用户名: 密码: 验证码:
模型化自适应滤波及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为未知时变/时不变系统的冲击响应系数,研究了利用多项式预测模型来建模的方法,并将其视为卡尔曼滤波器的状态方程;以系统输入输出关系作为观测方程,那么就将最大似然、最大后验和最小均方等多种统计意义下无偏最优的卡尔曼滤波器引入来解决自适应滤波问题,从而提出了模型化自适应滤波方法。理论分析以及仿真结果都证明了该算法相对传统自适应滤波算法的性能优势。针对低信噪比下的自适应滤波问题,通过引入有偏估计的思想,即:将传统卡尔曼滤波器的无偏最小方差估计值乘以一个偏差因子,来折衷估计的偏差和方差以得到更小的均方误差,进而提出了有偏卡尔曼滤波和模型化的有偏自适应滤波方法。应用于低信噪比下的系统辨识,仿真结果显示模型化的有偏自适应滤波性能优于其对应的无偏算法。
     针对雷达跟踪机动目标的波形选择应用,本文利用研究的模型化自适应滤波算法提出了一种新的雷达波形选择方法。由于机动目标的运动状态满足多项式规律变化,即多项式预测模型可以准确地描述目标的运动规律,因此模型化自适应滤波算法可以很好地跟踪目标运动状态并得到相应的估计误差及其预测。根据估计误差预测的误差椭圆,通过分数阶傅里叶变换来旋转测量误差椭圆以使其与预测误差椭圆正交,从而得到了一种新的最优选择雷达发射波形方法。仿真结果证明了该算法性能上的优势。
     针对稀疏系统辨识的应用,本文结合研究的模型化自适应滤波算法和压缩采样的思想提出了一种新的稀疏系统辨识算法。该算法一方面利用多项式预测模型描述了系统的时变特性;另一方面利用l1范数的不等式约束来描述系统的稀疏性,将稀疏系统辨识问题转化为了一个带约束的卡尔曼滤波问题。利用伪观测技术求解这一带约束的卡尔曼滤波问题,即得到了稀疏系统辨识的结果。仿真结果表明,提出的算法由于同时考虑了系统的稀疏性和时变特性,其性能优于对比算法。
     针对道路车流量的实时视频检测应用,本文结合研究的模型化自适应滤波算法和提出的两个特征参数,得到了一种新的道路车流量实时视频检测方法。根据分析,提出的对比度失真和亮度失真参数非常适合解决诸如阴影干扰、实时背景更新以及摄像机晃动等一直困扰着道路车流量视频检测的问题。但是特征参数曲线上的毛刺现象给车流量检测过程带来了严重的困扰。针对这一问题,采用提出的模型化自适应滤波算法来为特征参数曲线滤波。由于检测区域的大小通常为一个典型车辆大小,因此可以认为车辆是匀速经过检测区域的,即特征参数的上升和下降是符合一阶多项式规律的。模型化自适应滤波算法可以很好的抑制特征参数曲线上的毛刺现象,从而为后续的车流量检测算法带来了方便。不同道路、车流量和天气情况下的实验结果表明,本文提出的方法相比传统方法有着显著的优势。
A polynomial prediction model is researched in this paper to describe the time-variant/invariant impulse response coefficients of an unkown system. When the polynomial prediction model is viewed as the state equations of the unkown impulse response coefficients and the relationships between the inputs and outputs of the system are regarded as the measurements of the states, our adaptive filtering can be achieved in the framework of the Kalman filter which is unbiased optimal in the sense of the MAP (Maximum A Posteriori), ML (Most Likelihood) and MMSE (Minimum Mean Square Error). In this way, a modelized adaptive filtering algorithm is proposed. Not only do the analytical results of the algorithm but also the simulation results show that our algorithm outperforms the traditional known algorithms. For adaptive filtering problem in low SNR (Signal to Noise Ratio), the idea of biased estimation is introduced. If we multiply the unbiased minimum-variance estimation of the traditional Kalman filter by a bias factor, a tradeoff between estimation bias and estimation variance is provided to reduce the estimation mean-squared error of the traditional Kalman filter. By this approach, a biased Kalman filter and a modelized biased adaptive filter are proposed. For system identification in low SNR, the simulation results show that the modelized biased adaptive filter outperforms the unbiased one.
     For the application of waveform selection for tracking maneuver target, the researched modelized adaptive filtering algorithm is used to propose a novel waveform selection approach. Because the motion equation of the target is polynomial function of time, the polynomial prediction model can describe the motion state of the target accurately. It means that the modelized adaptive filtering algorithm can track the position and velocity of the target accurately and predict the prior uncertainty error ellipse of the tracking system. According to the prior uncertainty error ellipse, we use the fractional Fourier transform (FrFT) to rotate the measurement error ellipse to make them orthogonal to each other. Thus we get the new approach to waveform selection for tracking maneuver target. The simulation results have shown the performance superiority of the proposed approach.
     For the application of sparse system identification, the researched modelized adaptive filtering algorithm and the idea of compressive sensing are combined to propose a novel sparse system identification algorithm. On one hand, we use polynomial prediction model to describe the time-varying characteristic of the system. On the other hand, we use l1 norm inequality constraint to describe the sparsity of the system. Thus the sparse system identification problem is converted to a Kalman filtering problem with an inequality constraint which can be solved by the pseudo-observation approach. Both the system time-varying characteristic and the system sparsity are taken into consideration. The simulation results show that our algorithm outperforms the contrast algorithms.
     For the application of vision-based real time vehicle flow information extraction, the researched modelized adaptive filtering algorithm and two new vision parameters are combined to propose a novel vision-based method for real-time extracting vehicle flow information on a road. The proposed vision parameters are called as contrast and luminance distortion respectively. The analytical results show that the proposed vision parameters are very suitable for solving many traditional problems in the vision-based vehicle flow information extraction, such as the shadow interferences, real-time background updating and the flickering of camera. But there are many burrs in the parameter curves which seriously disturb the vehicle flow information extraction. For this problem, we use the proposed modelized adaptive filtering algorithm to filter the parameter curves. Because the size of the detection zone is the size of a typical vehicle, we can assume that vehicles pass the detection zone at a uniform speed. It means that the variations of the parameters are first order polynomial functions of the time. Thus the modelized adaptive filtering algorithm can filter out the burrs in the parameter curves. The experimental results based on the different roads and different vehicle flows under different weather conditions show that the proposed method is better than the traditional methods.
引文
[1]Hayes M. and Treichler J., Adaptive Filtering Best of the Web[J], IEEE Signal Processing Magazine,2008,25(6):169-172.
    [2]汪源源.现代信号处理理论和方法[M].复旦大学出版社,2003.
    [3]Manolakis D. G., Ingle V. K. and Kogon S. M.,统计与自适应信号处理[M].电子工业出版社,2003.
    [4]Widrow B. and Stearns S. D., Adaptive Signal Processing[M], Englewood Cliffs, NJ:Prentice-Hall,1985.
    [5]Haykin S., Adaptive Filter Theory Fourth ed[M], Upper Saddle River, NJ: Prentice-Hall,2002.
    [6]Benesty J. and Huang Y., Adaptive Signal Processing—Applications to Real-World Problems[M], Berlin, Germany:Springer-Verlag,2003.
    [7]Huang Y., Benesty J. and Chen J., Acoustic MIMO Signal Processing[M], Boston, MA:Springer,2006.
    [8]Sayed A. H., Fundamentals of Adaptive Filtering[M], Wiley,2003.
    [9]Glentis G. O., Berberidis K. and Theodoridis S., Efficient least squares adaptive algorithms for FIR transversal filtering[J], IEEE Signal Process Mag.,1999,16: 13-41.
    [10]Haykin S.,自适应滤波器原理[M].电子工业出版社,2006.
    [11]Widrow B. and Stearns S. D.,自适应信号处理[M].机械工业出版社,2008.
    [12]Frost V.S., Stiles J.A., Shanmugam K.S., et al, An adaptive filter for smoothing noisy radar images[J], Proceedings of IEEE,1981,69(1):133-135.
    [13]Davies D.H., Fielding C.C. and Girling F.E.J., Radar[J], Proceedings of the Institution of Electrical Engineers,1971,118(9):1071-1089.
    [14]Li J. and Stoica P., An adaptive filtering approach to spectral estimation and SAR imaging[J], IEEE Trans. on Signal Process.,1996,44(6):1469-1484.
    [15]Ghouz H. H. M., Elghany, F. I. A. and Qutb M. M., Adaptive space-time processing for interference suppression in phased array radar systems I Search radar[A]. In:Proceedings of Radio Science Conference[C], Feb.22-24,2000: B8/1-B8/8.
    [16]Ghouz H. H. M., Elghany, F. I. A. and Qutb M. M., Adaptive space-time processing for interference suppression in phased array radar systems Ⅱ Tracking radar[A]. In:Proceedings of Radio Science Conference [C], Feb.22-24, 2000:B9/1-B9/7.
    [17]申宇,仇原鹰,马伯渊.一种提高雷达导引头对机动目标跟踪性能的自适应滤波算法[J].弹箭与制导学报,2010,30(5):47-50.
    [18]胡智,田宽,刘波.自适应滤波在雷达目标极点提取上的应用研究[J].弹箭与制导学报,2006,26(4):388-390.
    [19]Wang L.-X. and Mendel J. M., An RLS fuzzy adaptive filter, with application to nonlinear channel equalization[A]. In:Proceedings of Second IEEE Conference on Fuzzy Systems[C], Mar.28-Apr.1 1993,2:895-900.
    [20]Gollamudi S., Kapoor S., Nagaraj S., et al, Set-membership adaptive equalization and an updator-shared implementation for multiple channel communications systems[J], IEEE Trans. on Signal Processing,1998,46(9): 2372-2385.
    [21]Wang L.-X. and Mendel J. M., Fuzzy adaptive filters with application to nonlinear channel equalization[J], IEEE Trans. on Fuzzy Systems,1993,1(3): 161-170.
    [22]张毅,王辉.一种直扩通信窄带干扰抑制的自适应滤波技术[J].通信技术,2008,41(4):13-15.
    [23]卢树军,张春海,王世练等DSSS通信中基于快速更新子带自适应滤波的窄带干扰抑制[J].信号处理,2006,22(5):697-702.
    [24]赵春晖,张哲.平均自适应滤波的信道均衡算法研究[J].信息技术,2004,28(6):102-104.
    [25]Mauro J. D. and Harry M. H., Frequency domain adaptive filter for detection of sonar signals[P]美国专利:948175,1978-10-2.
    [26]Earl R. L. and Francis C, J., Sonar Doppler system with a digital adaptive filter[P]美国专利:287709,1988-12-19.
    [27]Kim K.M., Lee C. and Youn D.H., Adaptive processing technique for enhanced CFAR detecting performance in active sonar systems[J], IEEE Trans. on Aerospace and Electronic Systems,2000,36(2):693-700.
    [28]Kotropoulos C. and Pitas I., Adaptive LMS L-filters for noise suppression in images[J], IEEE Trans. on Image Processing,1996,5(12):1596-1609.
    [29]Xu Xiaoyin and Miller E.L., Chen Dongbin, et al, Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images[J], IEEE Trans. on Image Processing,2004,13(2):238-247.
    [30]Atlas L. and Duhamel P., Recent developments in the core of digital signal processing[J], IEEE Signal Processing Magazine,1999,16(1):16-31.
    [31]Gye-Tae Gil, Normalized LMS Adaptive Cancellation of Self-Image in Direct-Conversion Receivers[J], IEEE Trans. on Vehicular Technology,2009, 58(2):535-545.
    [32]Awate S. P. and Whitaker R. T., Unsupervised, information-theoretic, adaptive image filtering for image restoration[J], IEEE Trans. on Pattern Analysis and Machine Intelligence,2006,28(3):364-376.
    [33]张绍明,林怡,邵永社等.一种基于SVR的SAR图像自适应滤波算法[J].系统工程与电子技术,2010,32(6):1167-1170.
    [34]刘阳,曹军明,李宏伟等.噪声图像的自适应滤波处理[J].航空兵器,2010,5:62-64.
    [35]Prasad S. and Mahalanabis A. K., Adaptive Filter Structures for Deconvolution of Seismic Signals[J], IEEE Trans. on Geoscience and Remote Sensing,1980, 18(3):267-273.
    [36]Fargues M., Steams S. D. and Coutu G., Seismic data compression using adaptive filters[A]. In:Proceedings of the 37th Midwest Symposium on Circuits and Systems[C], Aug.3-5,1994,2:957-960.
    [37]邓自立.地震信号去卷积的一种自适应滤波方法[J].自动化学报,1990,16(5):451-455.
    [38]Ferdjallah M. and Barr R. E., Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals[J], IEEE Trans. on Biomedical Engineering,1994,41(6):529-536.
    [39]Philips W., Adaptive noise removal from biomedical signals using warped polynomials[J], IEEE Trans. on Biomedical Engineering,1996,43(5):480-492.
    [40]Ergun A., Barbieri R., Eden U.T., et al, Construction of Point Process Adaptive Filter Algorithms for Neural Systems Using Sequential Monte Carlo Methods[J], IEEE Trans. on Biomedical Engineering,2007,54(3):419-428.
    [41]张杨,王健琪,荆西京等.基于自适应滤波的生物雷达干扰抑制方法[J].仪器仪表学报,2009,30(4):807-811.
    [42]张志谊,王俊芳,周建鹏等.基于跟踪滤波的自适应振动控制[J].振动与冲击,2009,28(2):64-67.
    [43]乔新勇,刘建敏,张小明.基于自适应滤波的坦克发动机振动信号的信噪分离方法[J].装甲兵工程学院学报,2007,21(4):32-35.
    [44]邱志成.基于自适应滤波的压电智能挠性悬臂板振动控制研究[J].系统仿真学报,2006,18(5):1311-1318.
    [45]Guo Lei, L Ljung and Wang Guan-Jun., Necessary and Sufficient Conditions for Stability of LMS[J], IEEE Trans. on Automatic Control,1997,42(6):761-770.
    [46]Hassibi B., Sayed A. H. and Kailath T., Hoo optimality of the LMS algorithm[J], IEEE Trans. on Signal Processing,1996,44(2):267-280.
    [47]Evans J. B., Xue P. and Liu B., Analysis and implementation of variable step size adaptive algorithms [J], IEEE Trans. on Signal Processessing,1993,41(8): 2517-2535.
    [48]Aboulnasr T. and Mayyas K., A robust variable step-size LMS-type algorithm: analysis and simulations[J], IEEE Trans. on Signal Processing,1997,45(3): 631-639.
    [49]Pazaitis D. I. and Constantinides A. G., A novel kurtosis driven variable step-size adaptive algorithm[J], IEEE Trans. on Signal Processing,1999,47(3):864-872.
    [50]Mader A., Puder H. and Schmidt G. U., Step-size control for acoustic echo cancellation filters-an overview[J], Signal Processing,2000,80:1697-1719.
    [51]Morgan D. R. and Kratzer S. G., On a class of computationally efficient, rapidly converging, generalized NLMS algorithm[J], IEEE Signal Processing Letters, 1996,3(8):245-247.
    [52]Gollamudi S., Nagaraj S., Kapoor S., et al, Set-member-ship filtering and a set-membership normalized LMS algorithm with an adaptive step size[J], IEEE Signal Processing Letters,1998,5(5):111-114.
    [53]Shin H. C., Sayed A. H. and Song W. J., Variable step-size NLMS and affine projection algorithms[J], IEEE Signal Processing Letters,2004,11(2):132-135.
    [54]Benesty J., Rey H., Vega L. R., et al, A Nonparametric VSS NLMS Algorithm[J], IEEE Signal Processing Letters,2006,13(10):581-584.
    [55]罗鹏飞等.统计信号处理基础——估计与监测理论[M].北京:电子工业出版社,2003.
    [56]Merwe R., Sigma-Point Kalman Filters for Probabilistic Inference in Dyanmic State-Space Models[M], Cape Town, South Africa:Oregon Health & Science University,2004.
    [57]Welch G. and Bishop G., An Introduction to the Kalman Filter[EB/OL], http://www.cs.unc.edu/-welch/kalman/kalmanIntro.html,2004.
    [58]Gendron P. J., An empirical Bayes estimator for in-scale adaptive filtering[J], IEEE Trans. on Signal Processing,2005,53(5):1670-1683.
    [59]Huang D. Y., Rahardja S. and Huang Haibin., Maximum a Posteriori based Adaptive Algorithms [J], Signals, Systems and Computers, ACSSC 2007:1628-1632.
    [60]Kalman R. E., A New Approach to Linear Filtering and Prediction Problems[J], Transactions of the ASME-Journal of Basic Engineering,1960,82(Series D):35-45.
    [61]Heinonen P. and Neuvo Y., FIR-Median Hybrid Filters with Predictive FIR Substructures[J], IEEE Trans. on Acoustics, Speech and Signal Processing,1998, 36(6):892-899.
    [62]Ifeachor E. C. and Jervis B. W., Digital Signal Processing A Practical Approach, 2nd ED[M], Beijing:Publishing House of Electronics Industry,2003.
    [63]Valiviita S., Ovaska S. J. and Vainio O., Polynomial predictive filtering in control instrumentation:a review[J], IEEE Trans. on Industrial Electronics,1999, 46(5):876-888.
    [64]Lazaro-Gredilla M., Azpicueta-Ruiz L. A., Figueiras-Vidal A. R., et al., Adaptively Biasing the Weights of Adaptive Filters[J], IEEE Trans. on Signal Processing,2010,58(7):3890-3895.
    [65]Eldar Y. C., Ben-Tal A. and Nemirovski A., Robust mean squared error estimation in the presence of model uncertainties[J], IEEE Trans. on Signal Processing,2005,53(1):168-181.
    [66]Ben-Haim Z. and Eldar Y. C., Blind minimax estimation[J], IEEE Trans. on Information Theory,2007,53(9):3145-3157.
    [67]Kay S. and Eldar Y. C., Rethinking Biased Estimation[J], IEEE Signal Processing Magazine,2008,25(3):133-136.
    [68]Song Enbin, Zhu Yunmin, Zhou Jie, et al, Minimum Variance in Biased Estimation With Singular Fisher Information Matrix[J]. IEEE Trans. on Signal Processing,2009,57(1):376-381.
    [69]Weisstein E. W., Weierstrass Approximation Theorem. From MathWorld--A Wolfram Web Resource [EB/OL], http://mathworld.wolfram.com/WeierstrassApproximationTheorem.html.
    [70]Xu Lijun, Zhang Jian Qiu and Yan Yong, A Wavelet-based multisensor data fusion algorithm[J], IEEE Trans. on Instrumentation and Measurement,2004, 53(6):1539-1545.
    [71]Fitzgerald R. J., Divergence of the Kalman filter[J], IEEE Trans. on Automatic Control,1971,16(6):736-747.
    [72]张金槐.线性模型参数估计及其改进[M].长沙:国防科技大学出版社1999.
    [73]Steven M. K.,统计信号处理基础——估计与检测理论[M].电子工业出版社,2003.
    [74]邓自立.信息融合滤波理论及其应用[M].哈尔滨工业大学出版社,2007.
    [75]Chui C. K. and Cheng G., Kalman Filtering with Real-Time Application[M], Berlin:Springer-Verlag Berlin Heidelberg,1987.
    [76]Arnold W. F. Ⅲ and Laub A. J., Generalized eigenproblem algorithms and software for algebraic Riccati equations[J], Proceedings of the IEEE,1984, 72(12):1746-1754.
    [77]Do C.-T., Pastor D. and Goalic A., On Normalized MSE Analysis of Speech Fundamental Frequency in the Cochlear Implant-Like Spectrally Reduced Speech[J], IEEE Trans. on Biomedical Engineering,2010,57(3):572-577.
    [78]Cochran D., Suvorova S., Howard S., el al, Waveform libraries[J], IEEE Signal Processing Magazine,2009,26(1):12-21.
    [79]Sira S. P., Ying Li, Papandreou-Suppappola A., et al, Waveform-agile sensing for tracking[J], IEEE Signal Processing Magazine,2009,26(l):53-64.
    [80]Sira S. P., Papandreou-Suppappola A., Morrell D., et al, Waveform-agile tracking in heavy sea clutter[A]. In:International Conference on Waveform Diversity and Design[C], June 4-8,2007:372-376.
    [81]Savage C. O. and Moran B., Waveform selection for maneuvering targets within an IMM framework[J], IEEE Trans. on Aerospace Electronic System,2007, 43(3):1205-1214.
    [82]Jiu B., Liu H. W. and Wu S. J., A method of waveform design based on multi-eigenvector selection[A]. In:IET International Radar Conference[C], Apr. 20-22,2009:1-5.
    [83]Patini M. and Vigilante D., Adaptive waveforms selection for IMM-UKF tracking architecture application to multifunctional radar systems in heavy cluttered scenario[A]. In:International Conference on Radar[C], Sept.2-5, 2008:536-540.
    [84]Lunden J. and Koivunen V., Automatic radar waveform recognition[J], IEEE Journal of Selected Topics in Signal Processing,2007,1(1):124-136.
    [85]Capraro C. T., Bradaric I., Capraro G. T., et al, Using genetic algorithms for radar waveform selection[A]. In:IEEE Radar Conference[C], May 26-30, 2008:1-6.
    [86]Altes R. A. and Titlelaum E. L., Bat signals as optimally Doppler tolerant waveforms[J], Journal Acoustics Society of America,1970,48:1014-1020.
    [87]Holderied M. W., Baker C. J., Vespe M., et al, Understanding signal design during the pursuit of aerial insects by echolocating bats:Tools and applications [J], Integrative Comparitive Biology,2008,48(1):74-84.
    [88]Vespe M., Jones G. and Baker C. J., Lessons for radar[J], IEEE Signal Processing Magazine,2009,26(1):65-75.
    [89]Amuso V., Blunt S., Mokole E., et al, Applications and methods of waveform diversity[M], Raleigh, NC:SciTech Publishing,2009.
    [90]Woodard P., Waveform diversity and design[J], IEEE Aerospace and Electronic Systems Magazine,2006,21(6):36-37.
    [91]Nehorai A., Gini F. and Greco M. S., Introduction to the issue on adaptive waveform design for agile sensing and communication[J], IEEE Journal of Selected Topics in Signal Processing,2007, 1(1):2-5.
    [92]Bar-Shalon Y. and Fortmann T. E., Tracking and data association[M], New York: Academic,1988.
    [93]Kershaw D. J. and Evans R. J., Optimal waveform selection for tracking systems[J], IEEE Trans. on Information Theory,1994,40(5):1536-1550.
    [94]Kershaw D. J. and Evans R. J., Adaptive waveform selection for tracking in clutter[A]. In:Proceedings of the American Control Conference[C], June 29-July 1,1994,2:1804-1808.
    [95]Kershaw D. J. and Evans R. J., Waveform selective probabilistic data association [J], IEEE Trans. on Aerospace and Electronic Systems,1997,33(4): 1180-1188.
    [96]Niu R., Willett P., and Bar-Shalon Y., Tracking considerations in selection of radar waveform for range and range-rate measurements [J], IEEE Trans. on Aerospace and Electronic Systems,2002,38(2):467-487.
    [97]Niu R., Willett P., and Bar-Shalon Y., Further analysis of waveform effects on tracking performance [A]. In:IEEE Aerospace Conference Proceedings [C], Mar. 18-25,2000,3:417-431.
    [98]Paradowski L. R., Uncertainty ellipses and their application to interval estimation of emitter position[J], IEEE Trans. on Aerospace and Electronic Systems,1997,33(1):126-133.
    [99]Almeida L. B., The fractional Fourier transform and time-frequency representations[J], IEEE Trans. on Signal Processing,1994,42(11):3084-3091.
    [100]Ozaktas H. M., Arikan O., Kutay M. A., et al, Digital computation of the fractional Fourier transform[J], IEEE Trans. on Signal Processing,1996,44(9): 2141-2150.
    [101]Ozaktas H. M., Zalevsky Z. and Kutay M. A., The fractional Fourier transform with applications in optics and signal processing[EB/OL], http://www.ee.bilkent.edu.tr/-haldun/wileybook.html
    [102]Borden B., The fractional Fourier transform and ISAR imaging. Inverse Problems[EB/OL], http://iopscience.iop.org/0266-5611/16/2/101.
    [103]Schreiber W. F., Advanced television systems for terrestrial broadcasting:Some problems and some proposed solutions[J], Proceedings of the IEEE,1995,83(6): 958-981.
    [104]Duttweiler D. L., Proportionate normalized least-mean-squares adaptation in echo cancellers[J], IEEE Trans. on Speech Audio Process,2000,8(5):508-518.
    [105]Bajwa W., Haupt J., Raz G., et al, Compressed channel sensing[A]. In:42nd Annual Conference on Information Sciences and Systems[C], Mar.19-21, 2008:5-10.
    [106]Etter D. M., Identification of sparse impulse response systems using an adaptive delay filter [A], In:IEEE International Conference on Acoustics, Speech, and Signal Processing[C], April 1985,10:1167-1172.
    [107]Ho K. C. and Blunt S. D., Adaptive Sparse System Identification Using Wavelets[J], IEEE Trans. on Circuits and Systems,2002,49(10):656-667.
    [108]Martin R. K., Sethares W. A., Williamson R. C., et al, Exploiting sparsity in adaptive filters[J], IEEE Trans. on Signal Processing,2002,50(8):1883-1894.
    [109]Gu Yuantao, Jin Jian and Mei Shunliang,10 norm constraint LMS algorithm for sparse system identification [J], IEEE Signal Processing Letters,2009,16(9): 774-777.
    [110]Angelosante D., Bazerque J. A. and Giannakis G. B., Online Adaptive Estimation of Sparse Signals:Where RLS Meets the 11-Norm[J], IEEE Trans. on Signal Processing,2010,58(7):3436-3447.
    [111]Babadi B., Kalouptsidis N. and Tarokh V., SPARLS:The Sparse RLS Algorithm[J], IEEE Trans. on Signal Processing,2010,58(8):4013-4025.
    [112]Candes E., Romberg J. and Tao T., Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J], IEEE Trans. on Information Theory,2006,52(2):489-509.
    [113]Candes E., Compressive sampling[A], In:Proceedings of International Congress of Mathematicians[C],2006,3:1433-1452.
    [114]James G. M., Radchenko P., and Lv J., DASSO:Connections between the Dantzig selector and LASSO[J], Journal of the Royal Statistical Society:Series B,2009,71:127-142.
    [115]Jin Jian, Gu Yuantao, and Mei Shunliang, A Stochastic Gradient Approach on Compressive Sensing Signal Reconstruction Based on Adaptive Filtering Framework[J], IEEE Journal of Selected Topics in Signal Processing,2010, 4(2):409-420.
    [116]Julier S. J. and LaViola J. J., On Kalman filtering with nonlinear equality constraints [J], IEEE Trans. on Signal Processing,2007,55(6):2774-2784.
    [117]Carmi A., Gurfil P. and Kanevsky D., Methods for Sparse Signal Recovery Using Kalman Filtering With Embedded Pseudo-Measurement Norms and Quasi-Norms[J], IEEE Trans. on Signal Processing,2010,58(4):2405-2409.
    [118]Fathy M. and Siyal M. Y., A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters [J], IEEE Trans. on Vehicular Technology,1998,47(4):1342-1349.
    [119]Coifman B., Beymer D., McLauchlan P., et al, A real-time computer vision system for vehicle tracking and traffic surveillance[J], Transportation Research Record Part C,1998,6(4):271-288.
    [120]Dailey D. J., Cathey F. W. and Pumrin S., An algorithm to estimate mean traffic speed using uncalibrated cameras[J], IEEE Trans. Intelligent Transportation Systems,2000,1(2):98-107.
    [121]Iwasaki Y., An image processing system to measure vehicular queues and an adaptive traffic signal control by using the information of the queues[A]. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems[C], Nov.9-12,1997:310-313.
    [122]Fathy M. and Siyal M. Y., A neural-vision based approach to measure traffic queue parameters in real-time[J], Pattern Recognition Letters,1999, 20(8):761-770.
    [123]Viarani E., Extraction of traffic information from images at DEIS[A]. In: Proceedings of International Conference on Image Analysis and Processing[C], Sep.27-29,1999:1073-1076.
    [124]Iwasaki Y, A measurement method of pedestrian traffic flows by use of image processing and its application to a pedestrian traffic signal control[A]. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems[C], Oct.5-8,1999:310-313.
    [125]Roller D., Daniilidis K., and Nagel H. H., Model-based object tracking in monocular image sequences of road traffic scenes[J], International Journal of Computer Vision,1993,10(3):257-281.
    [126]Prati A., Mikic I., Trivedi M. M., et al, Detecting moving shadows:algorithms and evaluation[J], IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(7):918-923.
    [127]Prati A., Cucchiara R., Mikic I., et al, Analysis and detection of shadows in video streams:a comparative evaluation[A]. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],2001, 2:571-576.
    [128]Mikic I., Cosman P., Kogut G., et al, Moving shadow and object detection in traffic scenes[A]. In:Proceedings of International Conference on Pattern Recognition[C], Sep.3-7,2000,1:321-324.
    [129]Elgammal A., Harwood D. and Davis L. S., Non-parametric model for background subtraction[J], Lecture Notes in Computer Science,2000, 1843:751-767.
    [130]Horprasert T., Harwood D. and Davis L., A statistical approach for real-time robust background subtraction and shadow detection[A]. In:IEEE International Conference on Computer Vision[C],1999,99:1-19.
    [131]Hsu W.-L., Liao H.-Y.M., Jeng B.-S., et al, Real-time traffic parameter extraction using entropy[J], IEE Proceedings-Vision, Image and Signal Processings.,2004,151(3):194-220.
    [132]Zhou Wang and Bovik A. C., A universal image quality index[J], IEEE Signal Processing Letters,2002,9(3):81-84.
    [133]Zhou Wang, Bovik A. C., Sheikh H. R., et al, Image quality assessment:From error measurement to structural similarity [J], IEEE Trans. on Image Processing, 2004,13(4):600-612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700