用户名: 密码: 验证码:
转Bcl-2、Ced-9、PpBl-1基因水稻抗盐性及其抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是植物生长发育的主要限制因素之一,严重影响着农作物的产量和品质。利用基因工程手段提高农作物的抗盐性已成为作物遗传改良的重要内容之一。前人的研究结果已经证实凋亡抑制基因Bc]-2和Ced-9能够提高植物细胞对生物和非生物胁迫的抗性,但是其作用机制仍知之甚少。本研究以水稻为材料,开展盐(NaCl)诱导细胞程序性死亡(programmed cell death, PCD)的研究,并通过转细胞凋亡抑制基因Bcl-2/Ced-9/PpBI-1提高水稻的耐盐性,研究其耐性机理。获得如下主要结果:
     1Bcl-2基因通过抑制盐胁迫引起的胞质Ca2+增加和PCD的产生,提高水稻对盐胁迫的耐受性。
     1.1在盐(NaCl)胁迫条件下,Bcl-2转基因水稻比野生型具有较高的萌发率、相对根长生长和细胞活性,显示更强的耐盐性,证明凋亡抑制基因Bcl-2在转基因水稻根尖细胞内具有明显的促进耐盐胁迫功能。
     1.2用DNA ladder检测方法,比较转Bcl-2基因和野生型水稻在盐胁迫条件下的细胞PCD,发现Bcl-2基因的过表达能明显地抑制盐诱导PCD的发生,说明过表达Bcl-2转基因水稻通过抑制PCD的产生而提高耐盐胁迫能力。
     1.3用Fluo-3/AM共聚焦荧光显微技术,发现NaCl能显著诱导水稻根尖细胞内钙离子(Ca2+)水平增加;Bcl-2能直接抑制调节胞内钙离子(Ca2+)水平。提示Bcl-2作用于盐胁迫引起的Ca2+信号水平的调控。Bcl-2在植物细胞中的耐盐机制可能是通过控制细胞内Ca2+信号水平的升高来抑制盐胁迫引起的PCD。
     1.4La3+处理能显著缓解野生型盐胁迫导致的水稻萌发率和根伸长抑制,减缓胞内钙离子(Ca2+)水平上升,抑制PCD发生。但La3+处理对Bcl-2转基因水稻作用不明显。
     2用非损伤微测技术(Non-invasive Microtest Technique(NMT))进一步证明了Bcl-2通过调节离子流抑制盐胁迫引起的PCD。
     2.1用非损伤微测技术(Non-invasive Microtest Technique),测定盐胁迫引起的水稻根尖细胞的离子流,结果表明,在盐胁迫下,野生型水稻细胞产生明显的K+和H+外流,而Bcl-2誓能够显著减弱K+外流并抑制PCD的产生,但H+外流没有影响。证明在盐胁迫下,发生水稻根尖细胞PCD的主要原因是盐胁迫引起的K+外流。
     2.2La3+处理野生型能够抑制盐胁迫引起的水稻根尖细胞K+外流,而对转Bcl-2基因水稻的作用不明显。说明Bcl-2的作用位点可能与La3+作用位点相同,均与NSCC发生作用。
     2.3采用共聚焦显微技术,测定细胞内Ca2+的含量以及Ca2+外流,结果表明在盐胁迫下,水稻根尖细胞Ca2+外流增加,而Bcl-2转基因水稻的Ca2+外排能力比野生型更强。
     3在盐胁迫-下,野生型水稻OsVPE-2和OsVPE-3表达显著高于Bcl-2转基因水稻;La3+处理能显著抑制野生型盐胁迫引起的OsVPE-2和OsVPE-3表达,但对Bcl-2转基因水稻影响不明显。
     3.1定量PCR测定结果表明,与野生型相比,胞质Ca2+水平显著降低的过表达Bc1-2转基因水稻中OsVPE-2和OsVPE-3的表达显著被抑制。
     3.2在盐胁迫条件下,La3+处理能显著抑制野生型盐胁迫引起的OsVPE-2和OsVPE-3表达,而La3+处理对转Bcl-2基因水稻OsVPE-2和OsVPE-3表达的影响不明显。
     3.3综合K+、Ca2+测定结果和OsVPE-2和OsVPE-3表达特征,表明在盐胁迫条件下,通过改变K+外流,影响胞质K+、Ca2+浓度,调节OsVPE-2和OsVPE-3表达,影响PCD的产生,最后表现出不同的抗盐性。
     4通过根癌农杆菌(Agrobacterium tumefaciens) EHA105介导转化方法,成功将抗凋亡基因Ced-9和PpBI-1转入水稻细胞,获得了转Ced-9和PpBI-1基因水稻株系,并进行抗盐性鉴定及其遗传分析。
     4.1构建含Ced-9或PpBI-1基因的表达质粒pCAMBIA13011-Ced-9/PpBI-1,通过根癌农杆菌EHA105介导转化水稻(日本晴),经潮霉素筛选和PCR鉴定、Southern杂交分析,证明Ced-9和PpBI-1基因成功插入到水稻基因组,并用RT-PCR分析确认Ced-9和PpBI-11基因已成功表达,获得了两个转基因纯合株系。
     4.2通过对转Ced-9/PpBI-1基因水稻T3代的生长发育特性分析,观察到转Ced-9基因水稻生长发育正常,而转PpBI-1基因水稻生长发育受到一定影响。认为与转基因插入位点有关。
     4.3通过对转Ced-9/PpBI-1基因水稻T3代的抗盐性鉴定,发现转Ced-9/PpBI-1基因水稻株系在萌发率和根伸长方面明显表现出对盐胁迫的耐受性。
     4.4通过DNA laddering检测发现,Ced-9基因过表达能减弱盐胁迫引起的水稻根尖细胞PCD。
NaCl stress is the major factor limiting plant growth and development, which seriously affects the yields and qualities of crops. Using transgenic technique has been an important strategy to produce agricultural crops to improve stress resistance. It has been shown that apoptotic suppressors such as Bcl-xL and Ced-9can enhance the resistance of plant cells to biotic or abiotic stresses, but detailed mechanisms remain still largely unclear. Here, we choose two rice strains(Oryza sativa L.subsp.Japonica cultivar Zhonghuall; Oryza sativa cv. Nipponbare) as an excellent model for studying various aspects of salt induced programmed cell death (PCD). And our studies were carried out to elucidate the mechanisms and enhance the resistant to salt stress by overexpressing Bcl-2/Ced-9/PpB1-1in rice. Results obtaind in our research are summarized as follows:
     1Bcl-2improves the tolerance to salt stress via suppressing cytosolic Ca2+increase and PCD caused by salt stress in rice.
     1.1Bcl-2transgenic rice possessed the ability to overcome NaCl stress. Under saline conditions, it can obviously improve the seed germination, root elongation and cell viability.
     1.2The profile of DNA laddering indicates that NaCl induces cell death accompanied by typical hallmarks of PCD, while Bcl-2could promote NaCl tolerance in transgenic rice via inhibition of PCD.
     1.3Investigation with Fluo-3/AM CONFOCAL shows that salt stress lead to increase cytosolic Ca2+in WT line, contrast to in Bcl-2line, suggesting that Bcl-2mediate closely with Ca2+signaling pathway induced upon salt stress.
     1.4La3+has the distinct ability to improve the seed germination and root elongation, reduce cytosolic Ca2+and inhibit DNA laddering in WT line, but not in Bcl-2line.
     2Using the Non-invasive Micro-test Technique (NMT), we confirm that under salt stress, Bcl-2can suppress NaCI-induced PCD by means of the regulation of ion fluxesin in rice cell.
     2.1The main cellular events under salt stress involve K+efflux from rice tip cells, which may be effectively suppressed by Bcl-2, so that salt-induced PCD can be inhibited. Otherwise, H+efflux does not change in such condition.
     2.2La3+can contribute to inhibition of K+efflux under salt stress in WT rice. However, its potential indicates unclearly in Bcl-2line.
     2.3Ca2+efflux is a common phenomenon under salt stress, which undertakes to much more extent in Bcl-2than in WT line.
     3K+efflux in cytoplasm under salt stress lead to transcriptional activation of OsVPE-2and OsVPE-3, furthermore, results in PCD. Such activation can be remarkably down regulated by La3+in WT rice, but not in Bcl-2line.
     3.1Q-RT-PCR detection showed that salt stress significantly increase expression of OsVPE-2and OsVPE-3in WT, but the expressions were inhibited in Bcl-2line.
     3.2Under salt sress, La3+treatment inhibited expression of OsVPE-2and OsVPE-3in WT, but not in in Bcl-2line.
     4Ced-9and PpBI-1gene were tansformed into rice calli by Agrobacterium tumefaciens-mediated transformation. Two transgenic lines, which possessed tolerance to salt, were successfully obtained in rice.
     4.1The incorporation of pCAMBIA13011-Ced-9/PpB1-1into rice genome was detected/identified by hygromycin selection, and PCR relative to target genes and Southern blotting. The expression of Ced-9/PpBl-1were confirmed by RT-PCR analysis in transgenic lines, and as a result, homozygotic lines of transgenic rice were obtained in two lines.
     4.2As with the investigations of pCAMBIA13011-Ced-9/PpBI-1transgenic T3lines, Ced-9line shows normal developmental phase, but not in PpBI-1line, suggesting that it would be probably caused by the different locus of T-DNA insertion.
     4.3Ced-9/PpBI-1transgenic T3lines possessed tolerance to salt, with respect to the seed germination and root elongation.
     4.4Through detailed analysis of DNA laddering, Ced-9was recognized as an effective factor to suppress NaCl-induced PCD, in rice.
引文
Adams JM, Cory S.2002. Apoptosomes:engines for caspase activation. Curr Opin Cell Biol 14:715-720.
    Assuncao Guimaraes C, Linden R.2004. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 271:1638-1650.
    Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ.1985. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899-906.
    Bellance N, Lestienne P, Rossignol R.2009. Mitochondria:from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14:4015-4034.
    Bolduc N, Ouellet M, Pitre F, Brisson LF.2003. Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells. Planta 216:377-386.
    Bonnefoy-Berard N, Aouacheria A, Verschelde C, Quemeneur L, Marcais A, Marvel J. 2004. Control of proliferation by Bcl-2 family members. Biochim Biophys Acta 1644:159-168.
    Britto DT, Kronzucker HJ.2008. Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637-650.
    Broker LE, Kruyt FA, Giaccone G.2005. Cell death independent of caspases:a review. Clin Cancer Res 11:3155-3162.
    Chen LH, Zhang B, Xu ZQ.2008. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H (+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121-132.
    Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S.2007a. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245-4255.
    Chen Z, et al.2007b. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714-1725.
    Chinnaiyan AM, O'Rourke K, Lane BR, Dixit VM.1997. Interaction of CED-4 with CED-3 and CED-9:a molecular framework for cell death. Science 275: 1122-1126.
    Cleary ML, Sklar J.1985. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A 82: 7439-7443.
    Cuin TA, Shabala S.2005. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46:1924-1933.
    Cuin TA, Shabala S.2007. Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875-885.
    Cuin TA, Betts SA, Chalmandrier R, Shabala S.2008. A root's ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697-2706.
    Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S.2011. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in planta quantification methods. Plant Cell Environ 34: 947-961.
    Cunningham KW, Fink GR.1994. Ca2+ transport in Saccharomyces cerevisiae. J Exp Biol 196:157-166.
    Cyert MS.2003. Calcineurin signaling in Saccharomyces cerevisiae:how yeast go crazy in response to stress. Biochem Biophys Res Commun 311:1143-1150.
    Dallaporta B, Hirsch T, Susin SA, Zamzami N, Larochette N, Brenner C, Marzo I, Kroemer G. 1998. Potassium leakage during the apoptotic degradation phase. J Immunol 160:5605-5615.
    del Peso L, Gonzalez VM, Nunez G. 1998. Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. J Biol Chem 273:33495-33500.
    del Peso L, Gonzalez VM, Inohara N, Ellis RE, Nunez G. 2000. Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 275:27205-27211.
    Demidchik V, Tester M.2002. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128: 379-387.
    Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM.2003. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81-88.
    Demidchik V, Bowen HC, Maathuis FJ, Shabala SN, Tester MA, White PJ, Davies JM. 2002. Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799-808.
    Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V.2010. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468-1479.
    Deng M, et al.2011. Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. FEBS J 278:4797-4810.
    Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R.2001. Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98:6957-6962.
    Distelhorst CW, Shore GC.2004. Bcl-2 and calcium:controversy beneath the surface. Oncogene 23:2875-2880.
    Dorn GW,2nd, Scorrano L.2010. Two close, too close:sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate. Circ Res 107:689-699.
    Ekhterae D, Platoshyn O, Krick S, Yu Y, McDaniel SS, Yuan JX.2001. Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C157-165.
    Eliseev RA, Salter JD, Gunter KK, Gunter TE.2003. Bcl-2 and tBid proteins counter-regulate mitochondrial potassium transport. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1604:1-5.
    Faszewski EE, Kunkel JG 2001. Covariance of ion flux measurements allows new interpretation of Xenopus laevis oocyte physiology. J Exp Zool 290:652-661.
    Fleury C, Pampin M, Tarze A, Mignotte B.2002. Yeast as a model to study apoptosis? Biosci Rep 22:59-79.
    Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR.2001. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U SA 98:11444-11449.
    Gechev TS, Hille J.2005. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17-20.
    Ghobrial IM, Witzig TE, Adjei AA.2005. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178-194.
    Greenberg JT, Guo A, Klessig DF, Ausubel FM.1994. Programmed cell death in plants:a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551-563.
    Groover A, Jones AM.1999. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375-384.
    Gunawardena U, Rodriguez M, Straney D, Romeo JT, VanEtten HD, Hawes MC. 2005. Tissue-specific localization of pea root infection by Nectria haematococca. Mechanisms and consequences. Plant Physiol 137:1363-1374.
    Guo KM, Babourina O, Rengel Z.2009. Na(+)/H(+) antiporter activity of the SOS1 gene:lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiol Plant 137:155-165.
    Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL.2008. Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium 44:324-338.
    Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I.2004. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855-858.
    He R, Drury GE, Rotari Ⅵ, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P. 2008. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283:774-783.
    Hengartner MO, Ellis RE, Horvitz HR.1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356:494-499.
    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ.1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241-251.
    Huckelhoven R.2004. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299-307.
    Huckelhoven R, Dechert C, Trujillo M, Kogel KH.2001. Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Mol Biol 47:739-748.
    Hughes FM, Jr., Cidlowski JA.1999. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39:157-171.
    Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM.2002. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649-659.
    Kawai M, Pan L, Reed JC, Uchimiya H.1999. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast(1). FEBS Lett 464:143-147.
    Kerr JF, Wyllie AH, Currie AR.1972. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257.
    Kudla J, Batistic O, Hashimoto K.2010. Calcium signals:the lead currency of plant information processing. Plant Cell 22:541-563.
    Kuhtreiber WM, Jaffe LF.1990. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565-1573.
    Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I. 2005. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914-32920.
    Lauff DB, Santa-Maria GE.2010. Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae. FEMS Yeast Res 10:497-507.
    Lavrik I, Golks A, Krammer PH.2005. Death receptor signaling. J Cell Sci 118: 265-267.
    Lawen A.2003. Apoptosis-an introduction. Bioessays 25:888-896.
    Letai A.2005. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 115:2648-2655.
    Li J-Y, Jiang A-L, Chen H-Y, Wang Y, Zhang W.2007. Lanthanum Prevents Salt Stress-induced Programmed Cell Death in Rice Root Tip Cells by Controlling Early Induction Events. Journal of Integrative Plant Biology 49:1024-1031.
    Li X, et al.2011. Regulating cytoplasmic calcium homeostasis can reduce aluminum toxicity in yeast. PLoS One 6:e21148.
    Lin J, Wang Y, Wang G. 2005. Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts. Plant Growth Regulation 45:243-250.
    Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG. 2002. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci U S A 99:15217-15221.
    Lu QL, Hanby AM, Nasser Hajibagheri MA, Gschmeissner SE, Lu PJ, Taylor-Papadimitriou J, Krajewski S, Reed JC, Wright NA.1994. Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J Cell Sci 107 (Pt 2):363-371.
    Marklund L, Behnam-Motlagh P, Henriksson R, Grankvist K.2001. Bumetanide annihilation of amphotericin B-induced apoptosis and cytotoxicity is due to its effect on cellular K+flux. J Antimicrob Chemother 48:781-786.
    Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R.1997. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413-420.
    Mitsuhara I, Malik KA, Miura M, Ohashi Y.1999. Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants. Curr Biol 9:775-778.
    Newman IA.2001. Ion transport in roots:measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1-14.
    Newman IA, Kochian LV, Grusak MA, Lucas WJ.1987. Fluxes of h and k in corn roots:characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol 84:1177-1184.
    Peng J, Wen F, Lister RL, Hodges TK.1995. Inheritance of gusA and neo genes in transgenic rice. Plant Mol Biol 27:91-104.
    Pennell RI, Lamb C.1997. Programmed Cell Death in Plants. Plant Cell 9: 1157-1168.
    Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R.2002. A role for calcium in Bcl-2 action? Biochimie 84:195-201.
    Pottosin, II, Schonknecht G. 2007. Vacuolar calcium channels. J Exp Bot 58: 1559-1569.
    Qiao J, Mitsuhara I, Yazaki Y, Sakano K, Gotoh Y, Miura M, Ohashi Y.2002. Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells-their possible contribution through improved function of organella. Plant Cell Physiol 43: 992-1005.
    Rogers HJ.2005. Cell death and organ development in plants. Curr Top Dev Biol 71: 225-261.
    Rupinder SK, Gurpreet AK, Manjeet S.2007. Cell suicide and caspases. Vascul Pharmacol 46:383-393.
    Sanchez P, de Torres Zabala M, Grant M.2000. AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge. Plant J 21:393-399.
    Schandl CA, Li S, Re GG, Fan W, Willingham MC.1999. Mitotic chromosomal bcl-2. Ⅰ. Stable expression throughout the cell cycle and association with isolated chromosomes. J Histochem Cytochem 47:139-149.
    Shabala L, Cuin TA, Newman IA, Shabala S.2005a. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222: 1041-1050.
    Shabala S.2009. Salinity and programmed cell death:unravelling mechanisms for ion specific signalling. J Exp Bot 60:709-712.
    Shabala S, Cuin TA.2008a. Potassium transport and plant salt tolerance. Physiol Plant 133:651-669.
    Shabala S, Cuin TA.2008b. Potassium transport and plant salt tolerance. Physiol Plant 133:651-669.
    Shabala S, Babourina O, Newman I.2000. Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51:1243-1253.
    Shabala S, Cuin TA, Pottosin I.2007a. Polyamines prevent NaCl-induced K+efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581: 1993-1999.
    Shabala S, Shabala L, Van Volkenburgh E, Newman I.2005b. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56:1369-1378.
    Shabala S, Cuin TA, Prismall L, Nemchinov LG. 2007b. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189-197.
    Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA.2006. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels. Plant Physiol 141:1653-1665.
    Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH.2010. Xylem ionic relations and salinity tolerance in barley. Plant J 61:839-853.
    Shabala S, Baekgaard L, Shabala L, Fuglsang A, Babourina O, Palmgren MG, Cuin TA, Rengel Z, Nemchinov LG. 2011. Plasma membrane Ca(2)+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant Cell Environ 34:406-417.
    Shabala SN, Newman I A, Morris J.1997. Oscillations in H+ and Ca2+ Ion Fluxes around the Elongation Region of Corn Roots and Effects of External pH. Plant Physiol 113:111-118.
    Sun J, et al.2009. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141-1153.
    Sun J, et al.2010. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943-958.
    Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K.2001. Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42:214-222.
    Tester M, Davenport R.2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503-527.
    Tsujimoto Y, Cossman J, Jaffe E, Croce CM.1985. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440-1443.
    Valencia-Cruz G, Shabala L, Delgado-Enciso I, Shabala S, Bonales-Alatorre E, Pottosin, II, Dobrovinskaya OR.2009. K(bg) and Kvl.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes. Am J Physiol Cell Physiol 297:C1544-1553.
    van Doom WG, Woltering EJ.2004. Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147-2153.
    Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB. 2009. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793: 959-970.
    Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA.2005. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801-812.
    Walter L, Dirks B, Rothermel E, Heyens M, Szpirer C, Levan G, Gunther E.1994. A novel, conserved gene of the rat that is developmentally regulated in the testis. Mamm Genome 5:216-221.
    Wang M, Oppedijk BJ, Lu X, Van Duijn B, Schilperoort RA.1996. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32:1125-1134.
    Wang W, Pan J, Zheng K, Chen H, Shao H, Guo Y, Bian H, Han N, Wang J, Zhu M. 2009. Ced-9 inhibits Al-induced programmed cell death and promotes Al tolerance in tobacco. Biochem Biophys Res Commun 383:141-145.
    Watanabe N, Lam E.2006. Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884-894.
    Watanabe N, Lam E.2008. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283: 3200-3210.
    White PJ, Broadley MR.2003. Calcium in plants. Ann Bot 92:487-511.
    Woltering EJ, van der Bent A, Hoeberichts FA.2002. Do plant caspases exist? Plant Physiol 130:1764-1769.
    Xiao AY, Wei L, Xia S, Rothman S, Yu SP.2002. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350-1362.
    Xu C, Xu W, Palmer AE, Reed JC.2008. BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 283: 11477-11484.
    Xu P, Rogers SJ, Roossinck MJ.2004. Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc Natl Acad Sci U S A 101:15805-15810.
    Xu Q, Reed JC.1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1:337-346.
    Yang Y, et al.2010. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22:1313-1332.
    Yu SP.2003a. Regulation and critical role of potassium homeostasis in apoptosis. Progress in Neurobiology 70:363-386.
    Yu SP.2003b. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363-386.
    Yu SP, Yeh C, Strasser U, Tian M, Choi DW.1999. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336-339.
    Zepeda-Jazo I, Shabala S, Chen Z, Pottosin, II.2008. Na-K transport in roots under salt stress. Plant Signal Behav 3:401-403.
    Zha H, Reed JC.1997. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem 272: 31482-31488.
    Zheng K, et al.2007. Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals. Plant Physiol 143:38-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700