Pavlov D., Chudova D. and Smyth P., Towards scalable support vector machines using squashing. InProceedings of the International Conference on Knowledge Discovery in Databases, 2000, pp. 295-299.
    [69]Pavlov D., Mao J. and Dom B., Scaling-up support vector machines using boosting algorithm. InProceedings of the International Conference on Pattern Recognition, ICPR-2000, 2000, pp. 2219-2222.
    
    
    
    
    [70]Tresp V., Scaling kernel-based systems to large data sets.Data Mining and Knowledge Discovery, 2001, 5(3): 197-211.
    [71]Tresp V. and Schwaighofer A., Scalable kernel systems. InProceedings of ICANN 2001, Springer Verlag, 2001, pp. 285-291.
    [72]焦李成, 张莉, 周伟达, 支撑矢量预选取的中心距离比值法. 电子学报, 2001, 29(3):383-386.
    [73]Hsu C.-W. and Lin C.-J. A, simple decomposition method for support vector machines. Technical report, National Taiwan University, 1999.
    [74]Mangasarian O. L. and Musicant D., Massive support vector regression. Technical Report 99-02, University of Wisconsin, Data Mining Institute,Madison, 1999.
    [75]Osuna E. and Girosi F., Reducing the run-time complexity in support vector regression. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods--- Support Vector Learning, Cambridge, MA, MIT Press,1999, pp. 271-284.
    [76]Collobert R. and Bengio S., SVMtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research, 2001, 1:143-160.
    [77]Blake C. L. and Merz C. J., UCI repository of machines learning database.University of California, Department of Information and Computer Science, CA, USA, 1998. Available http://www.ics.uci.edu/~mlearn/MLRepository.html [78]Flake G. W. and Lawrence S., Efficient SVM regression training with SMO.Technical report, NEC Research Institute, 1999.
    [79]Keerthi S., Shevade S., Bhattacharyya C. andet al., Improvements to SMO algorithm for SVM regression.Technical Report CD-99-16, Department of Mechanical and Production Engineering, National University of Singapore. To appear in IEEE Transactions on Neural Networks, 1999.
    [80]Laskov P., An improved decomposition algorithm for regression support vector machines. Advance inNeural Information Processing Systems 12, MIT Press,1999, pp. 484-490.
    [81]Lin C.-J., On the convergence of the decomposition method for support vector machines. Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
    [82]Liao S.-P., Lin H.-T. and Lin S.-J., A note on the decomposition methods for support vector regression.Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2001.
    
    
    
    
    [83]Lin C.-J., Stopping criteria of decomposition methods for support vector machines: a theoretical justification.Technical report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2001.
    [84]http://www.kernel-machines.org A collection of literature, software and web links with SVMs and kernel machines.
    [85]Chang C.-C. and Lin C.-J., LIBSVM2.0: Solving different support vector formulation. 2000. Software available http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [86]Collobert R. and Bengio S., SVMTorch: A support vector machine for large-scale regression and classification problems. 2000. Available at http://www.idiap.ch/learning/SVMTorch.html [87]Rüping S., mySVM.another one of those support vector machines. 2000.Software Available at http://www.ai.cs.uni-doetmund.de/SOFTWARE/MYSVM/
    [88]Musicant D. R., ASVM software: active set support vector machine classifiction software, 2000. Available at http://www.cs.wisc.edu/dmi/asvm [89]Burges C. J. C. and Sch.lkopf B., Improving the accuracy and speed of support vector learning machines. In M. Mozer, M.Jordan, and T.Petsche, editors,Advances in Neural Information Processing Systems 9, Cambridge, MA: MIT Press, 1997, pp. 375-381.
    [90]Street W. N. and Mangasarian O. L.,Improved generalization via tolerant training. Journal of Optimization Theory and Applications, 1998, 96:259-279.
    [91]Sch.lkopf B., Bartlett P., Smola A. andet al., Support vector regression with automatic accuracy control. In L. Niklasson, M. Bodén, and T. Ziemke, editors,Proceedings of ICANN'98, Perspectives in Neural Computing, Berlin, Springer Verlag, 1998, pp.111-116.
    [92]Sch.lkopf B., Bartlett P. L., Smola A. andet al., Shrinking the tube: a new support vector regression algorithm. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors,Advances in Neural Information Processing Systems 11, Cambridge, MA, MIT Press, 1999, pp.330-336.
    [93]Smola A., Murata N., Sch.lkopf B. and et al., Asymptotically optimal choice of varepsilon-loss for support vector machines. InL. Niklasson, M.Bodén, and T.Ziemke, editors, Proceedings of ICANN'98, Perspectives in Neural Computing, Berlin, Springer Verlag, 1998, pp.105-110.
    [94]Smola A., Sch.lkopf B. and Müller K.-R. General cost functions for support vector regression. In T.Downs, M.Frean, and M.Gallagher, editors, Proc. of the Ninth Australian Conf. on Neural Networks, Brisbane, Australia, 1998, pp.79-83.
    
    
    
    
    
    [95]Smola A., Sch.lkopf B. and R.tsch G., Linear programs for automatic accuracy control in regression. InNinth International Conference on Artificial Neural Networks, Conference Publications No. 470, London, 1999, pp. 575 -580.
    [96]Mangasarian O. L. and Musicant D. R., Robust linear and support vector regression. Technical Report 99-09, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, November 1999.
    [97]Frie. T.-T., Cristianini N. and Campbell C., The kernel adatron algorithm: a fast and simple learning procedure for support vector machines. In J. Shavlik eds.Proceedings ICML.98, Morgan Kaufmann Publishers, 1998, pp.188-196.
    [98]Cristianini N., Campbell C. and Shawe-Taylor J., Dynamically adapting kernels in support vector machines. InAdvances in Neural Information Processing Systems, 1999, 11: 204-210.
    [99]Cristianini N., Campbell C. and Shawe-Taylor J., Multiplicative updatings for support vector machines. In D-Facto Publications, editor,Proceeding of ESANN'99, Belgium, 1999, pp. 189-194.
    [100]Ralf Herbrich and Jason Weston., Adaptive margin Support Vector Machines for classification learning. InProceedings of the Ninth International Conference on Artificial Neural Networks, 1999, pp. 880-885.
    [101]Weston J. and Herbrich R., Adaptive margin support vector machines. In A.J.Smola, P.L. Bartlett, B.Sch.lkopf, and D.Schuurmans, editors,Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 281-296.
    [102]Watkins C., Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett,B.Sch.lkopf, and D.Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 39-50.
    [103]Sch.lkopf B., Simard P. Y., Smola A. J. andet al., Prior knowledge in support vector kernels. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors,Advances in Neural Information Processing Systems, Cambridge, MA, MIT Press, 1998,10, pp. 640-646.
    [104]Burges C. J. C., Geometry and invariance in kernel based methods. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods --- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp. 89-116.
    [105]Mika S., R.tsch G., Sch.lkopf B. and et al., Invariant feature extraction and classification in kernel spaces. InAdvances in Neural Information Processing Systems 12, Cambridge, MA, MIT Press, 2000, pp. 526-532.
    
    
    
    
    
    [106]Chapelle O. and Sch.lkopf B., Incorporating invariances in non-linear SVMs.Advances in Neural Information Processing System 14, 2002, pp. 609-616.
    [107]Weston J. and Watkins C., Multi-class support vector machines, Technical Report CSD-TR-98-04, Royal Holloway University of London, 1998.
    [108]Bredensteiner E. J. and Bennett K.P., Multicategory classification by support vector machines.Computational Optimizations and Applications, 1999, pp.53-79.
    [109]Suykens J. A. K. and Vandewalle J., Multiclass least squares support vector machines. InIJCNN'99 International Joint Conference on Neural Networks, Washington, DC, 1999.
    [110]Guermeur Y., Eliseeff A. and Paugam MoisyH.,A new multi-class SVMbased on a uniform convergence result In S.I. Amari, C.L. Giles, M. Gori,andV. Piuri, editors, Proceedings of the IEEE-INNS-ENNS InternationalJoint Conference on Neural Networks IJCNN 2000, Los Alamitos, IEEE Computer Society 2000, 2000, pp. IV183- IV188.
    [111]Anfulo C. and Català A., Fault-tolerance multi-classification using a new SVM algorithm. Available http://www.cs.rhul.ac.uk/colt/nips2000/angulo.ps [112]Hsu C.W. and Lin C.J., A comparison on methods for multi-class support vector machines. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2001.
    [113]Lee Y., Lin Y. and Wahba G., Multicategory support vector machines. Technical Report 1043, Department of Statistics, University of Wisconsin, Madison WI,2001.
    [114]张莉, 周伟达, 焦李成, 基于决策树的支撑矢量机多分类器, 已投西电学报.
    [115]Mangasarian O. L. and Musicant D. R., Data discrimination via nonlinear generalized support vector machines.Technical Report 99-03, University of Wisconsin, Computer Sciences Department, Madison, WI, USA, 1999.
    [116]Mangasarian O., Generalized support vector machines. In A.J. Smola, P.L. Bartlett, B.Sch.lkopf, and D. Schuurmans, editors,Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 135-146.
    [117]Lee Y. J. and Mangasarian O. L., SSVM: A smooth support vector machine for classification. Technical Report 99-03, University of Wisconsin, Data Mining Institute, Madison, 1999.
    [118]Mika S., R.tsch G., Weston J. andet al., Fisher discriminant analysis with kernels. In Y.-H. Hu, J.Larsen, E. Wilson and S. Douglas, eds., Neural Networks for Signal Processing Ⅳ, 1999, pp. 42-48.
    
    
    
    
    
    
    
    [119]Roth V. and Steinhage V., Nonlinear discriminant analysis using kernel functions. In S.A. Solla, T.K. Leen and K.-R. Müller, eds., Advances in Neural Information Processing Systems 12, MIT Press, 2000, pp. 568-574.
    [120]Baudat G. and Anouar F., Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12(10): 2385-2404.
    [121]Mika S., Smola A. J. and Sch.lkopf B., An improved training algorithm for kernel fisher discriminants. InProceedings AISTATS2001, Morgan Kaufmann, 2001, pp. 98-104.
    [122]Suykens J. A. K. and Vandewalle J., Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
    [123]Suykens J. A. K., Van Dooren P., De Moor B. and et al., Least squares support vector machine classifiers: a large scale algorithm. InEuropean Conference on Circuit Theory and Design, ECCTD'99, 1999, pp. 839-842.
    [124]Suykens J. A. K. and Vandewalle J., Recurrent least squares support vector machines.IEEE Transactions on Circuits and Systems-I, 2000, 47(7): 1109-1114.
    [125]Suykens J. A. K., De Brabanter J., Lukas L. and et al., Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002, 48(1-4): 85-105.
    [126]Campbell C., Cristianini N. and Smola A., Query learning with large margin classifiers. Proceedings of the 17th ICML2000 (Stanford, CA, 2000), 2000, pp.111-118.
    [127]Mangasarian O. L. and Musicant D. R., Active support vector machines. In T.K. Leen, In T.G. Dietterich and V. Tresp, eds.,Advances in Neural Information Processing Systems 13, MIT Press, 2001, pp. 577-583.
    [128]Mangasarian O. L. and Musicant D. R., Active support vector machine classification. Technical Report 00-04, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, April 2000.ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-04.ps.
    [129]Musicant D. R and Feinberg A., Active set support vector regression.Carleton College Computer Science Technical Report 2001-02, Updated July 2002.
    [130]Mangasarian O. L. and Musicant D. R., Lagrangian support vector machines.Journal of Machine Learning Research, 2001, 1:161-177.
    [131]Mitra P., Murthy C. A. and Pal S. K., Data condensation in large databases by incremental learning with support vector machines. International Conference on Pattern Recognition, 2000, Volume 2: 2708-2711.
    
    
    
    
    
    
    
    [132]Cauwenberghs G. and Poggio T., Incremental and decremental support vector machine learning. In NIPS2000, MIT Press, 2001, volume 13.
    [133]R.tsch G., Onoda T. and Müller K.-R., Soft Margins forAdaBoost. Machine Learning, 2001, 42(3): 27-320.
    [134]Mason L., Baxter J., Bartlett P. L. andet al., Function gradient techniques for combining hypotheses. In A.J. Smola, P.L. Bartlett, B. Sch.lkopf and D.Schuurmans eds., Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 221-247.
    [135]R.tsch G., Sch.lkopf B., Smola A. J. andet al., Robust ensemble learning.Advances in Lager Margin Classifiers, 2000, pp. 207-220..
    [136]R.tsch G., Warmuth M., Mika S. andet al., Barrier Boosting.In Proceeding of COLT, Stanford, Morgan Kaufmann, 2000, pp. 170-179.
    [137]R.tsch G., Sch.lkopf B., Mika S. and et al., SVM and boosting: one class. Tech. Rep. 119, GMD FIRST, Berlin, November 2000.
    [138]Shawe-Taylor J. and Karakoulas G., Towards a strategy for boosting repressors.In A.J. Smola, P.L. Bartlett, B.Sch.lkopf, and D.Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 247-258.
    [139]ZhouW.D., ZhangL. and JiaoL.C., Linear programming support vector machine. Pattern Recognition, 2002, 35(12): 2927-2936.
    [140]周伟达, 张莉, 焦李成, 用于模式识别的复支撑矢量机. 计算机学报, (已录用).
    [141]周伟达, 张莉, 焦李成, 用于回归估计的复支撑矢量机. 电子与信息学报, (已录用).
    [142]Pontil M. and Verri A., Properties of support vector machines.Neural Computation, 1997, 10: 955-974.
    [143]Ancona N., Properties of support vectormachines for regression.Technical Report 01-99, Istituto Elaborazione Segnali ed Immagini, Bari, Italy, 1999.
    [144]周伟达, 张莉, 焦李成, 支撑矢量机推广能力分析, 电子学报, 2001, 29(5):590-594.
    [145]Sch.lkopf B., SungK.-K., BurgesC. andet al., Comparing support vector machines with Gaussian kernels to radial basis function classifiers.IEEE Transactions on Signal Processing, 1997, 45:2758.2765.
    [146]Bartlett P. and Shawe-Taylor J., Generalization performance of support vector machines and other pattern classifiers. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods--- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp. 43-54.
    
    
    
    
    
    
    [147]Smola A. J. and Sch.lkopf B., From regularization operators to support vector kernels. InAdvances in Neural information processings systems 10, San Mateo,CA, 1998, pp. 343-349.
    [148]Smola A. J., Sch.lkopf B. and Müller K.-R.., The connection between regularization operators and support vector kernels. Neural Networks, 1998, 11:637-649.
    [149]Williamson R. C., Smola A. J. and Sch.lkopf B., Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators.NeuroCOLT Technical Report NC-TR-98-019, Royal Holloway College, University of London, UK, 1998.
    [150]EvgeniouT., PontilM. and PoggioT., Regularization networks and support vector machines. In A.J. Smola, P.L. Bartlett, B. Sch.lkopf and D. Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 171-203.
    [151]Cristianini N. and Shawe-Taylor J., Bayesian voting schemes and large margin classifiers. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods--- Support Vector Learning, Cambridge, MA, MIT Press,1999, pp. 55-68.
    [152]Herbrich R., Graepel T. and Campbell C., Bayes point machines: Estimating the bayes point in kernel space. InProceedings of IJCAI Workshop Support Vector Machines, 1999, pages 23-27.
    [153]Lin Y., Support vector machines and the bayes rule in classification. Department of statistics technical report 1014, University of Wisconsin-Madison, 1999.
    [154]Schwaighofer A. and Tresp V., The Bayesian committee support vector machine. In Proceedings of ICANN 2001, Springer Verlag, 2001, pp. 411-417.
    [155]GirosiF., An equivalencebetween sparse approximation and support vector machines. Neural Computation, 1998, 10(6): 1455-1480.
    [156]Poggio T. and Girosi F., A sparse representation for function approximation.Neural Computation, 1998, 10(6):1445-1454.
    [157]Smola A. J., Mangasarian O. L. and Sch.lkopf B., Sparse kernel feature analysis. Technical Report 99-04, University of Wisconsin, Data Mining Institute,Madison, 1999.
    [158]Smola A. J. and Sch.lkopf B., Sparse greedy matrix approximation for machine learning. . Inthe17thInternational Conference on Machine Learning, 2000, pp.911-918.
    
    
    
    
    
    [159]Smola A. J. and Bartlett P. L., Sparse greedy Gaussian process regression. In Advances in Neural Information Processing Systems 13, 2001, pp. 619-625.
    [160]Suykens J. A. K., Lukas L. and Vandewalle J., Sparse approximation using least squares support vector machine. InIEEE International Symposium on Circuits and Systems ISCAS'2000, 2000, pp. II757-II760.
    [161]Suykens J. A. K., Lukas L. and Vandewalle J., Sparse least squares support vector machine classifiers. InESANN'2000 European Symposium on Artificial Neural Networks, 2000, pp. 37-42.
    [162]Baudat G. and Anouar F., Kernel-based methods and function approximation,Washington, DC July 15 - 19, 2001, pp. 1244-1249.
    [163]Kecman V., Learning and Soft Computing, Support Vector Machines, Neural Networks and Fuzzy Logic Models. MIT Press, 2001.
    [164]Saitoh S.,Theory of Reproducing Kernels and its Application. Longman Scientific & Technical, Hoarlow, England, 1998.
    [165]Sch.lkopf B., Mika S., Burges C. J. C. and et al., Input space vs.feature space in kernel-based methods.IEEE Transactions on Neural Networks, 1999, 10(5):1000-1017.
    [166]Sch.lkopf B., The kernel trick for distances.Advances in Neural Information Processing Systems, 2000, pp. 301-307.
    [167]Sch.lkopf B., Herbrich R., Smola A. J. andet al., A generalized representer theorem. Technical Report 81, NeuroCOLT, 2000.
    [168]Wahba G., Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Sch.lkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Methods --- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp. 69-88.
    [169]Wahba G., An introduction to model building with reproducing kernel hilbert spaces. Technical Report 1020, University of Wisconsin-Madison, Statistics Dept., 2000.
    [170]Wahba G., Lin Y. and Zhang H., Gacv for support vector machines. In A.J. Smola, P.L. Bartlett, B. Sch.lkopf, and D. Schuurmans, editors,Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 297-311.
    [171]Wahba G., Lin Y., Lee Y. andet al., On the relation between the gacv and joachims' xi alpha method for tuning support vector machines, with extensions to the non-standard case.Technical Report 1039, Department of Statistics,University of Wisconsin, Madison WI, 2001.
    
    
    
    [172]Wahba G., Lin Y., Lee Y., and et al., Optimal properties and adaptive tuning of standard and nonstandard support vector machines. In Nonlinear Estimation and Classification, New York: Springer, 2002, pp. 125-143.
    [173]Wahba G., Wang Y., Gu C. andet al., Structured machine learning for.soft.classification with smoothing spline ANOVA and stacked tuning, testing and evaluation. In Advances in Neural Information Processing Systems 6, J. Cowan, G. Tesauro and J. Alspector, Eds., Morgan Kauffman, 1994, pp. 415-422.
    [174]Wang Y., Mixed-effects smoothing spline ANOVA. JRSS B, 1998, 60: 159-174.
    [175]Luo Z., Wahba G. and Johnson D. R., Spatial-temporal analysis of Temperature using smoothing spline ANOVA. J. Climate, 1998, 11: 18-28.
    [176]Stitson M., Gammerman A., Vapnik V. and et al., Support vector regression with ANOVA decomposition kernels. In B. Sch.lkopf, C. J. C. Burges, and A. J.Smola, editors,Advances in Kernel Methods--- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp. 285-292.
    [177]Sollich P., Probabilistic interpretation and bayesian methods for support vector machines. In Proceedings of ICANN'99, IEE Publications, 1999, pp. 91-96.
    [178]Sollich P., Probabilistic methods for support vector machines. InAdvance in Neural Information Processing System 12, MIT Press, 1999, pp. 349-355.
    [179]Platt J., Probabilities for SV machines. In A.J. Smola, P.L. Bartlett, B. Sch.lkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 61-74.
    [180]Jaakkola T. S. and Haussler D., Probabilistic kernel regression models. In Proceedings of the 1999 Conference on AI and Statistics, 1999.
    [181]Ruján P. and Marchand M., Computing the bayes kernel classifier. In A.J. Smola, P.L. Bartlett, B. Sch.lkopf, and D. Schuurmans, editors,Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000, pp. 329-348.
    [182]Tsuda K., Support vector classifier with asymmetric kernel function. In M.Verleysen, editor,Proceedings of ESANN'99, Brussels, D Facto, 1999, pp.183-188.
    [183]Tipping M. E., The Relevance Vector Machine. In SaraA Solla, Todd K Leen,and Klaus-Robert Müller, editors,Advances in Neural Information Processing Systems 12. Cambridge, Mass: MIT Press, 2000.
    [184]Ruiz A. andet al., Nonlinear kernel-based statistical pattern analysis.IEEE Transactions on Neural Networks, 2001, 12(1): 16-32.
    
    
    
    
    
    
    [185]张莉, 周伟达, 焦李成, 子波核函数网络. 红外与毫米波学报, 2001,20(3):223-227.
    [186]Zhang L., Zhou W.D., Jiao L.C., Wavelet support vector machine.IEEE Transactions on SMC, to appear.
    [187]张莉, 周伟达, 焦李成, 尺度核函数支撑矢量机. 电子学报, 2002,30(4):527-529.
    [188]周伟达, 张莉, 焦李成, 基于父子波正交投影核的支撑矢量机. 中国科学, (已录用).
    [189]周伟达, 张莉, 焦李成, 隐空间支撑矢量机. 已投自动化学报, 2002.
    [190]Bennett K. P., Decision tree construction via linear programming. In M. Evans, th eds., Proceedings of the 4 Midwest Artificial Intelligence and Cognitive Science Society Conference, Utica, Illinoid, 1999, pp. 97-101.
    [191]Bennett K. P. and Blue J.A., A support vector machine approach to decision trees. In Proceedings of IJCNN'98, Anchorage, Alaska, 1997, pp. 2396-2401.
    [192]Bennett K. P. and Auslender L., On support vector decision trees for database maketing, R.P.I. Math Report 98-100, Department of Mathematical Sciences,Rensselaer Polytechnic Institute, March 1998.
    [193]Osuna E., Freund R. and Girosi F,. Training support vector machines: An application to face detection. InProceedings of Computer Vision and Pattern Recognition'97, Puerto Rico, 1997, pp. 130-136.
    [194]Pontil M. and Verri A., Support vector machines for 3-d object recognition. IEEE Trans. PAMI, 1998, 20: 637-646.
    [195]Chapelle O., Haffner P. and Vapnik V., SVMs for histogram-based image classification. IEEE Transaction on Neural Networks, 1999, 10(5).
    [196]Roobaert D., Improving the generalization of linear support vector machines: an application to 3d object recognition with cluttered background. InProc. SVM Workshop at IJCAI'99, Stockholm, Sweden, 1999, pp. 29-33.
    [197]Roobaert D. and Van Hulle M. M., View-based 3d object recognition with support vector machines. InIEEE Neural Networks for Signal Processing Workshop, 1999, pp. 77-84.
    [198]Evgeniou T., Pontil M., Papageorgiou C. andet al., Image representations for object detection using kernel classifiers. In ACCV, 2000.
    [199]Mukherjee S., Osuna E. and Girosi F., Nonlinear prediction of chaotic time series using a support vector machine. In J. Principe, L. Gile, N. Morgan, and E.Wilson, editors,Neural Networks for Signal Processing VII---Proceedings of the 1997 IEEE Workshop, IEEE Press, 1997, pp. 24-26.
    
    
    
    
    
    
    [200]Vapnik V., Golowich S., and Smola A., Support vector method for function approximation, regression estimation, and signal processing. In M.Mozer, M.Jordan, and T.Petsche, editors,Advances in Neural Information Processing Systems 9, Cambridge, MA, MIT Press, 1997, pp. 281-287.
    [201]Brown M., Lewis H. G. and Gunn S. R., Linear spectral mixture models and support vector machines for remote sensing.IEEE Trans Geosciences and Remote Sensing, submitted, 1999, 38(5): 2346-2360.
    [202]Müller K.-R., Smola A., R.tsch G. and et al., Predicting time series with support vector machines. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods --- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp. 243-254.
    [203]Mattera D. and Haykin S., Support vector machines for dynamic reconstruction of a chaotic system. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods --- Support Vector Learning, Cambridge, MA, MIT Press, 1999, pp. 211-242.
    [204]ZhangL., Zhou W.D.and JiaoL. C., SAR image recognition based on support vector machines. In S.WU, eds.,CIE International Conference on Radar Proceedings, Beijing China, 2001, pp. 1044-1046.
    [205]张莉, 周伟达, 焦李成, 用于一维像识别的支撑矢量机方法. 红外与毫米波学报. 2002,21(2):119-123.
    [206]Joachims T, Text categorization with support vector machines: Learning with many relevant features. In Claire Nédellec and Céline Rouveirol, editors,Proceedings of the European Conference on Machine Learning, Berlin, Springer, 1998, pp. 137-142.
    [207]Joachims T., Transductive inference for text classification using support vector machines. InInternational Conference on Machine Learning (ICML), Bled,Slovenia, 1999.
    [208]Tong S. and Koller D., Support vector machine active learning with applications to text classification. In Proceedings of the Seventeenth International Conference on Machine Learning, 2000.
    [209]Bennett K., Combining support vector and mathematical programming methods for induction. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods - SV Learning, Cambridge, MA, MIT Press, 1999,pp. 307-326.
    
    
    
    
    
    
    [210]Klinkenberg R. and Joachims T., Detecting concept drift with support vector machines. InProceedings of the Seventeenth International Conference on Machine Learning (ICML), San Francisco, Morgan Kaufmann, 2000.
    [211]Brown M. P. S., Grundy W. N., Lin D. andet al., Support vector machine classification of microarray gene expression data.Technology report:UCSC-CRL-99-09, Department of Computer Science, University of California,Santa Cruz, 1999.
    [212]Mukherjee S., Tamayo P., Mesirov J. P. andet al., Support vector machine classification of microarray data.Technical Report 182, AI Memo 1676, CBCL, 1999.
    [213]Ding C. and Dubchak I., Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 2001, 17: 349-358.
    [214]Hua S. and Sun Z., A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach.Journal of Molecular Biology, 2001, 308(2): 397-407.
    [215]Zien A., R.tsch G., Mika S. andet al., Engineering support vector machine kernels that recognize translation initiation sites.BioInformatics, 2000, 16(9):799-807.
    [216]Suykens J. A. K., Vandewalle J. and Moor B. D., Optimal control by least squares support vector machines. Neural Networks, 2001, 14(1): 23-35.
    [217]Demiriz A., Bennett K. P., Breneman C. M. and et al., Support vector machine regression in chemometrics. In Computing Science and Statistics: Proceedings of Interface, 2001.
    [218]Sch.lkopf B., Smola A. and Müller K.-R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10:1299-1319.
    [219]Sch.lkopf B., Smola A. and Müller K.-R., Kernel principal component analysis. In B.Sch.lkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods - SV Learning, Cambridge, MA, MIT Press, 1999, pp. 327-352.
    [220]Rosipal R., Trejo L. J., and Cichocki A., Kernel principal component regression with em approach to nonlinear principal components extraction. Technical report, 2000.
    [221]Rosipal R. and Girolami M., An expectation maximization approach to nonlinear component analysis. Neural Computation, 2001, 13: 505-510.
    [222]Girolami M., Orthogonal series density estimation and the kernel eigenvalue problem. Neural Computation, 2002, 14(3): 669-688.
    
    
    
    
    
    
    [223]周伟达, 张莉, 焦李成, 隐空间主分量分析. (已投电子学报), 2003.
    [224]Sch.lkopf B., Smola A., Müller K.-R. andet al. Support vector methods in learning and feature extraction. In T. Downs, M. Frean, and M. Gallagher, editors, Proc. of the Ninth Australian Conf. on Neural Networks, Brisbane, Australia,University of Queensland, 1998, 72-79.
    [225]Sch.lkopf B., Platt J., and Smola A. J., Kernel method for percentile feature extraction. TR MSR 2000-22, Microsoft Research, Redmond, WA, 2000.
    [226]BurgesC.J.C., Simplified support vector decision rules. In L.Saitta, editor,Proc.13th International Conference on Machine Learning, San Mateo, CA,Morgan Kaufmann, 1996, pp. 71-77.
    [227]Sch.lkopfB.,MikaS.,SmolaA. and et al.,Kernel PCA pattern reconstruction via approximate pre-images. In L.Niklasson, M.Bodén, and T.Ziemke, editors, Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing, Berlin, Springer Verlag, 1998, pp. 147-152.
    [228]MikaS.,Sch.lkopfB.,SmolaA. andet al., Kernel PCA and de-noising in feature spaces. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors,Advances in Neural Information Processing Systems 11, Cambridge, MA, MIT Press, 1999, pp. 536-542.
    [229]Sch.lkopfB.,KnirschP.,SmolaA.and et al., Fast approximation of support vector kernel expansions and an interpretation of clustering as approximation in feature spaces. In P.Levi, M.Schanz, R.-J. Ahlers, and F.May, editors,Mustererkennung 1998--- 20.DAGM-Symposium, Informatik aktuell, Berlin,Springer, 1998, pp. 124-132.
    [230]Girolami M., Mercer kernel based clustering in feature space. IEEE Transactions on Neural Networks, 2002, 13(4): 780-784.
    [231]张莉, 周伟达, 焦李成, 核聚类算法. 计算机学报, 2002, 25(6): 587-590.
    [232]张莉, 周伟达, 焦李成,一类新的支撑矢量机核.软件学报 2002, 13(4):713-718.
    [233]RosenblattM., Remarks on some nonparametric estimation of density functions. Annals of Mathematical Statistics,1956, 27:642-669.
    [234]Parzen E., On estimation of probability function and mode.Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
    [235]Chentsov N. N., Evaluation of an unknown distribution density from observations. Soviet Math., 1963, 4: 1559-1562.
    
    
    
    
    
    [236]Vapnik V. N. and Stefanyuk A. R., Nonparametric methods for estimating probability densities. Autom.and Remote Contr, 1978, 8.
    [237]Cortes C. Predicting of Generalization Ability in Learning Machines. PhD thesis, Department of Computer Science, University of Rochester, 1995.
    [238]Sch.lkopf B., Shawe-TaylorJ., SomlaA.J. and et al., Kernel dependent support vector error bounds. In D. Willshaw and A. Murray, eds.,Proceedings of ICANN.99, IEE Press. 1999,vol.1, pp. 103-108.
    [239]TsudaK., Optimal hyperplane classifier based on entropy number bound. In D. Willshaw and A. Murray, eds., Proceedings of ICANN.99, IEE Press, 1999, vol.1, pp. 419-424.
    [240]周伟达, 张莉, 焦李成, 一种改进的推广能力衡量准则. 计算机学报, (已录用), 2002.
    [241]Martin J. K. and Hirschberg D. S., Small sample statistics for classification error rates, I: error rate measurements.Tech. Rep. 96-21, Department of Information and Computer Science, UC Irvine, 1996.
    [242]Joachims T., Estimating the generalization performance of a SVM efficiently. In Proceedings of the 17th International Conference on Machine Learning, San Francisco, Morgan Kaufman, 2000, pp. 431-438.
    [243]Vapnik V. N. and Chapelle O., Bounds on error expectation for support vector machines, Neural Computation, 2000, 12(9): 2013-2036.
    [244]Chapelle O. and Vapnik V., Model selection for support vector machines. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors,Advances in Neural Information Processing Systems 12, MIT Press, 2000.
    [245]Chapelle O., Vapnik V., Bousquet O. and et al., Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46: 131-159.
    [246]KwokJ., Integrating the evidence framework and the support vector machine. In M. Verleysen, eds., Proc. ESANN.99, 1999, pp. 177-182.
    [247]Bennett K. P., Semi-supervised support vector machines.In Proceedings of Neural Information Processing Systems 12, MIT Press, 1999, pp. 368-374.
    [248]Mattera D. and Palmieri F., Support vector machines for nonparametric binary hypothesis testing. In Proceedings of the 10th Italian Workshop on Neural Nets, Springer Verlag, 1998, pp. 132-137.
    [249]Smola A. J., Frie. T. and Sch.lkopf B., Semi-parametric support vector and linear programming machines. InAdvances in Neural Information Processing Systems 11, MIT Press, 1999, pp. 585-591.
    
    
    
    
    
    [250]Bach F. R., Kernel independent component Analysis.Report No.UCB/CSD-01-1166, Computer Science Division University of California,Berkeley, California, November 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700