用户名: 密码: 验证码:
青藏高原东缘高寒草甸优势植物光合作用日变化的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对青藏高原东缘高寒草甸优势植物窄叶鲜卑花、高山绣线菊、木里苔草和四川嵩草的光合作用的日变化进行了比较研究。结果表明:窄叶鲜卑花、高山绣线菊和木里苔草的光合速率日动态,都表现出典型的双峰曲线,并且都出现光抑制现象,窄叶鲜卑花的第一、第二峰值分别为22.0和19.3μmol.m-2.s-1;但高山绣线菊峰值相对较低,分别是17.8和13.5μmol.m-2.s-1;而木里苔草峰值相对更低,分别为10.9和10.3μmol.m-2.s-1。但是四川嵩草的光合速率日动态表现出典型的单峰曲线,在11:00左右达到峰值,其峰值为13.6μmol.m-2.s-1。窄叶鲜卑花和四川嵩草蒸腾速率的日动态表现为单峰曲线,而高山绣线菊和木里苔草蒸腾速率的日动态表现为双峰曲线。窄叶鲜卑花、高山绣线菊、木里苔草和四川嵩草的Fv/Fm和ΦⅡPSⅡ的日变化趋势相似,黎明时Fv/Fm和ΦⅡPS最高,之后随着日间光强的升高而逐渐降低,都是在13:00左右时降至最低,表明发生了光抑制现象。
The article comparatively studies on diurnal course of photosynthetic of dominant plants Sibiraea angustata, Spiraea alpine, Carex muliiensis, Kobresia setchwanensis of Alpine Meadow at Eastern Qinghai-Tibetan Plateau. The result shows that diurnal course of Photosynthetic rate of Sibiraea angustata, Spiraea alpine, Carex muliiensis both appears typical double-peak curves, and presents photoinhibition, the first and second peak value of Sibiraea angustata is 22.0 and 19.3μmol.m-2.s-1respectively, but that of Spiraea alpine is relatively low, which is 17.8 and 13.5μmol.m-2.s-1, Carex muliiensis is lower, which is 10.9 and 10.3μmol.m-2.s-1. Diurnal course of transpiration rate of Sibiraea angustata and Kobresia setchwanensis appear typical single-peak curves, but Spiraea alpine and Carex muliiensis appear typical double-peak curves. Diurnal course of Fv/Fm andΦⅡPSⅡof Sibiraea angustata, Spiraea alpine, Carex muliiensis and Kobresia setchwanensis are similar, Fv/Fm andΦⅡPSⅡare highest in dawn, and then decrease with increaseing photosynthetic active radiation, reach the lowest about 13: 00, which presents photoinhibition.
引文
[1] Ham J M, Heilman J L. Experimental test of density and energy-balance corrections on carbon dioxide flux as measured using Open-Path Eddy Covariance [J]. Agronomy Journal, 2003, 95(6): 1393-1403.
    [2] Raupach M R. Influences of local feedbacks on land-air exchanges of energy and carbon [J]. Global Change Biology, 1998, 4(5): 477-494.
    [3] 孙鸿烈. 青藏高原的形成与演化[M]. 上海: 上海科学技术出版社, 1994. [Sun Honglie. Formation and Evolution of the Qinghai-Xizang Plateau[M]. Shanghai: Shanghai Science and Technology Press, 1994].
    [4] 孙磊, 魏学红, 郑维列. 藏北高寒草地生态现状及可持续发展对策草业科学[J]. 2005, 22(10): 10-12. [Sun lei, Wei Xuehong, Zheng, Weilie. The sustainable development and ecological situation of the Alpine Meadow in North-Tibet[M]. Pratacultural Science, 2005, 22(10): 10-12].
    [5] Bliss L C. Physiological Ecology of North American Plant Communities [J]. New York London Chapman & Hall, 1985, 42-65.
    [6] Fen Guiying, Lu Cunfu, Han Fa, et al. Characteristics of photosynthesis in alpine plants on Qinghai plateau [J]. Research in photosynthesis, 1992, IV: 173-176.
    [7] 卢存福, 贲桂英. 高海拔地区植物的光合特性[J]. 植物学通报, 1995, 12(2): 38-42. [Lu Lu Cunfu, Fen Guiying. Photosynthesis Characteristics of plants at high altitudes[J]. Chinese Bulletin of Botany, 1995, 12(2): 38-42].
    [8] 李有忠,卉桂英,韩发,等. 海拔高度的变化对植物叶片内部结构的影响[J].青海师范大学学报,1995, (4): 4~40. [Li You-zhong, Hui Gui-ying, Han Fa, et al. The effect of altitude variation on the structure of Plant leaf lamina[J]. Journal of Qinghai Normal university, 1995, (4): 4~40].
    [9] 卢存福,卉桂英. 矮嵩草光合作用与环境因素关系的比较研究[J]. 植物生态学报,1995, 19(1): 72~78. [Lu Cun-fu, Hui Gui-ying. A comparative study of photosynthetic response of Kobresia Humilis to different Environmental factors[J]. Acta Phytoecologica Sinica, 1995, 19(1): 72~78].
    [10] 韩发,卉桂英,师生波. 青藏高原不同海拔矮嵩草抗逆性的比较研究[J]. 生态学报,1998, 18(6): 654~659. [Ha Fa, Hui Gui-ying, Shi Sheng-bo. Comparative study on the resistance of Kobresia Humilis Grow at different altitudes in Qingha-Xizang plateau[J]. Acta Ecological Sinica, 1998, 18(6): 654~659].
    [11] Tiesen, L. Comparisns of chlorophyll content and leaf structure in arctic and alpine grasses[J]. American Mid land Naturalist, 1970, 83: 238~253.
    [12] Caldwell, M., Teramura, A.H., Tevini, M., et al. Effects of increased solar UV radiation on terrestrial plants[J]. Ambio, 1995, 24: 166~173.
    [13] Johanson, U., Gehrke, C., Bjorn, L.O., et al. The effects of enhanced UV-B radiation on a subarctic heath ecosystem[J]. Ambio, 1995, 24: 106~111.
    [14] Shi Sheng-Bo, Zhua Wen-Yan, Li Hui-Mei, et al. Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation[J]. Environmental and Experimental Botan, 2004, 51: 75~83.
    [15] 吴兵,韩发,岳相国,等. 长期增强 UV-B 辐射对高寒草甸植物光合速率和抗氧化系统的影响[J]. 西北植物学报,2005, 25(10): 2010~2016. [Wu bing, Han Fa, Yue Xiang-guo, et al. Effects of Long-term Intensified UV-B Radiation on the Photosynthetic Rates and Antioxidative Systems of Three Plants in Alpine Meadows[J]. Acta Botanica Boreali-occidentalia Sinica, 2005, 25(10): 2010~2016].
    [16] Jordan, B.R. The effects of ultraviolet-B radiation on plants: a molecular perspective. In: Callow, J.A. (Ed.), Advances in Botanical Research Incorporating Advances in Plants Pathology[M]. Academic Press, 1996. 97~162.
    [17] Manuel, N., Cornic, G., Aubert, S., et al. Protection against photoinhibition in the alpine plant Geum montanum[J]. Oecologia , 1999, 119: 149~158.
    [18] Germino, M.J., Smith, W.K. High resistance to low temperature photoinhibition in two alpine, snowbank species[J]. Physiol Plant, 2000, 110: 89~95.
    [19] Germino, M.J., Smith, W.K. Differences in microsite, plant form, and low-temperature photoinhibition in alpine plants[J]. Arct. Ant. Alp. Res, 2000, 32: 388~396.
    [20] 师生波,韩发,卉桂英. 高寒草甸矮嵩草群落光合作用的“午休”现象[J].植物生理学报,1997, 23(4): 405~409. [Shi Sheng-bo, Ha Fa, Hui Gui-ying. Midday Depression in Net Photosynthesis of Plant Community in Alpine Kobresia Humilis Meadow[J]. Acta phytophysiologica Sinica, 1997, 23(4): 405~409].
    [21] 师生波,韩发,卉桂英. 矮嵩草草甸植物群落的光合特性研究[J].植物生态学报,1996, 20(3): 225~234.[ Shi Sheng-bo, Ha Fa, Hui Gui-ying. The Photosynthesis of Plant Community in Alpine Kobresia Humilis Meadow[J]. Acta Phytoecologica Sinica, 1996,20(3): 225~234].
    [22] Cui Xiao-yong, Tang Yan-hong, Gua Song, et al. Photosynthetic depression in relation to plant architecture in two alpine herbaceous species[J]. Environmental and Experimental Botany, 2003, 50: 125~135.
    [23] Germino, M.J., Smith, W.K. Relative importance of microhabitat, plant form and photosynthetic physiology to carbon gain in two alpine herbs[J]. Funct Ecol, 2001, 15: 243~251.
    [24] 李文华,周兴民. 青藏高原生态系统及优化利用模式.青藏高原研究丛书[M]. 广州:广东科技出版社,1998, 39: 183~270.[Li Wen-hua, Zhou Xing-min.The Series of Studies on Qinghai-Xizang Plateau, Ecosystems of Qinghai-Xizang (Tibetan) Plateau and Approach for their Sustainable Management [M]. Guangzhou: Guangdong Science & Technology Press, 1998, 39: 183~270].
    [25] Korner, C.H, Mayer, R. Stomatal behaviour in alpine plant communities between 600-2600 meters above sea level[J]. Plant and their atmospheric environment, 1981. 205~219.
    [26] 韩发,卉桂英,师生波. 青藏高原不同海拔矮嵩草抗逆性的比较研究[J]. 生态学报,1998, 18(6): 654~659. [Ha Fa, Hui Gui-ying, Shi Sheng-bo. Comparative study on the resistance of Kobresia Humilis Grow at different altitudes in Qingha-Xizang plateau[J]. Acta Ecological Sinica, 1998, 18(6): 654~659].
    [27] 刘祖祺,张石城.植物抗性生理学[M].中国农业出版社,1994. 1~84. [Liu Zu-qi, Zhang Shi-cheng. Plant Resistance Physiology[M]. China agricultural Press, 1994. 1~84].
    [28] Berry, J., Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 31: 491~643.
    [29] Taub, D.R., Seemann, J.R., Coleman, J.S. Growth in elevated CO2 protects photosynthesis against high-temperature damage[J]. Plant Cell Environ, 2000, 23: 649~656.
    [30] 蒋高明,常杰,高玉葆. 植物生理生态学[M]. 高等教育出版社,2004, 67. [JiangGao-ming, Chang Jie, Gao Yu-bao. Plant ecophysiology[M]. Higher Education Press, 2004, 67].
    [31] Hamerlynck, E.P., Huxman, T.E., Loik, M.E., et al. Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of Mojave Desert evergreen shrub[J], Plant Ecol, 2000, 148: 183~193.
    [32] Shaw, M.R., Loik, M.E., Harte, J. Gas exchange and water relation of two Rocky Mountain shrub species exposed to a climate change manipulation[J]. Plant Ecology, 2000, 146: 197~206.
    [33] Tomomichi Kato, Mitsuru Hirota, Yanhong Tang, et al. Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai–Tibetan plateau[J]. Soil Biology & Biochemistry, 2005, 37: 1966~1969.
    [34] Pearcy, R.W., Ehleringer, J.R. Comparative ecophysiology of C3 and C4 plants[J]. Plant Cell Environ, 1984, 7: 1~13.
    [35] Collatz, G.J., Berry, J.A., Clark, J.S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses. present, past, and future[J]. Oecologia , 1998, 114: 441~454.
    [36] Jerome, C., Winslow, E., Stephen, C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research[J]. Ecological Modelling, 2003, 163: 153~173.
    [37] 易现峰,杨月琴,张晓爱,等. 海北高寒草甸生态系统研究定位站没有发现C4植物——来自于稳定性碳同位素的证据[J]. 植物学报,2003, 45(11): 1291~1296. [Yi Xian-feng, Yang Yue-qin, Zhang Xiao-ai, et al. No C4 Plants Found at the Haibei Alpine Meadow Ecosystem Research Station in Qinghai, China: Evidence from Stable Carbon Isotope Studies[J]. Acta Botanica Sinica, 2003, 45(11): 1291~1296].
    [38] Verhoef, A., Allen, S.J. A SVAT scheme describing energy and CO2 fluxes for multi-component vegetation: calibration and test for a Sahelian savannah[J]. Ecological Modelling, 2000, 127: 245~267.
    [39] Turnbull, M.H., Murthy, R., Griffin, K.L. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides[J]. Plant Cell Environ, 2002, 25:1729~1737.
    [40] Xu, Z.Z., Zhou, G.S. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis[J]. Plant and Soil, 2005, 269: 131~139.
    [41] Farquhur, G.D., Sharkey, T.D. Stomatal conductance and photosynthesis[J]. Amuual Review of P1ant Physiology, 1982, 33: 317~345.
    [42] Cregg, B.M., Zhang, J.W. Physiology and morphology of Pinus sylvestris from diverse sources under cyclic drought stress[J]. Forest Ecology and Management, 2001, 154: 131~139.
    [43] Johnson, R.C., Bassett, L.M. Carbon-isotope discrimination and water-use efficiency in four cool-season grasses[J]. Crop Sci, 1991, 31: 157~162.
    [44] Brown, J.C. Water Use Efficiency and Biomass Partitioning of Three Different Miscanthus Genotypes with Limited and Unlimited Water Supply[J]. Annals of Botany, 2000, 86: 191~200.
    [45] Akhter, J., Mahmood, K., Tasneem, M.A., et al. Comparative water-use efficiency of Sporobolus arabicus and Leptochloa fusca and its relation with carbon-isotope discrimination under semi-arid conditions[J]. Plant and Soil, 2003, 249: 263~269.
    [46] Schwinning S., Ehleringer J.R. Water use tradeoffs and optimal adaptations to pulse-driven arid ecosystems[J]. Ecol, 2001, 89: 464~480.
    [47] Lin, G., Phillips, S.L., Ehleringer, J.R. Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau[J]. Oecologia, 1996, 106: 8~17.
    [48] Le, R.X., Bariac, T., Mariotti, A. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna[J]. Oecologia, 1995, 4: 147~155.
    [49] Krner, C.h., Diemer, M. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude[J]. Funct Ecol, 1987, 1: 179~194.
    [50] Szente, K., Nagy, Z., Tuba, Z. Enhanced water use efficiency in dry loess grassland species grown at elevated air CO2 concentration[J]. Photosynthetica, 1998, 35(4): 637~640.
    [51] Christian, K., Matthias, D., Bernd, S., et al. The responses of alpine grassland to fourseasons of CO2 enrichment: a synthesis[J]. Acta Ecologica, 1997, 18 (3): 165~175.
    [52] Matthias, W., Diemer, Mid-season gas exchange of an alpine grassland under elevated CO2[J]. Oecologia, 1994, 98: 429~435.
    [53] Neal, R.A., Clenton, E.O., Jay, M.H. The effect of CO2 enrichment on leaf photosynthetic rates and instantaneous water use efficiency of Andropogon gerardii in the tallgrass prairie[J]. Photosynthesis Research, 2000, 65: 121~129.
    [54] 何光荣. 红原Ⅰ、Ⅱ泥炭地植被生态特征与泥炭堆积[J]. 四川地质学报, 1999, 19(1): 58- 63.[He Guangrong. Vegetation-ecological features and peat deposits of the Hongyuan peatlands Ⅰ, Ⅱ[J]. Acta Geologic Sinica, 1999, 19(1): 58-63].
    [55] 四川省红原县志编撰委员会编撰. 红原县志[M]. 成都: 四川人民出版社, 1996. [The edit council of SiChuan Hongyuan. The county record of Hongyuan[M]. Chengdu: the dumb millions publishing company, 1996].
    [56] 刘长秀, 张宏, 泽柏. 灌丛对川西北高寒草甸土壤资源的影响[J]. 山地学报, 2006, 24(3): 357- 365. [Liu Changxiu, Zhang Hong, Ze Bai. Effect of shrub on the alpine meadow soil ecosystem in the northwestern plateau of Sichuan province, china[J]. Journal of Mountain Science, 2006, 24(3): 357- 365].
    [57] 田应兵, 熊明标, 宋光煜.若尔盖高原湿地土壤的恢复演替及其与养分变化[J]. 生态学杂志, 2005, 24(1): 21- 25.[Tian Yingbin, Xiong Mingbiao, Song Guangyi. Restoration succession of wetland soils and their changes of water and nutrient in Ruoergai Plateau[J]. Chinese Journal of Ecology, 2005, 24(1): 21-25].
    [58] 王钦, 谢源芳. 草坪质量评定方法[J]. 草业科学, 1993, 10(4): 69-72. [Wang Qin, Xie Yuanfang. Approach of Assessment Method of turf Guality[J]. Pratacultural Science, 1993, 10(4): 69-72].
    [59] 孔祥合, 李长辉, 景增平, 等. 高山绣线菊人工驯化初探[J]. 青海农林科技, 2004, 4: 74-76. [Kong Xianghe, Li Changhui, Jing Zengping, et al. Primary Approach on Artificial Domesticate for Spiraea alpine[J]. Science and Technology of Qinghai Agriculture and Forestry, 2004, 4: 74-76].
    [60] 张波. 窄叶鲜卑花的栽培技术[J]. 中国林副特产, 2006, 1: 24-25. [Zhang Bo. The cultivation technique of Sibiraea angustata[J]. Forest By-Product and Speciality in China,2006, 1: 23-25].
    [61] 四川省畜牧局编纂. 四川草地资源[M]. 成都: 四川民族版社, 1989. [The edit council of the bureau of animal husbandry in SiChuan province. Grassland resources of SiChuan[M]. Chengdu: SiChuan minority Press, 1996].
    [62] 张正斌, 山仑. 作物水分利用效率和蒸发蒸腾估算模型的研究进展[J]. 干旱地区农业研究, 1997, 15(1): 73-78.[Zhang Zhenbin, Shan Lun. Research Development in Estimation Models of Crop Water Use Efficiency and Transpiration and Evaporation[J]. Agricultural Research in the Arid Areas, 1997, 15(1): 73-78].
    [63] R.Wykoff. Measuring and modeling surface area of ponderosa pine needles, Canadian Journal of Forest Research [J], 2002, 32: 1-8.
    [64] Walker DA. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density[J]. Philosophical trascations of the Royal Society London B, 1989, 323: 313-326.
    [65] 师生波, 李惠梅, 王学英, 等. 青藏高原几种典型高山植物的光合特性比较[J]. 植物生态学报, 2006, 30 (1): 40-46. [Shi Shengbo, Li Huimei, Wang Xueying, et al. Comparative studies of photosynthetic characteristics in typical Alpine plants of the Qinghai-Tibet plateau[J]. Journal of Plant Ecology, 2006, 30 (1): 40-46].
    [66] Matosm C, Matosa A, Mantasa A, et al. Diurnal and seasonal changes in Prunus amygdalus gas exchange [J]. Photosynthetica, 1998, 35: 517-524.
    [67] Dawson T E , Ehleringer J R. Gender specific physiology, carbon isotope discrimination, and habitat distribution in boxelder[J]. Acer negundo Ecol, 1993, 74: 798-815.
    [68] Schulze E D. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil[J]. Annu Rev Plant PhysioL, 1986, 37: 247-274.
    [69] 杨文文, 张学培, 王洪英. 晋西黄土区刺槐蒸腾、光合与水分利用的试验研究[J]. 水土保持研究, 2006,13(1): 72-75. [Yang Wenwen, Zhang Xuepei, Wang Hongying. Study on Robinia pseudoscacia L. Transpiration, Photosynthesis and Water Use Efficiency[J]. Research of Soil and Water Conservation, 2006, 13(1): 72-75].
    [70] 廖建雄, 王根轩. 植物的气孔振荡及其应用前景[J]. 植物生理学通讯, 2000, 36(3): 272-275.[Liao Jianxiong, Wang Genxuan. Stomatal Oscillations of Plant and ItsApplication Prospect[J]. Plant Physiology Communications, 2000, 36 (3): 272-275].
    [71] 师生波, 韩发, 李红彦. 高寒草甸麻花艽和美丽风毛菊的光合速率午间降低现象[J]. 植物生理学报, 2001, 27(2): 123-128. [Shi Shengbo, Han Fa, Li Hongyan. Midday Depression of Photosynthesis of Gentianast raminea and Saussurea superba in Alpine Kobresia humilis Meadow[J]. Acta Phytophysiologica Sinica, 2001, 27(2): 123-128].
    [72] 张树源, 陆国泉, 武梅, 等. 青海高原主要C3植物的光合作用[J]. 植物学报, 1992, 34(3): 176-184.[ Zhang Shuyuan, Lu guoquan, Wu Mei, et al. Photosynthesis of main C3 Plants in Qinghai plateau[J]. Journal of Integrative Plant Biology, 1992, 34(3): 176-184].
    [73] 王学英, 师生波, 吴兵. 西宁和海北麻花艽净光合速率和叶绿素荧光参数的日变化比较[J]. 西北植物学报, 2005, 25(12): 2514-2518. [Wang Xueying, Shi Shengbo, Wu Bing, Diurnal Comparison of the Net Photosynthetic Rates and Chlorophyll Fluorescent Parameters of Gentianast raminea Maxim in Xining and Haibei[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(12): 2514-2518].
    [74] Den X, Li X M, Zhang X M, et al. The studies about the photosynthetic response of the four desert plants [J]. Acta Ecologica Sinica, 2003, 23(3): 598-605.
    [75] Osmond C B. What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker N R, Bowyer J R. Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Oxford: Bios. Scientific, 1994, 1-24
    [76] 冯玉龙, 冯志立, 曹坤芳. 砂仁叶片光破坏的防御[J]. 植物生理学报, 2001, 27(6): 483-488. [Feng Yulong, Feng Zhili, Cao Kunfang. The Protection Against Photodamage in Amomum villosum Lour[J]. Acta Photophysiologica Sinica, 2001, 27(6): 483-488].
    [77] 许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002. [Xu Daquan. Photosynthetic Efficiency[M]. Shanghai: Shanghai Scientific and Technical Press, 2002].
    [78] Long S P, Humphries, Folkowski P G. Photoinhibition of photosynthesis in nature[J]. Annu Review Plant Physiol Plant Mol Biol, 1994, 45: 633-662.
    [79] Demmig Adams B, Adams WW Ⅲ . Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 599-626.
    [80] Osmond C B. What is photoinhibition? Some insights from comparisons of shade and sunplants. In: Baker N R, Bowyer J R. Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Oxford: Bios. Scientific, 1994, 1-24
    [81] Iio A H, Fukasawa Y N, Kakubari Y. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan[J]. Trees, 2004, 18: 510-117.
    [82] Muraoka H, Tang Y, Terashima I, et al. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light[J]. Plant Cell and Environment, 2000, 23: 235-250.
    [83] 林植芳, 彭长连, 孙梓健, 等. 4 种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应[J]. 植物生理学报, 2000, 26(5): 387-392. [Lin Zhifang, Peng Changlian, Sun Zijian, et al. The Allocation of Photosynthetic Electron Transport and Absorbed Light Energy in Leaves of Four Woody Plants Acclimated to Different Light Intensities[J]. Acta Phytophysiologica Sinica, 2000, 26(5): 387-392].
    [84] 冯玉龙, 曹坤芳, 冯志立, 等. 四种热带雨林树种幼苗比叶重, 光合特性和暗呼吸对生长光环境的适应[J]. 生态学报, 2002, 22(6): 901-910. [Feng Yulong, Cao Kunfang, Feng Zhili, et al. Acclimation of Lamina Mass Per Unit Area, Photosynthetic Characteristics and Dark Respiration to Growth Light Regimes in Four Tropical Rainforest Species. Acta Ecologica Sinica, 2002, 22(6): 901-910].
    [85] Pearcy R W, Sims D A. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant[A]. In: Exploitation of Environmental Heterogeneity by Plant: Eco-physiological Processes Above and below ground[C]. Academic Press, San Diego, CA, 1994, 145-174.
    [86] 马成仓, 高玉葆, 王金龙, 等. 内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J]. 植物生态学报, 2004, 28(3): 305-311. [Ma Chengcang, Gao Yubao, Wang Jinlong, et al. Ecological adaptation of Caragana Opulens on the Inner Mongolia plateau: photosynthesis and water metabolism[J]. Acta Phytoecologica Sinica, 2004, 28(3): 305-311].
    [87] 崔骁勇, 杜占池, 王艳芬. 内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J]. 植物生态学报, 2000, 24(5): 541-546. [Cui Xiaoyong, Du Zhanchi, Wang Yanfen.Photosynthesis Characteristics of a semi-arid sandy grassland community in Inner Mongolia[J]. Acta Phytoecologica Sinica, 2000, 24(5): 541-546].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700