用户名: 密码: 验证码:
基于支持向量机的机械零件计算机视觉检测若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高视觉检测系统的检测精度和检测速度为目标,以支持向量机为主要算法,对图像降噪、边缘检测、亚像素检测和图像压缩等视觉检测的关键技术进行了较为深入和系统的研究。
     通过深入分析支持向量机的原理,得出了利用最小二乘支持向量回归机(Least squares support vector regression, LS-SVR)对等间隔离散时间序列信号回归处理可等效为FIR滤波器的结论,给出了相应的卷积模板的构造方法;指出了采用高斯径向基核函数的LS-SVR滤波器与高斯滤波器在降噪能力上的等价性;针对脉冲噪声,提出了一种基于LS-SVR算子模板的多路开关滤波算法,并就三路开关算法和十七路开关算法与现有的典型算法进行了对比研究;提出了严格的一维“好的定位”准则的表达式;建立了基于梯度的二维边缘检测算子的“好的检测结果”和“好的定位”准则的离散表达式;利用LS-SVR求出了二维最优边缘检测算子的近似解;提出了基于支持向量回归的亚像素边缘表示方法,以锥螺纹和链板参数的亚像素检测为例,讨论了支持向量回归机输入样本集的构造方法和获得零件直线类与圆类边缘的亚像素表示的方法;提出了基于LS-SVR的Neville滤波器的设计方法;针对一类图像的整数小波变换,设计了基于最小化小波能量的常用的LS-SVR预测滤波器。
     本文所取得的研究成果对于发展图像处理理论,推动计算机视觉在工业质量检测中的应用具有理论意义和实用价值。
Computer vision inspection technology is computer vision based non-intrusive measuring technique integrated with the modern optical technology, electronic technique, mechanical manufacturing, control theory and computer technology. Visual inspection system can be roughly sub-divided into two categories: the system hardware design and the software system design.The system hardware design mainly includes lighting system design, camera system design, information channel construction, image acquisition and computer system selection; the software system mainly deals with the image processing technique, camera calibration technique.In this dissertation, with a view to improving the detecting precision and speed of visual inspection system, the key technologies of the image denoising, edge detection, sub-pixel detection and image compression, are conducted intensively and systematically.
     The support vector machine (SVM) is a kind of machine learning approaches in statistical learning theory fitting especially for small sample training, in which the generalization capability is improved by conducting the structural risk minimization (SRM). In dealing with the pattern recognition with small sample, nonlinearity and higher dimensional space, SVM gives many specific advantages which can be employed in other machine learning problems such as function estimating. In recent years, great importance was attached to the application of SVM in computer vision, further research on that basis to well exert the role of SVM in computer vision will be of vital importance for constructing computer vision detection system and elevating the measurement accuracy.
     The basic operator in image processing is the filter. A functional filter plays a very vital role to image processing. Conclusions are arrived at on an in-depth study of SVM principle, that the processing of signals regression process at evenly spaced points in discrete-time series utilizing least squares support vector regression is equivalent to a FIR filter, in which the constructing method of convolution mask is presented; and it is suggested that the FIR filter is a linear filter families differentiated by kernel function and penalty factor, and the derivative operator of every orders in strictly compliance with mathematical definitions is deduced. The using of such a filter can overcome, on one hand, the problem of wider margin of variation caused by utilizing difference method for approximate calculation because of not obtaining derivation operator when a filter is derived, on the other hand, the slower speed caused by matrix calculation in processing data using LS-SVM in conducting engineering problems.
     Images are usually corrupted by random noise in the process of camera imaging, digital image acquisition and image transmission. The random noises make it hard for the pixels value of images to reflect the optical properties of the object, which have led to a sharp drop in accuracy of measurement. Therefore corresponding measures have to be taken to decrease the influence from the random noise to measuring results. In this dissertation, theoretical analysis and experimental study of noise reduction by LS-SVR filter is conducted to reach the conclusion that the LS-SVR filter with RBF kernel function is equivalent to the gaussian filter in noise reduction effect, the parameters setting rule for LS-SVR filter are suggested also. LS-SVR based multiple-way switch universal image denoising algorithm is proposed, and the LS-SVR operator mask design technique and operating steps of the algorithm for 3-way switch and 17-way switch algorithm are included. Experiment shows that the proposed algorithms perform better results in the image denoising, the preserving for edges including its details and the computing speed, which provide with better image data recovery method for accurate measurement of vision checking system under strong impulse noise interference.
     Edges, as the general characteristics of an object, are is the base reference for geometrical feature extraction and analysis in vision inspection. The edge features may be changed with the random noise interference, an excellent edge detection method should possess both anti-noise ability and perfect preserving edge nature. Edge features analyzing combined with well-conditioned method for ill-conditioned image numerical derivative are conducted in this dissertation, the conclusion has been reached that the basic questions for edge detection are the solving for the derivative operators of smoothing filter. By analyzing canny’s 1-d edge detection discrete criterion presented by Demigny, the expression of strict 1-d“good localization”criterion is proposed, on which, the grads based discrete expressions of criterion for the“good detection”and“good localization”of 2-d edge detection operator are created. The 2-d optimal operator corresponding to that criterion is solved in which the evaluation methodology in theory for 2-d edge detection operator is proposed that develops the edge detection theory by Canny. The approximate solution of 2-d optimal edge detection operator is obtained by LS-SVR, results of experiments and theoretical computation indicate that the obtained optimal operator is provided with both strong anti-noise ability and high precision of location. The experimental determination of optimum parameters for 2-d Canny optimal edge detection operator is conducted; Comparison between the results of 2-d Canny optimal edge detection operator and that of the 1-d Canny optimal edge detection operator shows that 2-d Canny optimal edge detection operator generated by 2-d Canny optimal edge detection operator using tensor product is not the optimal edge detection operator. By analyzing multi-scale in wavelet theory, a practical method realizing multi-scale detection by single operator is proposed.
     Usually the image pixels are roughly descripted by edge geometric characteristics, with the continuously increasing of the demand for the precision of vision inspection, the pixel accuracy will not satisfy the actual measuring requirement, employing sub-pixel method to express the edges of a body will remarkablely improve the detection precision of the part geometrical parameters. By analyzing the characteristics of sub-pixel edge detection, the sub-pixel edge detection is divided, in view of application, into image interpolation method and edge fitting method; considering the deficiency existed in optimizing function structure in the fitting method, the sub-pixel edge representation is presented by SVM in edge fitting; taking the sub-pixel edge parameters detection of the taper thread and the chain board for example, the input training sample set construction of SVM and sub-pixel edges description methods for the lines and circles are conducted in details.
     Image compression is one of the key technologies in vision inspection. Wavelet transform is an effective tool for analyzing non-stationary signals and also a major technique in image compression. The wavelet structure can be implemented using the wavelet lifting scheme, the reconfiguration can be directly obtained. By analyzing the wavelet lifting scheme and the Neville filter of the prediction operator for lifting scheme, the implementation of LS-SVR based Neville filter is proposed. The detailed parameters of LS-SVR for usual Neville filter are set. In view of the integer wavelet transform for a class of images, the typical LS-SVR filter is designed based on minimizing the wavelet energy, and the selecting principle for lifting wavelet prediction operator is analyzed also so.
     Research findings in this dissertation are theoretical significance and practical value to developing the image processing theory and promoting the application of computer vision in industry quality inspection.
引文
[1]贾云得.机器视觉[M].北京:科学出版社,2000.
    [2]吴立德.计算机视觉需要更扎实更艰苦的工作[J].模式识别与人工智能, 1992, 5(4): 261-265.
    [3]李介谷.在应用中成长着的计算机视觉[J].模式识别与人工智能, 1992,5(4):266~271.
    [4] Ballade D H, Brown C M. Principles of Animate Vision[J]. CVGIP Image Understanding. 1992, 56(1): 3-21.
    [5]边肇琪.计算机视觉要更好地面向应用[J].模式识别与人工智能, 1992, 5(4): 272-275.
    [6] Marr D. Vision[M]. W.H. Freeman and Company, 1982.
    [7] Lowe D G. Three-dimensional object recognition from single two-dimensional images[J]. Artificial Intelligence, 1987, 31(3): 355-395.
    [8] Aloimonos J, Weiss I, Bandopadhyay A. Active vision[J]. International Journal of Computer Vision, 1988, 1(4): 333-356.
    [9] Xu Gang, Zhang Zhengyou. Epipolar Geometry in Stereo, Motion and Object Recognition: A Unified Approach[M]. Kluwer Academic Publishers, 1996.
    [10] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge: Cambridge University press, 2000.
    [11]孙敏.多视几何与传统摄影测量理论[J].北京大学学报(自然科学版), 2007, (04): 453-459
    [12] Zuech N, Miller R K. Machine Vision[M]. Published by the Fairmont Press, Inc. 1987.
    [13] Rosenfeld A. Survey Image Analysis and Computer Vision: 1994[J].Computer Vision and Image Understanding, 1995, 61(1): 90-143.
    [14] Xie M, Trassoudaine L, Alizon J, Gallice J. Road obstacle detection and tracking by an active and intelligent strategy[J]. Machine Vision and Applications, 1994, 7(3): 165-177.
    [15]吴立德.计算机视觉[M].上海:复旦大学出版社, 1993.
    [16] Heikki A. CAD model-based planning and vision guidance for optical 3D coordinate measurement[D]. Doctoral Dissertation, VTT Electronics, University of Oulu, 1996.
    [17] Jarvis J F. Research directions in industrial machine vision[J]. Computer, 1982: 55-61.
    [18]田思,袁占亭.计算机视觉系统框架的新构思[J].计算机工程与应用, 2000, (6): 57-59.
    [19] Newman T S, Jain A K. Asurvey of automated visual inspection[J]. Computer Vision and Image Understanding, 1995, 61(2): 231-262.
    [20] Novini A R. Fundamentals of on-line gagging for machine vision[J]. Vision, 1989, 4: 13-21.
    [21]祝世平,强锡富.工件特征点三维坐标视觉测量方法综述[J].光学精密工程, 2000, 8(2): 192-198,
    [22] Early M D, Teradyne I. Accurate, high speed automated optical inspection comes of age[EB/OL]. Teradyne, Inc. [2005-01-23]. http://www.teradyne.com/prods/cbt/products/library/aoi/optima_series /HighSpeedAOI.pdf
    [23] Voosen K. Machine vision - It's all in the software. Manufacturing Engineer, 2007, 86(1): 43-45.
    [24] Batchilor B G. Automated visual inspection in industry[J]. The Industrial Robot, l978, 5: 174-l76.
    [25] Silven O, Westman T, Huotari T, Hakalahti H. A defect analysis method for visual inspection[C]. Proc. of 8th Int. Conf. On Pattern Recognition. 1986: 868-780.
    [26]彭嘉雄,丁明跃.计算机视觉方法与应用[J].模式识别与人工智能, 1992, 5(4): 279-285.
    [27] West M A, et.al. Computer controlled optical testing of high density printed circuit boards[J]. IBM J. Res. and Dev., 1983, 27(1): 50-58.
    [28] Park J S, Tou J T. A solder joint inspection system for automated printed circuit board manufacturing[C]. Proceedings of the IEEE International Conference on Robotics and Automation, 1990,1290~1295
    [29] Moganti M, Ercal F, Dagli C H, Tsunekawa S. Automatic PCB inspection algorithms: a survey[J]. Computer Vision and Image Understanding. 1996, 63(2):287-313.
    [30] Wu Wen-yen, Wang Mao-Jiun J, Liu Chi-Ming. Automated inspection of printed circuit boards through machine vision[J]. Computer In Industry, 1996, 28(2): 103-111.
    [31]孙长库,叶升华.集成电路呸件的光电自动检测系统[J].光电工程, 1996, 23(3): 44-49.
    [32] Perkins W A. Model-based inspection system for component boards[J]. Pattern Recognition. 1984, 17(1): 135-140.
    [33] Chan K L,Razul S G, Teoh E K. Identifying IC type from its package label using character recognition technique[C]. Proc SPIE, 1997, 3185: 50-57.
    [34] Lahajnar F, Bernard R, Pernu? F, Kova?i? S. Machine vision system for inspecting electric plates[J]. Computer in Industry, 2002, 47(1): 113-122.
    [35] Perng D B , Chou C C, Lee S M. Design and development of a new machine vision wire bonding inspection system[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34(3-4): 323-334.
    [36] Sit O, Petras J. Using AOI in the 01005 assembling process[J/OL]. Circuits Assembly, 2007. [2009-02-03]. http://yestechinc.com/UsingAOI_01005AssemblyProcessF.pdf.
    [37]张文景,张文渊,苏键锋,许晓鸣.计算机视觉检测技术及其在机械零件检测中的应用[J].上海交通大学学报, 1999,33(5): 635-638.
    [38] Chen J M. Vision-based shape recognition and analysis of machined parts[J]. International Journal of Production Research, 1995, 33(1): 101-135.
    [39] Ventura J A, Wan Wenhua. Accurate matching of two-dimensional shapes using the minimal tolerance zone error[J]. Image and Vision Computer, 1997, 15(12): 889-899.
    [40] Chen J M. A genetic-based vision system for cross-functional integration in flexible manufactureing, A tutorial and application[J]. The International Journal of Flexible Manufactureing System, 1997, 9(4): 343-365.
    [41] Chen J M. Determing minmax profile erros for the cross-sections of machined parts[J]. International Journal of Production Research, 1998, 36(4): 1105-1124.
    [42] Bremner J F. Automatic vision inspection system for the inspection of shapes cut in sheet material[C]. Proc. on Image Processing, 1986: 40-43
    [43] Landman M M, Roberton S J. A flexible industrial system for automated three-dimensional inspection[C], Proc. SPIE, 1986, 728: 203-209
    [44] Dahle Q, McLeod A, Sommerfelt A. On-line inspection of extruded profile geometry[C]. Proc. SME Vision’90, 1990: 1-17
    [45] Mills R. Development of a line-scan camera for 2D high accuracy measurement[J]. Machine Vision, 1991: 267-277.
    [46] Hashim A A, C1ement P E.Computer vision in a manufacturing process[C]. Proc on Robot Vision, 1994: 417-427.
    [47] Newman T S, Jain A K. A system for 3D cad-based inspection using range images[J]. Pattern Recognition. 1995, 28(10): 1555-1574
    [48] Sodhi M S, Tiliouine K. Surface roughness monitoring using computer vision[J]. International Journal of Machine Tools Manufacture, 1995, 36(7):817-828
    [49] Park H P, Lee K H. Automated inspection planning using a reverse engineering technique[C]. Proc. of the 1st Korea-Japan Joint Conf. on Industrial Engineering and Management,Taejon, Korea, 1998, 225–230.
    [50] Chen Mu-Chen. Roundness measurement for discontinuous perimeters via machine vision[J]. Computer in Industry, 2002, 47(2): 185-197
    [51] Malassiotis S, Strintzis M G . Stereo vision system for precision dimensional inspection of 3D holes[J]. Machine Vision and Applications, 2003,15(12): 101-113
    [52] Dunin-Barkovskii I I. Construction of system for controlling the dimensions of large-scale parts based on a 3D machine vision system[J]. Measurement Techniques, 2004, 47(12): 1168-1173
    [53] Bhuvanesh A, Ratnam M M. Automatic detection of stamping defects in leadframes using machine vision: Overcoming translational and rotational misalignment[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(11-12): 1201-1210
    [54] Kim K H, Kim Y W, Suh S W. Automatic visual inspection system to detect wrongly attached components[C]. International Conference on Signal Processing Application and Technology, Toronto, Canada, 1998
    [55] Angrisani L, Daponte P, Pietrosanto A, Liguori C. An image-based measurement system for the characterisation of automotive gaskets[J]. Measurement, 1999, 25(3): 169~181
    [56] Kosmopoulos D, Varvarigou T. Automated inspection of gaps on the automobile production line through stereo vision and specular reflection[J]. Computer in Industry, 2001, 46(1): 49~63
    [57] Dunin-Barkowski I , Yang S H, Kim Y S, Lee S R. Error compensation method for a gantry robot and a laser-vision sensor-based chassis module measurement system[J]. The International Journal of Advanced Manufacturing Technology, 2005, 27(3-4): 329-333
    [58] Killing J, Surgenor B W, Mechefske C K. A Neuro-fuzzy Approach to Machine Vision Based Parts Inspection[C]. Proc. of NAFIPS 2006, 696 - 701
    [59] Chtioui Y, Panigraahi S, Backer L F. Rough sets theory as a pattern classification tool for quality assessment of edible beans[J]. Transaction of the ASAE, 1999, 42(4): 1145-1152
    [60] Aleixos N, Blasco J, Navarron F, Molto E. Multispectral inspection of citrus in real-time using machine vision and digital signal processors[J]. Computers and Electronics in Agriculture. 2002, 33(2): 121-137
    [61] Bento B, et a1. A Computer vision system for the automatic measurement of volumes of wood[C]. Proc. SPIE, 1993, 1989: 206-214.
    [62] Bhandarkar S M, Luo Xingzhi, Daniels R F, Tollner E W. Automated Planning and Optimization of Lumber Production Using Machine Vision and Computed Tomography[J]. IEEE Trans. Automation Science and Engineering, 2008,5(4): 677– 695.
    [63] Edwards R, Barkan C P L, Hart J M, et al. Improving the efficiency and effectiveness of railcar safety appliance inspection using machine vision technology[C]. Proc. of the 2006 IEEE/ASME Joint Rail Conference, 2006: 81 - 89
    [64] Lee J H, Kim J M, Moon H J, Shik Y. Machine Vision System for Automatic Inspection of Bridges[C]. Proc. of CISP '08. 2008, 3: 363 - 366
    [65] Klosowski M. Hardware accelerated implementation of wavelet transform for machine vision in road traffic monitoring system[C]. Proc. of 1st International Conference on Information Technology, 2008: 1- 4.
    [66] Mammarella M, Campa G, Napolitano M R, et al. Machine Vision/GPS Integration Using EKF for the UAV Aerial Refueling Problem[J]. IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2008, 38(6): 791 - 801
    [67] Derganc J, Likar B, Bernard R, Tomamevic D, Pernus F. Real-time automated visual inspection of color tablets in pharmaceutical blisters[J]. Real-Time Imaging, 2003, 9: 113-124
    [68]王晓华,高庆吉,赵卫平.利用模糊统计法识别货运列车车号的研究[J].中国图象图形学报, 2000, 5(11): 963-967
    [69] Lu R S, Li Y F, You Q. On-line measurement of the straightness of seamless steel pipes using machine vision technique[J]. Sensors and Actuators A: Physical, 2001, 94(1): 95-101
    [70]贡玉南,华建兴,黄秀宝.基于匹配Gabor滤波器的规则纹理缺陷检测方法[J].中国图像图形学报, 2001, 6(7): 624-628
    [71]潘洪平,董申.钢球表面质量评价系统用展开轮的理论研究[J].轴承, 2001, (12): 28-31,43
    [72]张爱武,李明哲,胡少兴等.基于计算机视觉的板类零件曲面测量系统[J].中国图象图形学报, 2002, 7(2): 190-195
    [73]梁学军,洪迈生,贾文焕.螺纹紧固件的自动检测技术[J].计量技术, 2002, (2):14-17
    [74]张永军,刘经南,张祖勋等.基于非量测CCD摄像机的钣金件误差检测[J].测绘学报, 2002, 33(2): 132-137
    [75]潘洪达,陈熔,苏建等.图像测量技术在汽车轴距差检测中的应用研究[J].中国公路学报, 2003, 16(2): 112-119
    [76]黄劼,周肇飞.机器视觉精密测量系统研究[J].光学技术, 2004, 30(4): 491-494
    [77]马强,唐文彦,陈金存等.自由环状零件尺寸图像测量系统研究[J].航天制造技术, 2004, (1): 27-31
    [78]张少军,苟中魁,李庆利等.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸[J].光学精密工程, 2004, 12(6): 619-625.
    [79]岳晓峰,赵敏,栾宝剑等.计算机视觉技术在发动机缺陷检测系统中的应用[J].计算机测量与控制, 2005, 13(6): 516-518
    [80]傅健,路宏年,侯涛,龚磊.基于ICT图像的航空发动机涡轮叶片壁厚尺寸精密测量方法[J].航空学报, 2006,27(2): 325-330.
    [81]杨民,孙翠丽,戚琦.基于3D-ICT图像的涡轮叶片形面点云高精度提取技术[J].计算机辅助设计与图形学学报, 2007, 19(9): 1212-1217
    [82]刘富强,田敏,胡振程.智能汽车中基于视觉的道路检测与跟踪算法[J].同济大学学报(自然科学版), 2007, 35(11): 1535-1541
    [83] Han Jian-hai, Zhao Shu-shang, Sun Wei. Research on subpixel detecting on-line system based on machine vision for inner diameter of bearings[C]. Proc. of IEEE International Conference on Robotics and Biomimetics, 2007, 2049– 2052.
    [84]蔡善乐,罗君.基于CCD的滑动轴承套类零件同轴度误差实时检测系统[J].工具技术, 2008, 42(3): 99-101
    [85] Liu Mingyuan, Wang Dongwen. Optimal sequence planning for automobile gauge panel image inspection[C]. Proc. of Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing, 2008: 1173– 1176.
    [86] Zhang Zhibin, Chen Yangzhou, Yang Yuzhen. Driver fatigue detection system based on machine vision[C]. Proc. of 7th World Congress on Intelligent Control and Automation, 2008, 3979 - 3984
    [87]郭水霞.图像处理中非加性噪声情形下维纳滤波的推广[J].计算机工程与应用, 2007, 43(12): 184-238
    [88] Marr D, Hildreth E. Theory of edge detection[C]. Proc. of Royal Society of London 207, 1980: 187-217.
    [89] Canny John. A computational approach to edge detection[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, 8(6), 679-698
    [90] Xu C Y, Snakes J. Shapes and Gradient Vector Flow[J]. IEEE Trans. Image processing, 1998, 7(3): 359-369.
    [91] Feng H H, Castanon D A, Karl W C. A curve evolution approach for image segmentation using adaptive flows[C]. Proc. of Eighth IEEE International Conference on Computer Vision, 2001, 2: 494-499.
    [92] Haralick R M. Digital step edges from zero crossing of secong directional derivatives[J]. IEEE Trans. Pattern Analysis and Machine Intelligence. 1984, 6(1): 58-68.
    [93] Nalwa V S, Binford T O. On detecting edged[J]. IEEE Trans. Pattern Analysis and Machine Intelligence. 1986, 8(6): 699-714.
    [94] Mallat S. Zero-crossing of a wavelet transform[J]. IEEE Trans. Information Theory, 1991, 37(4): 1019-1033 .
    [95] Mallat S, Zhong S. Characterization of signals from multiscale edge[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1992, 14(7): 710-732
    [96] Heric D, Zazula D. Combined edge detection using wavelet transform and signal registration[J]. Image and Vision Computing, 2007, 25: 652-662
    [97] Russo F. Edge Detection in Noisy Images Using Fuzzy Reasoning[J]. IEEE Trans. Instrumentation and Measurement, 1998, 47(5): 1102-1541.
    [98] Kang C C, Wang W J. A novel edge detection method based on the maximizing objective function[J]. Pattern Recognition, 2007, 40: 609-618
    [99]段贵多,李建平,黄添喜.图像的多尺度几何分析概述[J].计算机应用研究, 2007, 24(10): 9-14.
    [100] Hueckel M F. A operator which locates edges in digitized pictures[J]. JACM, 1971, (18): 113-115.
    [101] Jensen K, Anastassiuo D. Subpixel edge localization and interpolation of still images[J]. IEEE Trans. Image Processing, 1995, 4(3): 285-295
    [102] Tababai A J, Mitchell O E. Edge location to subpixel values in digital imagery[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, 7(2): 188-210
    [103] Lyvers E P, Mitchell O R, Akey M L, Reeves A P. Subpixel measurements using a moment-based edge operator[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989, 11 (12): 1293-1309
    [104]丁兴号.基于小波变换的亚像素边缘检测[J].仪器仪表学报, 2005, 26(8): 801-804.
    [105] (日)原岛博主编,薛培鼎,徐国鼎译.图像信息压缩[M].北京:科学出版社,2004年.
    [106] Omstein D S , Weiss B. Entropy and data compression schemes[J]. IEEE Trans. Information Theory ,1993,39(1):78-83.
    [107] LI J,Monikopoulos C N. Nonlinear prediction in image coding with DPCM[J]. IEE,Electronies Letters, 1990, 26(17): 1357-1359.
    [108] Christopoulos C,Skodras A,Ebrahimi T. The JPEG2000 still image coding system: an over view[J]. IEEE Trans. Consumer Electronies.2000,46(4): 1103-1127.
    [109]张志华,郑南宁等.学习矢量量化的软竞争算法[J].软件学报, 2002, 13(5): 980-986.
    [110] Lawson S S,Klouche-Djedid A. Technique for design of two-channel approximately linear Phase QMF filter bank and its application to image compression[J]. IEE Proceedings: Vision,Image and Signal Processing,2001, 148(2): 85-92.
    [111] Skodras A C,Ebrahimi T. The JPEG2000 still image compression standard[J]. IEEE Signal Proeessing Magazine, 2001, 18(5):36-58.
    [112] Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer, NY, 1995
    [113] Vapnik V N. Support vector method[J]. Lecture Notes in Computer Science, 1997, 1327:263.
    [114] Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification[J]. Computational Optimization and Applications, 2001, 20(1): 5-22.
    [115] Bi Le-Peng, Huang Hao, Zheng Zhi-Yun, Song Han-Tao. New heuristic for determination Gaussian kernels parameter[C]. Proceedings of ICMLC’05, 2005, 7(7): 4299-4304.
    [116] Wang Xiaohong, Wu Sitao, Li Qunzhan, Wang Xiaoru. v-SVM for transient stability assessment in power systems[C]. Proc. of ISADS2005, 2005, 356-363.
    [117] Wang Yongqiao, Wang Shouyang, Lai K K. A new fuzzy support vector machine to evaluate credit risk[J]. IEEE Trans. Fuzzy Systems, 2005, 13(6): 820–831.
    [118] Wu Kui, Yap K H. Fuzzy SVM for content-based image retrieval: a pseudo-label support vector machineframework[J]. Computational Intelligence Magazine, IEEE, 2006, 1(2): 10–16.
    [119] Zhang Li, Zhou Weida, Jiao Licheng. Wavelet support vector machine[J]. IEEE Trans. Systems, Man and Cybernetics: Part B, 2004, 34(1): 34–39.
    [120] Koley C, Purkait P, Chakravorti S. Wavelet-Aided SVM tool for impulse fault identification in transformers[J]. IEEE Trans. Power Delivery, 2006, 21(3): 283–1290.
    [121] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293- 300.
    [122] Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(7): 1109–1114.
    [123] Zeng Xiangyan, Chen Xue-wen. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Trans. Neural Networks, 2005, 16(6): 1541–1546.
    [124] Chu W,Ong C J, Keerthi S S. An improved conjugate gradient scheme to the solution of least squares SVM[J]. IEEE Trans. Neural Networks, 2005, 16(2): 498–501.
    [125] Ferreira L V, Kaszkurewicz E, Bhaya A. Solving systems of linear equations via gradient systems with discontinuous righthand sides: application to LS-SVM[J]. IEEE Trans. Neural Networks, 2005, 16(2): 501–505.
    [126]张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3): 400-406.
    [127] Joachims T. Making large-scale SVM learning practical[C]. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT press, 1998.
    [128] Hsu C W, Lin C J. A simple decomposition method for support vector machines[J]. Machine Learning, 2002, 46(1): 291-314.
    [129] Dong Jian-xiong, Krzyzak A, Suen C Y. Fast SVM training algorithm with decomposition on very large data sets[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(4): 603–618.
    [130] Cao L J, Keerthi S S, Ong C J, et al. Parallel sequential minimal optimization for the training of support vector machines[J]. IEEE Trans. Neural Networks, 2006, 17(4): 1039–1049.
    [131] Huang Jing-Tao, Ma Long-Hua, Qian Ji-Xin. Improved support vector machine for multi-class classification problems[J]. Journal of Zhejiang University(Engineering Science), 2004, 38(12): 1633-1636,1659.
    [132] Kim D S, Nguyen H N, Park J S. Genetic algorithm to improve SVM based network intrusion detection system[C]. Proceedings of AINA 2005,155-158.
    [133]宋雪梅,李兵.蚁群算法及其应用[J].河北理工学院学报, 2006, 28(1): 42-45.
    [134]王静,蒋珉.若干优化算法的运行分析比较[J].计算机仿真, 2006, 23(3): 149-153.
    [135] Xia X, Leung H. Nonlinear spatial–temporal prediction based on optimal fusion[J]. IEEE Trans. Neural Networks, 2006, 17(4): 975–988.
    [136] Platt J. Fast training of support vector machines using sequential minimal optimization[C]. Advances in Kernel methods: Support Vector Learning. Cambridge, MA: MIT Press, 1998: 185-208
    [137]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000, 26(1): 32-43.
    [138] Osuna E, Freund R, Girosi G. Training support vector machines: an application to face detection[C]. Proc. IEEE Conf. On Computer Vision and Pattern Recognition, 1997:130-136.
    [139] Yuan Pingpeng, Chen Yuqin, Jin Hai, Huang Li. MSVM-kNN: combining SVM and k-NN for multi-class text classification[C]. Proc. IEEE International Workshop on Semantic Computing and Systems, 2008, 133 - 140.
    [140] Fine S, Navratil J, Gopinath R A. A hybrid GMM/SVM approach to speaker identification[C]. Proccedings of IEEE International Conefrence on Acoustics, Speechl, and Signal Proeessing. 2001, l: 417-420.
    [141] Roobaert D, Van Hulle M M. View-based 3D object recognition with support vector machines[C]. Proceedings of IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing, 1999: 77-84.
    [142] Cao L J. Support vector machines experts for time series forecasting[J]. Neuro Computing, 2003, 51: 321-339.
    [143]张莉,席裕庚.基于支持向量机的可分离非线性动态系统辨识[J].自动化学报, 2005, 31(6): 965-969.
    [144] He J, Hu H J, Harrison R, et al.. Rule generation for protein secondary strueture prediction with support vector machines and decisiontree[J]. IEEE Trans. NanoBioscience, 2006, 5(l): 46-53.
    [145] Suykens J A K. Nonlinear modeling and support vector machines[J]. Proceedings of the Eighteenth IEEE Instrumentation and Measurement Technology Conefrenee, 2001, l: 277-287.
    [146]陈念贻,陆文聪.支持向量机算法在化学化工中的应用[J].计算机与应用化学, 2002, 19(6): 674-676.
    [147] Tao Dacheng, Tang Xiaoou, Li Xuelong, Wu Xindong. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2006, 28(7): 1088-1099.
    [148] Bazi K Y, Melgani F. Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Trans. Geoscience and Remote Sensing: Part 2, 2006, 44(11): 3374-3385.
    [149] Ni K S, Nguyen T Q. Image superresolution using support vector regression[J]. IEEE Trans. Image Processing, 2007,16(6): 1596– 1610.
    [150] Banerjee S, Lahiri A, Bhattacharya K. Optimization of support insulators used in HV systems using support vector machine[J].IEEE Trans. Dielectrics and Electrical Insulation, 2007, 14(2): 360– 367.
    [151] Cristianini N, Shawe-Taylor J著,李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.
    [152] Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667-1689.
    [153] Lin T C, Yu P T. Adaptive two-pass median filter on support vector machines for image restoration[J]. Neural Computation, 2004, 16(2): 333-354.
    [154] Cheng H, Tian J W, Liu J, Yu Q Z. Wavelet domain image denoising via support vector regression[J]. Electronics Letters, 2004, 40(23):1479-1481
    [155]王顺利.基于支持向量机(SVM)的图像去噪方法[J].微电子学与计算机2005, 22(4): 96-99.
    [156]朱嘉钢,王士同.用于图像恢复的基于SVR的自适应新滤波器的研究[J].计算机应用研究, 2006, (9): 253-255.
    [157]陈春雨,林茂六,张喆.基于支持向量机的信号滤波研究[J].西安交通大学学报, 2006, 40(4): 427-431.
    [158] Wu Ding-xue Peng Dai-qiang Tian Jin-wen. Image denoising using local adaptive least squares support vector regression[J]. Geo-spatial Information Science, 2007, 10(3):196-199.
    [159] Saghri J A, Cheatham P S, Habibi H. Image quality measure based on a human visual system model[J]. Optical Engineering, 1989, 28(7): 813-818.
    [160] Eskiciogln A M, Fisher P S. Image quality measures and their performance[J]. IEEE Trans. Communication, 1995, 43(12): 2959-2965.
    [161] Ko S J, Lee Y H. Center weighted median filters and their application to image enhancement[J]. IEEE Trans. Circuits System, 1991, 38(9): 984-993.
    [162] Yin L, Yang R K, Neuvo, Y. Weighted median filters: a tutorial[J]. IEEE Trans. Circuits System. 1996, 43(3): 157-192.
    [163]郭晓新,卢奕南,许志闻,等.自适应定向加权中值滤波[J].吉林大学学报(理学版), 2005,43(4): 495—499.
    [164] Toprak A, Güler I. Suppression of Impulse Noise in Medical Images with the Use of Fuzzy Adaptive Median Filter[J]. Journal of Medical Systems, 2006, 30(6): 465-471.
    [165] Kravchonok A I, Zalesky B A, Lukashevich P V. An algorithm for median ltering on the basis of merging of ordered columns[J]. Pattern Recognition and Image Analysis, 2007, 17(3): 402-407.
    [166]宋琼琼,贾振红.基于人眼视觉特性的自适应中值滤波算法[J].光电子·激光, 2008, 19(1): 128-130.
    [167] Sun T, Neuvo Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters, 1994, 15(4): 341-347.
    [168] Zhang S, Karim M A. A new impulse detector for switching median filters[J]. IEEE Signal Process Letters, 2002, 9(11): 360-363.
    [169] Aizenberg I, Butakoff C. Effective impulse detector based on rank-order criteria[J]. IEEE Signal Process Letters, 2004, 11(3): 363 - 366.
    [170]秦鹏,丁润涛.一种基于排序阈值的开关中值滤波方法[J].中国图像图形学报, 2004, 9(4): 412-416.
    [171] Xu H X, Zhu G X, Peng F Y, Wang D S. Adaptive fuzzy switching filter for images corrupted by impulse noise[J]. Pattern Recognition Letters, 2004, 25(15): 1657-1663.
    [172] Hwang H, Haddad R A. Adaptive median filters: new algorithms and results[J]. IEEE Trans. Image Progressing, 1995, 4(4): 499-502.
    [173] Wang Z, Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Trans. Circuits System, 1999, 46(1):78-80.
    [174] Hamza A B, Luque-Escamilla P L, Martínez-Aroza J, Román-Roldán R. Removing noise and preserving details with relaxed median filters[J]. Journal of Mathematical Imaging and Vision, 1999,11(2): 161-177.
    [175] Eng H L, Ma K K. Noise adaptive soft-switching median filter[J]. IEEE Trans. Image process, 2001, 10(2):242-251.
    [176] Ong P E, Ma K K. A switching median filter with boundary discriminative noise detection for extremely corrupted images[J]. IEEE Trans. Image Processing, 2006,15(6). 1506-1516.
    [177] Nikolova M. A variational approach to remove outliers and impulse noise[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 99-120.
    [178] Chan R H, Ho C-W, Nikolova M. An interactive procedure for removing random-valued impulse noise[J]. IEEE Signal Processing Letters, 2004, 11(12): 921-924.
    [179] Chan R H, Ho C-W, Nikolova M. Salt-and-pepper noise removal by median-type noise detectors and detail preserving regularization[J]. IEEE Trans. Image Progressing, 2005, 14(10): 1479-1485.
    [180]董艺秋,徐树方.一个高效的椒盐噪声去除方法[J].北京大学学报(自然科学版), 2006, 42(5): 46-54.
    [181] Charbonnier P, Blanc-Féraud L, Aubert G, Barlaud M. Deterministic edge-preserving regularization in computed imaging[J]. IEEE Trans. Image Processing, 1997, 6(2): 298-311.
    [182]宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007, 33(5): 474-479.
    [183]邢藏菊,王守觉,邓浩江,罗予晋.一种基于极值中值的新型滤波算法[J].中国图像图形学报, 2001, 6(6): 533-536.
    [184] Van Gestel T, Suykens J A K, Baestaens D E, Lambrechts, A, Lanckriet G, Vandaele B, et al. Financial time series prediction using least squares support vector machines within the evidence framework[J]. IEEE Trans. Neural Networks, 2001, 12( 4) :809- 821.
    [185] Chalimourda A, Scholkopf B, Smola A. Experimentally optimalνin support vector regression for different noise models and parameter settings[J]. Neural Networks, 2004, 17(1): 127- 141.
    [186] Cherkassky V, Ma Yunqian. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004,17(1): 113- 126.
    [187] Demigny D. On optimal linear filtering for edge detection[J]. IEEE Trans. Image Processing, 2002, 11(7): 728-737
    [188] Peter M, Bogdan G. Edge detection with embedded confidence[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23(12): 1351-1365
    [189] Uytterhoeven G, Bultheel A.The Red-Black wavelet transform[C]. Proc. of the IEEE Benelux Signal Processing Symposium.Leuven,Belgium,1998: 191-194
    [190] Zheng Sheng, Liu Jian, Tian Jin Wen. A new efficient SVM-based edge detection method [J]. Pattern Recognition Letter, 2004, 25 (10) : 1143- 1154.
    [191] Zhu Jiagang, Wang Shitong, Wu Xisheng, Chung F L. A novel adaptive SVR based filter ASBF for image restoration[J]. Soft Comput, 2006, 10: 665–672
    [192] Torre V, Poggio T. On edge detection [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, 8(2): 147-1
    [193] Witkin A. Recovering surface shape and orientation from texture[J]. Artificial Intelligence, 1981, 17: 17-45.
    [194] Demigny D, Karabernou M. An effective resolution definition or how to choose an edgedetector, its scale parameter and the threshold?[C]. Proceedings of International Conference on Image Processing 1996. 1996, 1: 829– 832.
    [195] Demigny D, KamléT. A discrete expression of canny's criteria for step edge detector performances evaluation[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(11): 1199-1211.
    [196] Peter M, Bogdan G. Edge detection with embedded confidence[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23(12): 1351-1365
    [197]陈向伟.机械零件计算机视觉检测关键技术的研究[D].吉林大学博士学位论文, 2005.
    [198]孙即祥,王晓华,钟山.模式识别中的特征提取与计算机视觉不变量[M].北京:国防工业出版社, 2001.
    [199] Li Yu-Shan, Yong T Y. Subpixel Edge Detection and Estimation with a Microprocessor- Controlled Line Scan Camera[J]. IEEE Trans. Industrial Electronics, 1988, 35(1): 105- 112.
    [200]屈玉福,浦昭邦,王亚爱.视觉检测系统中亚像素边缘检测技术的对比研究[J].仪器仪表学报, 2003, 24(4,增刊): 460-462.
    [201]徐孝恩.螺纹测量[M].北京:机械工业出版社,1986:261-383
    [202] Shevade S., Keerthi S. Improvements to the SMO Algorithm for SVM Regression[J]. IEEE Trans. Neural Networks, 2000, 11(5): 1188-1183
    [203] Smola A, Sch?lkopf B. A Tutorial on Support Vector Regression[J]. Statistics and Computing. 2004,14: 199–222
    [204]甘永立.形状和位置误差检测[M].北京:国防工业出版社, 1995.
    [205] Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM J. of Math. Anal. 1984, 15(4): 723-736.
    [206]崔锦泰著,程正兴译.小波分析导论[M].西安交通大学出版社,1995.
    [207]彭玉华.小波变换与工程应用[M].北京:科学出版社,2000.
    [208] Daubeehies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996
    [209] Daubeehies I. The wavelet transform: time-frequency localization and signal analysis[J]. IEEE Trans. Information Theory, 1990, 36(5): 961-1005.
    [210] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [211] Mallat S, Hwang W L. Singularity detection and Processing with wavelets[J]. IEEE Trans. Information theory, 1992, 38(2):617-643.
    [212] Sweldens W. The lifting scheme: A construction of second generation wavelets[J]. SIAM J. Math. Anal., 1998, 29(2): 511-546
    [213] Daubechies I , Sweldens W. Factoring wavelet transforms into lifting steps[J]. J. Fourier Anal. Appl., 1998, 4(3): 247-269
    [214] Mallat S. Multiresolution approximation and wavelet orthogonal bases of L2(R)[J]. Transactions of theAmerican Mathematical Socity, 1989, 315(1) : 69-87
    [215] Albanesi M G, Guerrini F. An HVS-based adaptive coder for perceptually lossy image compression[J]. Pattern Recognition, 2003, 36(4): 997-1007
    [216] Cooklev T, Nishihara A, Yoshida T, Sablatash M. Multidimensional two-channel linear phase FIR filter banks and wavelet bases with vanishing moments[J]. Multidimensional Systems and Signal Processing, 1998, 9(1):39–76.
    [217] Zhou J, Do M N, Kovacevic J. Multidimensional orthogonal filter bank characterization and design using the Cayley transform[J]. IEEE Trans. Image Processing, 2005, 14(6): 760–769,
    [218] Van De Ville D, Blu T, Unser M. Isotropic polyharmonic B-splines: scaling functions and wavelets[J]. IEEE Trans. Image Processing, 2005, 14(11): 1798–1813.
    [219] Zhou J, Do M N, Kovacevic J. Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks[J]. IEEE Trans. Image Processing, 2006, 15(2): 511–519.
    [220] Viscito E, Allebach J P. The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices[J]. IEEE Trans. Circuits and Systems, 1991, 38(1): 29–41.
    [221] Kovacevic J, Vetterli M. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn[J]. IEEE Trans. Information Theory, 1992, 38(2): 533-555.
    [222] Van De Ville D, Blu T, Unser M. On the multidimensional extension of the quincunx subsampling matrix[J]. IEEE Signal Processing Letters, 2005, 12(2): 112-115.
    [223] Feilner M, Van De Ville D, Unser M. An orthogonal family of quincunx wavelets with continuously adjustable order[J]. IEEE Trans. Image Processing, 2005, 14(4): 499-510.
    [224]杨福生.小波变换的工程分析与应用(第二版)[M].北京:科学出版社,2000 :121-132.
    [225] Kovacevic J, Sweldens W. Wavelet families of increasing order of arbitrary dimensions[J]. IEEE Trans. Image Processing, 2000, 9(32): 480-496
    [226] De Boor C, Ron A. On multivariate polynomial interpolation[J]. Constructive Approximation, 1990, 6(3): 287-302.
    [227] De Boor C, Ron A. Computational aspects of polynomial interpolation in several variables[J]. Math. Comp., 1992, 58(198): 705-727.
    [228] Vetterli M, Kovacevic J. Wavelets and Subband Coding[M]. Prentice Hall, Englewood Cliffs, NJ, USA,1995.
    [229] Wang Y, Ostermann J, Zhang Y Q. Video Processing and Communications[M]. Prentice-Hall, Englewood Cliffs, NJ, USA, 2002.
    [230]曾剑芬,马争鸣.提升格式:多项式拟合的预测方法[J].电路与系统学报, 2001, 6(3): 62-67
    [231]杨汉生,吕家云,李明,杨成梧.一种拟合型的提升小波预测方法[J].系统仿真学报, 2006, 18(9): 2681-2683.
    [232] Calderbank A R, Daubechies I, Sweldens W, et al. Wavelet Transforms That Map Integers to Integers[J]. Applied and Computational Harmonic Analysis, 1998, 31(5) : 332-369.
    [233] Daubechies I著,李建平,杨万年译.小波十讲[M].北京:国防工业出版社,2004: 232-237.
    [234] [2009-01-30]. http:// decsai. ugr. es/ cvg/ dbimagenes/ index. php

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700