用户名: 密码: 验证码:
河北省近百年海岸线演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸带是海洋与陆地交接的特殊地带,是人类赖以生存和发展的重要场所,是现代经济文化发展的前沿地带。海岸线的变化,往往对海岸带地区生态环境造成严重危害,带来巨大经济损失,备受世界各国关注。因此,加强海岸线演变研究对于沿海地区生态安全及可持续发展具有十分重要的现实意义。
     河北省海岸线绵长,类型多样,自北向南分布有基岩海岸、沙质海岸、淤泥质海岸;且利用类型丰富,开发程度高。通过分析河北省近百年来海岸线演变过程,探讨海岸线演变特征,分析岸线演变对周边岸滩影响及产生的环境效应,并对自然沙质海岸演变进行预测研究,对于海岸线整体利用规划具有一定的理论指导意义,对全省海岸保护、开发及港口码头等大型人工海上建筑的布局规划有一定的实际参考价值。
     本文以多期地形图、海图,多时相航空影像图、卫星遥感数据,多年实测数据为主要数据源,运用“3S”(GIS、RS、GPS)技术,系统分析了河北省近百年(1916年~2006年)海岸线演变过程、动因及规律,运用一线模型、海洋动力学等理论、方法探讨了海岸线演变预测及对周边岸滩的影响和环境效应。
     研究结果表明:
     (1)河北省海岸线演变整体特征表现为:岸线由弯曲趋于平直,长度先增后减再增,1916年~1956年长度增加236.24km,1956年~1979年缩减187.45km,1979年~2006年增加249.75km;海向推进速度不断加快,1979年之前,增长速度为1.2m/a,1979年~2006年,变化速度达28m/a;岸滩面积于1979年前呈减少之势,至2006年,面积增加265.43km2;岸线变化原因由1979年前的自然因素为主演变为1979年之后人为因素占绝对优势;人工岸线演变类型不断变化,包括海挡、盐田、养殖池塘、港口码头等。
     (2)基岩岸线演变特征表现为:港口码头建设等人为开发活动不断侵占原自然岸线,已成为影响岸线演变的主导因素;岸线变化明显的区域主要位于原港口地区,如汤河口——沙河口一带,占全部人工建筑的90%以上。而其他地区,受人类干预较少,岸线变化不明显。
     (3)沙质岸线演变特征表现为:南部养殖池塘建设使岸线不断海向推进,至2006年,局部前缘已达离岸沙坝,北部自然岸线受蚀后退;变化动因多样,1984年以海挡岸线为主,之后养殖池塘修建在海挡之外,成为影响岸线变化的主要因素。20世纪90年代初期,京唐港的建设标志着港口码头岸线成为影响岸线演变的决定因素;滦河三角洲岸线陆向退缩与海向推进交替进行,其原因由60年代前后的纯自然演变,转变为1979年之后人为因素影响占主导作用。
     (4)淤泥质岸线演变特征表现为:变化原因由1956年之前自然演化为主,转变为1991年之后人类影响占主导地位;变化类型由以盐田发展为主演变为盐田、养殖池塘并重,继而以养殖池塘岸线变化为主体,黄骅港、曹妃甸港的兴建,标志着港口岸线对淤泥质岸线的变化起主要影响作用;发展热点区域因时间不同而有所差异,唐山市重点开发区域不断西移,沧州市重点发展区域逐渐南移。
     (5)人工干预下基岩岸线的演变对周边岸滩产生较大影响,表现为改变局部流场,促进周边岸滩的发育,形成基岩海岸地区自然岸线整体侵蚀背景下的局部淤积现象,其演化特征为:海滩渐宽,年淤积量0.14m~2.71m。淤积速度减慢,0.04m/a~0.7m/a不等。坡度变缓,仅秦皇岛煤一期突码头至人工填筑地海滩坡度即降低3.8(°1985年~2006年);岸线弧度减小,年均变化0.083°~0.415°,湾顶位置逐年W、WWS向移动;海滩组成物细化,海滩砂中值粒径年均变化0.016 mm~0.035mm。
     (6)人工干预下淤泥质岸线演变对周边产生的环境效应。其中,黄骅港岸线变化对周边产生的环境效应表现为:改变沿岸流流向,并在航道外形成沿堤流及环流;改变滩面相对平衡状态,航道以北重塑均衡剖面;改变局部流场,形成口门处横流及近岸壅水,使近岸区高浓度泥沙沿防波堤两侧向外运动;改变岸滩沉积物类型,北滩粉沙层的规模和粒径均小于南滩。曹妃甸港岸线变化对周边产生的环境效应主要表现如下:阻断东西向的浅滩潮流,连岛公路东、西两侧逐渐淤积,并对曹妃甸外缘潮流系统造成影响;南堡西侧海滩处于曹妃甸港连岛公路及南堡嘴双重波影区,海洋动力微弱,海滩不断淤积;对附近海岛、沙坝的影响明显,已出现不同程度的淤积。
     (7)位于戴河至塔子沟一线自然状态沙质海岸,2006年~2026年岸线整体蚀退速率不断减小,但各部分岸段变化速率不一致:洋河——大蒲河段岸线共受蚀后退9m,前10年后退速度为0.6m/a,后10年为0.3m/a,前后相比,侵蚀速度降低50%;大蒲河——塔子沟段岸线,前、后10年侵蚀速率降低62%;戴河——洋河段岸线前、后10年降幅达75%,为侵蚀变化速度最大的地区。冲刷重点范围逐渐南移,大蒲河——塔子沟段岸线将成为新的侵蚀中心地区。
Coastal zone, the special region between the sea and the land, is the important place to live and product for human beings, and it is also the front region of the economic and civilization in modern society. The shoreline changes, which threaten the ecological environment and economic in coastal zone, are drawn attention by many countries in the world. Therefore, it is very practical to the ecological security and sustainable development of the study on shoreline evolvement in coastal area.
     There are many types of the coastline, such as the bedrock seacoast, the sandy seacoast and the muddy coast from north to south in Hebei Province. With the development of the society and economic in coastal areas, it plays an important role in the shoreline evolvement and the affections of the surrounding environments. The research paper concluded the characters of the shoreline evolvement after analyzing the progress of the shoreline evolvement about 100 years in Hebei Province. And it analyzed the affections caused by the evolvement of the shoreline. Moreover, it forecasted the nature sandy coast. This research played an important part in planning and using of the coastline in Hebei Province. It was also important to protect and develop the coastal zone, and the result of this paper could offer the science reference in management and programming the large artificial constructions such as ports, wharfs and so on.
     The data of this research paper was mainly from relief maps, charts, remote sensing imagines and the field data of different years and areas in Hebei Province from 1916 to 2006. Combined with the“3S”technology, the condition of shoreline evolvement and had been concluded after comparing above materials. It also forecasted the shoreline erosion by using the one-line model, and researched the affection of the surrounding beach and environment which caused by the shoreline evolvement by using the theory and method of the ocean dynamics.
     The major content was following:
     The first was the character of the whole shoreline evolvement. The length of the shoreline increased 236.24km from 1916 to 1956, and reduced 187.45km from 1956 to 1979, and increased 249.75km from 1979 to 2006. The speed of the evolvement was 1.2m/a before 1979 while it increased to 28m/a between 1979 and 2006. Moreover, the beach area reduced gradually before 1979 and increased 265.43km2 by 2006. The reason for this evolvement was changed from the natural factors before 1979 to the artificial factor after that. And the types of the artificial shoreline, including sea walls, salines, breed aquatics ponds and ports, changed gradually.
     The second was the character of the bedrock coast. It was that the natural shoreline, replaced by the artificial activities gradually, became the main factors affecting the shoreline evolvement. Another character was that the changing areas mainly lied in the regions where the ports were, such as the region from Tanghe to Shahe which was affected little by the human beings.
     The third was the character of the sandy coast. It was the construction of the breed aquatics ponds that made the shoreline evolve towards to sea in the south of the sandy coast. By 2006 the forward of the shoreline had got to the offshore bars, while it suffered erosion in the north of the sandy coast, especially on the beach between the rivers. And there were many reasons for the evolvement. For example, it was mainly the construction of the sea walls before 1984, and the breed aquatics ponds which built in the outside of the sea walls after 1984. It was the shoreline of ports, symbol as the construction of the Jingtang Port, that became the determine reason in the early 1990s. Meanwhile, the shoreline of the Luan River delta had changed several times for the different reasons.
     The fourth was the character of the muddy coast. The reason of the evolvement had changed from the natural factors before 1956 to the artificial factors after 1991. And the type was different from times, which included the salt fields, breed aquatics ponds, ports and so on. The region of the most important development had also changed from the different time. It moved towards to the west in Tangshan City while towards to the south in Cangzhou City.
     The fifth was the affection analysis of the surrounding beach caused by the coastline evolution. Shoreline evolvement had changed the local circulation and the development of surrounding beach. The phenomenon of partial deposition was formed with the whole erosion condition. The evolvement characters as followed: For one thing, the beach became more and more width with the speed of 0.14 m/a~2.71m/a. The sedimentation got more and more faintness with the the speed of 0.04 m/a~0.7m/a. Moreover, slope of the beach became slower and slower. For example, it had slowed down by 3.8°nearby the beach from the first coal port of Qinhuangdao to the filling area between 1985 and 2006. For another, the radian of the coastline was reduces about 0.083°~0.415°per year, and the top position of the bay moved towards to W and WWS year by year. The third, the component of beach was thinner and thinner with the speed of 0.016 mm/a~0.035mm/a.
     The sixth was the analysis of the environment affections caused by the shoreline evolvement. The change of the shoreline in Huanghua Port caused by the many environmental factors, such as modifying the direction of the long-shore sediment, the balance condition of the beach, the type of the sediment on the beach and so on. Meanwhile, the change of the shoreline in Caofeidian Port interdicted tide on the riffle, which caused the beach to fill up nearby the road to the Caofeidian Island and the west of the Nanpu. Except that, it also affected the evolvement of the other islands and the offshore bars.
     The seventh was the establishment of the modal about coastal erosion and forecasting. The result of the study showed that the whole erosion speed would reduce from 2006 to 2026, while the change of the speed was different from one region to another. For example, it slowed down about 62% between Dapu River and Tazigou from the former decade to the later. Meanwhile, it also reduced about 75% between Dai river and Yang River in the same time where the erosion speed was the highest than the other regions. Moreover, the result also showed that the erosion scope would move towards to the south, and the region from Dapu River to Tazigou would become the center area of erosion by 2026.
引文
[1] Williams H. Shoreline Erosion at mad-island marsh preserve, Matagorda County, Texas [J].Texas Journal of Science. 1993, 45(4): 299-309.
    [2] Day J W, Rybczyk J, Scarton Fet al. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: A field and modeling approach [J]. Estuarine Coastal And Shelf Science. 1999, 49(5): 607-628.
    [3] Williams HFL. Sand-spit erosion following interruption of longshore sediment transport: Shamrock Island, Texas [J].Environmental Geology. 1999, 37(1-2): 153-161.
    [4] Stone G W, Mcbride R A. Louisiana barrier islands and their importance in wetland protection: forecasting shoreline changeand subsequent response of wave climate [J]. Journal of Coastal Research. 1998, 14(3): 900-915.
    [5] Berkhoff J. C. W.Computation of Combined Refraction—Diffraction [J].Coastal Engineering, 1972:471-490.
    [6] Byrnes M.R, Hiland M.W. Large-scale sediment transport patterns on the continental shelf and influence on shoreline response St. Andrew Sound, Georgia to Nassau Sound, Florida, USA[J]. Marine Geology, 1995, 126:19-43.
    [7] Szmykiewicz M,Biegowski J.X,Keczmarek L.M et al.Coastline changes nearby harbour structures-comparative analysis of one-line models versus field data[J].Coastal Enginee- ring,2000,40:119-139.
    [8] Gunaydin K, Kabdasli M.S.Characteristics of coastal erosion geometry under regular and irregular waves [J].Ocean Engineering,2003,30:1579-1593.
    [9] 庄克琳,庄振业,李广雪.海岸侵蚀的解析模式[J].海洋地质及第四纪地质,1998,18(2):97-102.
    [10]李从先,王平,范代读等.布容法则及其在中国海岸上的应用[J].海洋地质与第四纪地质,2000,20(1):87-91.
    [11]王永红,庄振业,李学伦.山东荣成湾沿岸输沙率及沙嘴的演化动态[J].海洋地质与第四纪地质,2000,20(4):31-35.
    [12]胡金春,郑金海.石臼湾沿岸输沙率的估算及分析[J].水运工程,2003,1(1):12-14.
    [13]陈沈良.沙质海岸沿岸输沙率的数值模型[J].海洋工程,1999,17(4):79-84.
    [14]武桂秋,徐宏明.采用波能法计算沙质海岸输沙率[J].黄渤海海洋,1986,4(4):60-66.
    [15]沈焕庭,胡刚.河口海岸侵蚀研究进展[J].华东师范大学学报,2006,11(6):1-8.
    [16]胡刚,刘健.河口岸滩侵蚀研究进展[J].海洋地质动态,2006,22(6):5-10.
    [17] H.W.Blodget,P.T.Taylor and J.H.Roark,Shoreline changes along the Rosetta-Nile Promotory Monitoring with satellite observationgs[J]. Marine Geology. 1991, 99:67-77.
    [18] Lin Jiun-chuan[0].Coastal modification due to human influence in south-weatern Taiwan[J]. Quaternary Science Reviews. 1996, 15:859-900.
    [19] H. Lantuit,W.H. Pollard. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada[J]. Geomorphology. 2006,5.
    [20] Marcel J. F. Stive, Stefan G. J. Aarninkhof, Luc Hamm et al. Variability of shore and shoreline evolution[J]. Coastal Engineering.2002,47(2):211-235.
    [21] Edward Robinson[0]. Coastal changes along the coast of Vere, Jamaica over the past two hundred years: data from maps and air photographs. Quaternary International [J].2004,120(1):153-161.
    [22] Adrian Stanica, Sebastian Dan,Viorel Gheorghe Ungureanu. Coastal changes at the Sulina mouth of the Danube River as a result of human activities[J]. Marine Pollution Bulletin.2007,55(10):403-421.
    [23] Robert A. Morton, H. Edward Clifton, Noreen A. Buster, etal. Forcing of large-scale cycles of coastal change at the entrance to Willapa Bay, Washington[J]. Marine Geology. 2007,246(1):24-41.
    [24] 冯小铭,韩子章. 南通地区江海岸线近 40 年之变迁——江海岸的侵蚀和淤积[J]. 海洋地质与第四纪地质.1992,12(2):65-77.
    [25]黄海军,李成治,郭建军.卫星影像在黄河三角洲岸线变化研究中的应用[J].海洋地质与第四纪地质.1994,14(2):29-37.
    [26]黄海军,樊辉.1976 年黄河改道以来三角洲近岸区变化遥感监测[J].海洋与湖沼. 2004,35(4):306-314.
    [27]黄增,于开宁. 秦皇岛市海岸线侵淤变化规律研究[J].河北地质学院学报.1996,19(2):136-143.
    [28]肖嗣荣,李庆辰,张稳等. 河北沿海全新世海侵与岸线变迁探讨[J].地理学与国土研究.1997,13(2):47-52.
    [29]刘岳峰,韩慕康,邬伦等.珠江三角洲口门区近期演变与围垦远景分析[J].地理学报.1998,53(6):492-500.
    [30]陈水森,黎夏,邹春洋等. 利用遥感与 GIS 分析珠江口番禺段近 20a 来的沿岸变化[J].热带海洋学报.2001,20(3):21-27.
    [31]杨金中,李志中,赵玉灵.杭州湾南北两岸岸线变迁遥感动态调查[J].国土资源遥感.2002,1:23-28.
    [32]姜义,李建芬,康 慧等.渤海湾西岸近百年来海岸线变迁遥感分析[J].国土资源遥感.2003,48(4):54-58.
    [33]孙美仙,张伟.福建省海岸线遥感调查方法及其应用研究[J].台湾海峡.2005.23(2):213-218.
    [34]尹延鸿,周永青,丁东. 现代黄河三角洲海岸演化研究[J].海洋通报.2004,23(2):32-40.
    [35]李蕴梅[0].黄河陆上三角洲冲淤演变特征及其发展趋势预测[D].青岛,中国海洋大学.2005.
    [36]张华国,郭艳霞,黄韦艮等. 1986 年以来杭州湾围垦淤涨状况卫星遥感调查[J].国土资源遥感.2005,2:50-54.
    [37]季小梅,张永战,朱大奎.乐清湾近期海岸演变研究[J].海洋通报.2006,25(1):44-53.
    [38]陶明刚. Landsat-TM 遥感影像岸线变迁解译研究——以九龙江河口地区为例[J].水文地质工程地质.2006,1:107-110.
    [39]河北省地方志编纂委员会.河北省志[Z].石家庄:河北人民出版社.1994:59-66
    [40]中国国家海洋局.河北省海洋空间资源及利用现状调查与评价报告.2005.
    [41]河北省海岸带资源编辑委员会.河北省海岸带资源[Z].石家庄:河北科学技术出版社.1989:142-148.
    [42]樊建勇.青岛及周边地区海岸线动态变化的遥感监测[D].青岛:中国科学院海洋研究所 2005 年:37-38.
    [43]岸线界定方法——908 海岛海岸带调查技术规程培训新.
    [44]韩晓庆,高伟明.基于 ERDAS IMAGINNE 的扫描地形图的处理方法[J].遥感技术与应用.2007,22(6):748-752.
    [45]Han xiao-qing,Gao wei-ming. The processing of scanning topographic maps based on the Erdas imagine[R]. Sino-Japan-Korea Symposium of Young Geographers. Beijing, China, 2006.
    [46]袁金国.遥感图像数字处理[M].中国环境科学出版社,2006.
    [47]党安荣,王晓栋,陈晓峰等.ERDASIMAGINE 遥感图像处理方法[M].北京:清华大学出版社,2003.
    [48] 梅安新,彭望琭,秦其明等.遥感导论[M].北京:高等教育出版社,2001.
    [49]汤国安,张友顺,刘咏梅.遥感数字图像处理[M].北京:科学出版社,2003.
    [50]王祥,刘昊.基于 DRG 的遥感影像几何校正[J].遥感技术与应用,2005,20(5):517-520.
    [51]秦皇岛市地方志编纂委员会.秦皇岛市志(第 1 卷)[Z].天津:天津人民出版社.1994,10(1):175-185.
    [52]王颖,朱大奎.秦皇岛海岸研究[M].南京:南京大学出版社,1988.
    [53]秦皇岛市地方志编纂委员会.秦皇岛市志(第 2 卷)[Z].天津:天津人民出版社.1994,10(2):279-290.
    [54]抚宁县志编审委员会.抚宁县志[Z].北京:河北人民出版社.1990:90-100.
    [55]昌黎县地方志编纂委员会.昌黎县志[Z].北京:中国国际广播出版社.1992:105-110.
    [56]乐亭县地方志编纂委员会.乐亭县志[Z].北京:中国大百科全书出版社.1994:199-200.
    [57]黄骅县地方志编纂委员会.黄骅县志[Z].北京:海潮出版社.1990:78-82.
    [58]蒋信忠.砂的中值粒径与分选系数的经验关系及其对沉积环境的反映[J].沉积学报. 2005.3(1):128-137.
    [59]冯金良[0].人类工程活动对秦皇岛海滩侵蚀及淤积的影响[J].海岸工程.1997.16(3):41-46.
    [60]高伟明,顾建清.秦皇岛旅游海滩保护与管理[M].西安:西安地图出版社,2006:20-65.
    [61]韩晓庆,高伟明.五十年来河北省淤泥质海岸演变及环境效应遥感分析[R].2007 中国地理学会学术年会.南京,2007.
    [62]杨华,侯志强.黄骅港外航道泥沙淤积问题研究[J].水道港口.2004,25(3):59-63.
    [63]张庆河等.黄骅港海域沿堤流现象遥感图像分析[J].2004(1):29-31.
    [64]阎新兴.黄骅港近海区沉积物组成与分布特征[J].水道港口.2005(3):144-148.
    [65]高伟明,杨剑霞.渤海湾北部滨外沙坝演变的遥感分析[J].地理与地理信息科学.2006,22:41-44.
    [66]秦崇仁,贺江成.一线模型在海岸演变预报中的应用[J].海洋学报,1997,19(5):124-132.
    [67]杨明等.一线模型在黄河口岸线预报中的应用[J].中国港湾建设,2006,1:4-7.
    [68]孙林云等.砂质海岸突堤式建筑物下游岸线变形数学模型[J].海洋学报,2001,23(5):121-129.
    [69]中华人民共和国交通部.海港水文规范[S].北京:人民交通出版社,1998:159-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700