用户名: 密码: 验证码:
黄土丘陵沟壑区小流域侵蚀产沙特征示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以黄土高原丘陵沟壑区典型小流域王茂沟流域为研究对象,运用土壤侵蚀理论、流域降雨径流泥沙理论、泥沙运动学理论和数理统计理论、~(137)Cs和~(210)Pb_(ex)示踪技术,采用实地观测及取样室内分析的方法,研究小流域各不同地貌部位、不同土地利用方式下的土壤侵蚀状况及流域次降雨侵蚀泥沙的沉积过程。利用淤地坝的淤积信息反演了淤地坝分层淤积量与侵蚀性降雨的响应关系,分析了流域侵蚀产沙强度演变的特征,揭示了小流域土壤侵蚀产沙的时空分异规律;利用~(137)Cs示踪技术估算流域沟间地和沟谷地的相对来沙量,辨识了坝控流域次降雨产沙量与降雨特征之间的关系,建立小流域水土流失预报模型。本研究对评价流域生态环境恢复重建与综合治理效应,科学调整小流域综合治理规划设计方案、关键技术配置、措施优化布局等宏观决策,推动当地社会经济与生态环境建设协调发展具有重要的现实意义。
     本研究取得的主要结果如下:
     (1)证明了~(137)Cs、~(210)Pb_(ex)主要被土壤中细颗粒所吸附,揭示了该流域侵蚀泥沙输移过程中无颗粒分选的特征,阐明了珀~(137)Cs、~(210)Pb_(ex)示踪结果的可靠性。通过对不同粒径土壤颗粒中~(137)Cs、~(210)Pb_(ex)的含量分析,对草地、梯田、坡耕地土壤及淤地坝沉积泥沙样品的颗粒组成研究,结果表明:~(137)Cs、~(210)Pb_(ex)主要被土壤中的粘粒所吸附,随着土壤颗粒的变细,~(137)Cs、~(210)Pb_(ex)含量显著增加;草地、梯田、坡耕地土壤及淤地坝沉积泥沙样品的颗粒组成无明显差异,土壤侵蚀输移过程无分选性,适宜使用~(137)Cs、~(210)Pb_(ex)研究土壤侵蚀。
     (2)分析了不同利用方式土地的土壤剖面中~(137)Cs、~(210)Pb_(ex)的分布特征及含量变异,揭示了土壤剖面中~(137)Cs、~(210)Pb_(ex)的含量与地形因素坡长、坡度、坡向及不同土地利用类型的关系。结果表明,在扰动土(农耕地)土壤剖面中~(137)Cs、~(210)Pb_(ex)在耕层内基本呈均匀分布,耕层下部仅有少量的~(137)Cs、~(210)Pb_(ex)在未扰动土壤剖面中,~(137)Cs在次表层(2~4cm)出现一个“富集层”,次表层以下随土壤深度的增加呈明显的指数下降趋势,~(210)Pb_(ex)含量也由地表向下呈指数递减。坡地土壤剖面中~(137)Cs、~(210)Pb_(ex)的含量随坡长增加均呈波动变化趋势:在15°~26°范围内,与坡度呈指数负相关,随着坡度的增大,~(137)Cs、~(210)Pb_(ex)含量显著减少;坡向差异对~(137)Cs、~(210)Pb_(ex)含量的影响也很明显,~(137)Cs、~(210)Pb_(ex)含量南坡>北坡>东坡>西坡。不同土地利用方式土壤按照。~(37)Cs、~(210)Pb_(ex)含量的多少,依次是草地>林地>坡耕地。
     (3)分析了地形对坡地土壤侵蚀强度的影响,阐明了不同土地利用方式的土壤侵蚀强度变化。研究表明,坡面土壤侵蚀强度沿坡面随坡长增加均呈波动变化趋势,坡上部和下部侵蚀量较大,中部次之;坡度与土壤侵蚀强度之间呈显著的指数正相关关系,在15°~26°范围内,随着坡度的增大,侵蚀强度显著增加;在该流域,坡向差异对土壤侵蚀强度的影响也很明显,不同坡向按照侵蚀强度的大小,依次是西坡>东坡>北坡>南坡。不同土地利用方式按照侵蚀强度的大小,依次是坡耕地>林地>草地。按照侵蚀程度划分,坡耕地属于极强度侵蚀,林地、草地属于中度侵蚀。
     (4)阐明了王茂沟小流域荒草覆盖、已退耕、还在耕种的峁顶和沟坡的土壤侵蚀强度变化特征。研究发现荒草覆盖的峁顶和沟坡的~(137)Cs流失量明显低于开垦农地但已退耕的峁顶、沟坡,更低于还在耕种的峁顶、沟坡;按土壤侵蚀模数的大小,依次是耕地>退耕地>荒草覆盖地。峁顶、沟坡开垦为农耕地后,侵蚀量急剧增加。
     (5)应用~(210)Pb_(ex)示踪方法计算了坡耕地多年平均侵蚀模数,并与~(137)Cs估算结果进行了对比。根据测得的坡耕地土壤剖面中~(210)Pb_(ex)的含量,计算了黄土高原丘陵沟壑区王茂沟小流域坡耕地的多年平均侵蚀模数。用~(210)Pb_(ex)方法所得的侵蚀速率是过去110年的年平均值,而~(137)Cs方法计算的侵蚀速率是50多年来的平均值,前者大于后者,说明自有~(137)Cs沉降(1954年)以来,该流域土壤侵蚀程度有明显增加的趋势。这可能与解放后该流域人口增加、林草地开垦、耕地面积增加、人为活动加剧等有关。
     (6)揭示了王茂沟流域关地沟3号、4号淤地坝坝地沉积旋迪各层淤积物的颗粒级配特征及~(137)Cs分布规律。通过分析试验得出:3号、4号淤地坝坝地淤积物的粒径主要分布在0.005mm~0.1mm之间,而且3号、4号淤地坝淤地坝的淤积物中土壤颗粒的级配不良,淤积物颗粒组成沿坝地剖面深度没有明显的变化:3号、4号淤地坝坝地沉积旋迴层淤积物中~(137)Cs含量在坝地淤积层剖面中有着极其相似的分布规律,说明了~(137)Cs技术记录特定环境历史事件的可行性。
     (7)辨识了次暴雨的降雨特征与淤地坝沉积量的关系,建立了坝控小流域次降雨侵蚀产沙模型。利用断面测量方法实测的王茂沟流域关地沟3号、4号淤地坝的坝地面积,根据1987年水毁后的出露断面和两侧沟谷坡度修正的淤地坝下部掩埋层的坝地面积,结合1959年以来3号、4号淤地坝各次降雨沉积旋迴层的厚度,计算了关地沟3号、4号坝各沉积旋迴层的沉积泥沙量;通过研究王茂沟流域关地沟3号、4号淤地坝的修建、运行历史,沉积旋迴层~(137)Cs含量的变化及泥沙量,结合流域降雨资料的分析,利用~(137)Cs的计年作用,依据“大雨大沙”的水沙响应原则,破译了关地沟3号、4号淤地坝沉积赋存的流域产沙记录,确定了3号、4号淤地坝各坝控流域1959~1987年间次暴雨的产沙量。通过次降雨特征:降雨量、最大30min降雨强度、降雨侵蚀力和相应降雨沉积旋迴淤积的泥沙量(即坝控流域的土壤侵蚀量)的多元回归分析,发现坝控流域次降雨侵蚀产沙量和次降雨侵蚀力相关程度最高。基于此,建立了王茂沟流域关地沟3号、4号淤地坝各坝控流域次降雨侵蚀产沙的预报模型,通过检验,模型具有较高精度,可以对小流域次降雨侵蚀产沙进行模拟和预报。
     (8)阐明了淤地坝坝控流域沟间地、沟谷地的相对产沙量。计算了王茂沟流域关地沟3号和4号淤地坝沉积泥沙、坝控流域沟间地梁峁坡农地耕作土的~(137)Cs的平均含量,沟谷地产出的泥沙基本不含~(137)Cs,利用配比公式计算了关地沟3号和4号淤地坝坝控流域沟间地、沟谷地的相对产沙量。结果表明:沟间地是泥沙的主要来源,关地沟3号淤地坝坝控流域,沟间地来沙70%;关地沟4号淤地坝坝控流域,沟间地来沙66%。淤地坝的建设对减轻流域沟蚀具有非常重要的作用。
     (9)利用淤地坝沉积旋迴与降雨的对应关系,揭示了淤地坝运行的初建期、发展期、完善期流域沉积速率、侵蚀产沙强度的演变趋势。根据王茂沟流域关地沟3号、4号淤地坝沉积旋迴与降雨事件的对应,分析了淤地坝不同运行时期的沉积速率、淤地坝不同运行时期坝控流域侵蚀产沙强度。结果表明,淤地坝在建设初期,坝地泥沙沉积速率很大,为流域29年平均值的1.98~2.50倍,其后呈逐渐减少趋势,但是不同流域面积之间存在一定差异;淤地坝运行的初建期、发展期、完善期,流域侵蚀产沙强度呈明显降低趋势。
In this study, Wangmaogou watershed, one of the typical small catchments in Loess PlateauHilly and Gully Area was selected as the study object. With the theory of soil erosion, runoff—sediment relationship, sediment kinematical theory and mathematical statistical theory, ~(137)Csand ~(210)Pb_(ex) tracing technique, field observations and laboratory analysis, erosion status andsediment deposition under a certain storm of different physiognomy site and different land usepatterns were studied. Making use of deposition information in silt dam, the response process ofthe sediment in each sedimentary layer and erosive rainfall was inversed respectively, then theevolvement characteristics of erosion and sediment yield intensity in watershed was analyzed.Watershed soil erosion was quantitatively appraised from the point of causes of formation,process and development trends, as a result the variations of erosion and sediment yield inspatial and temporal scales were revealed. Utilizing ~(137)Cs tracer technique, the relative amountof sediment coming from inter-gully land and gully land was estimated. Researching on thesediment yield of single rainfall and rainfall characteristics in dam control basin, watershed soilerosion prediction model was established. The studies are of practical significance in evaluatingthe ecological environment restoration and comprehensive management effect, scientificallyadjusting macroeconomic policy, such as planning and designing programs, collocated keytechnique and optimizing the layout of father measurement, and promoting construction ofecological environment for further development.
     The main results are as follows:
     (1) The result that ~(137)Cs and ~(210)Pb_(ex) were mainly absorbed in fine soil particles were tested,the characteristics of no soil particle slectivity in the course eroded soil transmitting was openedout and the reliability of ~(137)Cs and ~(210)Pb_(ex) techniques was illuminated. With analying the ~(137)Cs,~(210)Pb_(ex) contens in different size soil particles and studying on the particles composes of grasssoil, terraces soil, sloping farmland soil and silt dam sediment, the researches showed that ~(137)Cs,~(210)Pb_(ex) were mainly adsorbed by clay particles of soil, with the soil particles growing fine, ~(137)Cs, ~(210)Pb_(ex) contents increased significantly; the particles composes of grass soil, terraces soil,sloping farmland soil and silt dam sediment had no significant difference, which indicated thaterosion sediment in transport process had no particle separation. This meant that the ~(137)Cs,~(210)Pb_(ex) tracer techniques were suitable for soil erosion research.
     (2) ~(137)Cs, ~(210)Pb_(ex) distribution characteristics and concentration variations in the soil profileof different land use patterns were analyzed; the relationships between ~(137)CS, ~(210)Pb_(ex) content insoil profile of slope-land with terrain factors such as slope length, slope gradient and aspect,and landuse types were investigated.
     Study results showed that ~(137)Cs,~(210)Pb_(ex) contents distributed uniform on the whole incultivated layer in disturbed soil (farming land) profile, and only a small number of ~(137)Cs,~(210)Pb_(ex) under cultivated layer. In undisturbed soil profile, ~(137)Cs had an "enrichment layer" in thesub-surface (2-4 cm), and decreased exponentially downward with the increasing ofsub-surface depth of the soil profile. ~(210)Pb_(ex) content exponentially decreased from the surfacedown, whose distribution depth was slightly bigger than that of the ~(137)Cs in undisturbed soilprofile. ~(137)Cs, ~(210)Pb_(ex) contents in slope soil profile increased volatility trends with the slopelength. Slope gradient was negatively correlated with ~(137)Cs, ~(210)Pb_(ex) contents, ~(137)Cs, ~(210)Pb_(ex)concentrations were significantly reduced with the increase in slope gradient within 15°~26°.The impact of sloping aspect on ~(137)Cs, ~(210)Pb_(ex) concentrations is very obvious, the orderfollowed by southern slope>northern slope>east slope>west slope according to ~(137)Cs,~(210)Pb_(ex) contents of different slope aspect. The order was followed by grass>woodland>sloping farming land in accordance with ~(137)Cs, ~(210)Pb_(ex) contents of different land use patternsof soil.
     (3) The effects of terrain of slope land on soil erosion intensity were analyzed and the soilerosion intensity variations in different landuse patterns were illuminated.
     Researches showed that the soil erosion intensity increased fluctuatingly along the slope withthe slope length, which the upper and lower parts of the slope erosion larger, central smaller.Soil erosion intensity had a positive exponential correlation with slope gradient. Between 15°~26°, erosion intensity increased significantly with the slope gradient increasing. Slope gradientand soil erosion intensity of slope land was index relevant, meanwhile soil erosion fluctuatedalong the slope length, which meant that the impact of slope gradient on the soil erosion extentwas far greater than its length. In this basin, aspect impact on soil erosion intensity is veryobvious, which is that different aspect followed by western slope>eastern slope>northernslope>the southern slope with respect to the erosion size. Different land use patterns accordingto the size of erosion were sloping farmland>woodland>tuff. If classified according to erosiondegree, sloping farmland belongs to extremely violent erosion; woodland and turf belong to moderate erosion.
     (4) The characteristics of soil erosion intensity transformation in grassland coverage,uncultivated farming land and fanning land in hill top and valley slope were clarified inWangmaogou Small Watershed.
     Researches found that the ~(137)Cs concentration loss in grass coverage land in hill top andvalley slope is lower than that in uncultivated farming land, and is significantly lower than thatin cultivated land. According to soil erosion modulus size, the order is followed by cultivatedland >uncultivated farming land>grass coverage land. If hill top and valley slope werecultivated to farming land, the erosions would increase sharply.
     (5) Applying ~(210)pb_(ex) tracer method, the average erosion modulus of slope fanning land wascalculated, and its results were contrasted with that of ~(137)Cs tracing method.
     Based on ~(210)pb_(ex) content in sloping land soil profiles, the average soil erosion moduluswere calculated on slopes farmland in Wangmaogou small watershed in Loess Plateau Hillyand Gully Area, results of which were compared with that of Zhang Xinbao ~(137)Cs model. The~(210)pb_(ex) estimating results were the average erosion rate of the past 110 years, however, ~(137)Csmethod results were the average of the recent 50 years. The former is bigger than the latter,which indicated that there had been an increasing trend of soil erosion since the ~(137)Cs fell(1954). This might be caused by augmentation of the population, cultivation of forest andgrassland, the increasing of plow land, intensify of human activities after the Liberation, and soon.
     (6)The distribution laws of grain composition and ~(137)Cs contents of sludge in each damsedimentary cycle layers in the 3rd and 4th check dam were opened out.
     By analyzing test, the following results were drawn: the grain diameter of silt insedimentary cycle layers in the 3rd and 4th check dam were mainly distributed among the rangefrom 0.005 mm to 0.1 mm, sludge soil particles were distributed unevenly, and along the damto the deep profile there were no obvious changes. The ~(137)Cs contents of sludge in each damsedimentary cycle layers in the 3rd and 4th check dam profiles had very similar distributionwhich demonstrated that the 137Cs technique is feasible to note specific environmental historicalevents.
     (7) The relationships between the single rainfall characteristic with sedimentary quantity in3rd and 4th check dam controlled basin were differentiated and analyzed;accordingly, thesediment yield forecasting model under single rainfall was established in respective silt damcontrol basin.
     By the cross-section measurement of the 3rd and the 4th darn area, in Wangmaogou watershed,combining the rainfall cycle deposition layer thickness of the 3rd, the 4th silt dam since 1959, the sediment yield of each sedimentary cycle in the 3rd and the 4th check dam was calculatedaccording to the damaged section after 1987 and dam land area buried in the lower dam withslope gradient modified of both sides of the valley slope. Through studying the 3rd and the 4thsilt dam construction, operation history, mud amount of respective sedimentary cycles, inconjunction with analysis of rainfall data, using noting time function of ~(137)Cs technology, inconformity to the rainfall in response to sediment principle which is bigger rainfall produced alarger number of sand, the sediment record of the 3rd and the 4th were deciphered, thesediment yields of single rainfall in 3rd and 4th check dam control basin were identified from1959 to 1987, respectively. Through the multiple regression analysis of rainfall characteristicsresearch, such as rainfall, the biggest 30 min intensity of rainfall, rainfall erosivity andsedimentation cycles corresponding rainfall deposition of mud (that is soil erosion amount ofthe dam control basin), the results indicated that sediment yield had the best correlativity withrainfall erosivity within the dam control basin. Therefore, rainfall erosion and sediment yieldforecasting model was established for the 3rd and 4th dam control basin. Through testing, themodel had high precision, which could simulate and forecast rainfall erosion and sediment yieldin a small basin.
     (8) Relative contribution of sediment yield for inter-gully land and gully land in silt damcontrolled basins in Wangmaogou watershed was illuminated, respectively.
     The average ~(137)Cs contents in sediment of sedimentary layer and hilly slope farming land soilin Guandigou No.3, No.4 silt dam controlled basins were calculated, the sediment coming fromvalley didn't have ~(137)Cs, so relative contribution of sediment yield for inter-gully land and gullyland was worked out by proportion method, respectively. The studies showed that theinter-gully land was the main source of sediments in Guandigou No.3 and NOo4 check damcontrolled basins, and 70% of No.3 and 66% of No.4 of sediment comes from inter-gullyrespectively. It indicated that silt dam played very important role in reducing soil erosion andsediment yield.
     (9) On basis of the corresponding of rainfall events and silt dam sedimentary cycle, theevolvement trend of sediment aggradation speed, erosion and sediment yield intensity indifferent operational period of the silt dam in Guandigou No.3 and No.4 check dam controlledbasins were opened out.
     According to the corresponding of rainfall events and silt dam sedimentary cycle, thedeposition rate, erosion and sediment yield intensity in the silt dam in different operationalperiod in Guandigou No.3 and No.4 check dam controlled basins were analyzed. The resultsshowed that during the early stage of the construction of silt dam, dam sedimentation rate waslarge, which is 1.98~2.50 times of the average rate of 29 years. Later the trend was gradually reduced, but for different drainage areas there were certain differences, and during differentperiod of the silt dam operation, from the initial period, development period to stability,watershed erosion and sediment yield intensity was significantly reduced.
引文
[1] Basher L R, Matthews K M Zhi L. Surface erosion assessment in the South Canterbury down-lands, New Zealand using Cs-137distribution [J].Australian Journal of Soil Research, 1995, 33:787-803.
    [2] 唐克丽.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社,1991
    [3] 龚时旸.黄河流域黄土高原土壤侵蚀的特点[J].中国水土保持,1988,(9):2-9
    [4] 黄秉维.陕西黄土区域土壤侵蚀的因素和方式[J].科学通报,1953,(9):25-30
    [5] 陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988
    [6] 景可,陈永宗.我国土壤侵蚀与地理环境的关系[J].地理研究,1990,9(2):29-37
    [7] 辛树帜,蒋德麒.中国水土保持概论[M].北京:农业出版社,1982
    [8] 刘正杰.黄土高原淤地坝建设现状及其发展对策[J].中国水土保持,2003,(4):1-3
    [9] 方学敏,兆惠,匡尚富.黄河中游淤地坝拦沙机理及作用[J].水利学报,1998,29(10):49-53
    [10] 黎汝静,刘思忆.关于淤地坝水毁研究的几个问题[J].中国水土保持,1995,(12):43-44
    [11] 高照良,杨世伟.黄土高原地区淤地坝存在问题分析[J].水土保持通报,1999,19(6):16-19
    [12] 胡建军,牛萍,曹炜.浅谈黄河上中游地区水土保持淤地坝工程的作用[J].西北水资源与水工程,2002,13(2):28-31
    [13] 李敏.淤地坝在黄河中游水土流失防治中的作用[J].人民黄河,2003,25(12):25-27
    [14] 蒋德麒.黄河中游丘陵沟壑区沟道小流域的水土流失及治理[J].中国科学,1978,11(6):671-678
    [15] 蒋德麒,赵诚信,陈章霖.黄河中游小流域径流泥沙来源初步分析[J].地理学报,1966,32(1):20-35
    [16] 常茂德.陇东黄土高原沟道小流域的土壤侵蚀[J].水土保持通报,1986,6(3):56-60
    [17] 刘秉正、吴发启.土壤侵蚀[M].西安:陕西人民出版社,2000
    [18] Zingg, A W. Degree and length of land slope as it affects soil loss in runoff [J]. Agri. Engi., 1940, 21(2): 59-64
    [19] Musgrave G W. The Quantitative Evalution of Factors in Water Erosion-A First Approximation [J]. Journal of Soil and Water Conser., 1947, 2(3): 133-138
    [20] Ellison W D. Soil erosion studies-Part Ⅰ, Part Ⅱ, Part Ⅲ, Part Ⅳ, Part Ⅴ, Part Ⅵ, Part Ⅶ. Agricultural Engineering [M]. 1947, 145-146, 197-201, 245-248, 297-300, 349-353, 402-408, 442-444
    [21] Smith D D, Wischmeier W H. Rainfall erosion, Advance in Agronomy, No. 14,1958
    [22] 郭廷辅.中国水土保持工作的历史沿革与前景展望[M].北京:中国水利水电出版社,1997
    [23] 唐克丽,蒋定生,史德明.土壤侵蚀的研究及其展望[J].水土保持通报,1984,2(5):1-5
    [24] 周佩华,孙清芳,刘炳武.黄土地区影响坡面侵蚀主要因素的初步分析,黄土高原水土流失综 合治理科学讨论会资料汇编,1981
    [25] 江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算[A].河流泥沙国际学术讨论会论文集(第1卷).北京:光华出版社,1980,A3:1-10
    [26] 郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000
    [27] 周国忠,张春江.铁岭市东部山区小坡面土壤流失量的估算方法[J],中国水土保持,1985,2:14-18
    [28] 江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9
    [29] 郭耀文.雨滴侵蚀特征分析[J].中国水土保持,1997,4,15—17
    [30] 王贵平,曾伯庆,陆兆熊,等.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究[J].中国水土保持,1992,3:16—20
    [31] 蔡强国.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,51(2):108-116
    [32] 李占斌.黄土地区坡地系统暴雨侵蚀试验及小流域产沙模型[J].陕西机械学院,1991
    [33] Knaus R M. Accretion and canal impacts in a rapidly subsiding wetland: Ⅱ. A new soil horizon maker method for measuring recent accretion [J]. Estuaries, 1989, 12(4): 269-283
    [34] 田均良,周佩华,刘普灵,等.土壤侵蚀REE示踪法研究初报[J].水土保持学报,1992,6(4):23-27
    [35] 田均良.侵蚀泥沙坡面沉积研究初报[J].水土保持研充1997,4(2):57-63
    [36] 刘普灵,田均良,周佩华,等.土壤侵蚀稀土元素示踪法操作技术研究[J].水土保持研究,1997,4(2):10-16
    [37] 周佩华,田均良,刘普灵.黄土高原土壤侵蚀与稀土元素示踪研究[J].水土保持研究,1997,4(2):2-9
    [38] 李勉,李占斌,丁文峰,等.黄土坡面细沟侵蚀过程的REE示踪[J].地理学报,2002,57(2):218-223
    [39] 李勉,李占斌,丁文峰.中子活化分析方法在细沟侵蚀过程中的应用[J].核技术,2003,26(6):425-428
    [40] Mian Li, Zhan-bin Li, Wen-feng Ding, et al. Using rare earth element tracer and neutron activeation analysis to study rill erosion process [J]. Applied Radiation and Isotopes, 2006, 64:402-408
    [41] 杨武德,王兆骞,眭国平,等红壤坡地土壤侵蚀定位土芯EU示踪法研究[J].土壤侵蚀与水土保持学报,1998,1(4):61—65
    [42] Meyer L D. Use of the rainulator for runoff plot research [J]. Soil Sci. Soc. Am. Proc., 1960, 24(4): 319-322
    [43] Meyer L D, E J Monke. Mechanics of soil erosion and overland flow [J]. Transactions of the ASAE, 1965, 8(4): 572-580
    [44] Meyer L D. How rainfall intensity affects interrill erosion [J]. Transactions of the ASAE 1981, 24(6): 1472-1475
    [45] Edwards W M and L B Owens. Large storm effects on total soil erosion [J]. Journal of Soil and Water. Cons., 1991, 1:75-78
    [46] ParkS W, J K Mitchell and G D Bubenzer. Rainfall Characteristics and Their Relation to Splash Erosion [J]. Transactions of the ASAE 1983, 795-804
    [47] Park S W, J K Mitchell and G D Bubenzer: Splash erosion modeling: Physical analysis [J]. Transactions of the ASAE., 1987, 125(2): 357-361.
    [48] 王万忠.黄土地区降雨特征与土壤流失关系的研究[J].水土保持通报,1984,14(3):58-63
    [49] 周佩华,豆葆璋,孙清芳,等.降雨能量的试验研究初报[J].水土保持通报,1981,1(1):51-60
    [50] 江忠善,宋文经,李秀英,等.黄土地区天然降雨雨滴特性研究[J].中国水土保持,1983,(3):32-36
    [51] 郑粉莉,唐克丽,周佩华.坡地细沟侵蚀影响因素的研究[J].土壤学报,1989,26(2):109-116
    [52] 郑粉莉,唐克丽,白红英.子午岭林区不同地形部位开垦裸露地降雨侵蚀力研究[J].水土保持学报,1994,8(1):26-32
    [53] 王兴奎,钱宁,胡维德.黄土丘陵沟壑区高含沙水流的形成与汇流过程[J].水利学报,1982,37(2):46-50
    [54] 周佩华.杏子河流域土壤侵蚀调查研究[J].水土保持研究,1985,1(2):20-25
    [55] 王思远,刘纪远,张增祥,等.不同土地利用背景下土壤侵蚀空间分布规律研究[J].水土保持学报,2001,15(3):48-51
    [56] 史德明 姚宗虞,许心鹄.江西省兴国县紫色土地区的土壤侵蚀及其防治方法[J].土壤学报,1965,13(2):181-193
    [57] 蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998
    [58] 蔡强国,吴淑安,马绍嘉,等.花岗岩发育红壤坡地侵蚀产沙规律实验研究[J].泥沙研究,1996,(1):89-96
    [59] 陈永宗.黄河中游黄土丘陵区坡地的发育.中国科学院地理研究所地理集刊,1976,10
    [60] 张浩.流域坡面与沟道的侵蚀产沙研究[M].北京:气象出版社,1993
    [61] 曹银真.黄土地区梁坡的坡地特征与土壤侵蚀[J].地理研究,1983,2(3):12-19
    [62] Kirkby M J. Erosion by Water on Hill-slope in Chorley [M]. Water, Earth and Man., Methuen: London. 1969
    [63] 靳长兴.论坡面侵蚀的临界坡度[J].地理学报,1995,50(3):234-239
    [64] 刘善建.天水水土流失测验分析[J].科学通报,1953,12:59-65
    [65] 黄河水利委员会西峰水土保持科学试验站.从南小河沟的治理成果探讨黄土高原沟壑区的治理途径[J].人民黄河,1979,3:45-49
    [66] 朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报,1981,1(3):1-9
    [67] 华绍祖.黄河中游实验小流域的土壤侵蚀及水土保持效益[A].1982年国际土壤学术讨论会论文,1982
    [68] 中国科学院黄河中游水土保持考察队水文水利组,1955年考察报告
    [69] 陈永宗.黄河中游梯田的调查研究[M].北京:科学出版社,1958
    [70] 江忠善.黄河中游黄土丘陵沟壑区小流域产沙量计算,黄河中游地区水土保持科学研究工作座谈会资料汇编,1979
    [71] 江忠善,刘志.地形因素与坡地水土流失关系的研究,西北水保所集刊,1990,12:1-8
    [72] 陈浩,蔡强国.坡度对溅蚀影响初步试验研究[J].人民黄河,1986,(1):15-19
    [73] 陈法杨.不同坡度对土壤冲刷量影响试验[J].中国水土保持,1985,(2):24-29
    [74] 席有.坡度影响土壤侵蚀的研究[J].中国水土保持,1993,(4):26-30
    [75] 钱宁,万兆惠,钱意颖.黄河的高含沙水流问题[J].科学通报,1979,24(8):368-371
    [76] 侯晖昌.小流域坡面水土保持工程措施作用的分析[M].北京:水利出版社,1958
    [77] 郭继志.关于坡度与径流量和冲刷量关系问题的探讨[J].黄河建设,1958,(3):16-19
    [78] 陈永宗.黄土高原沟道流域产沙过程初步分析[J].地理研究,1983,2(1):21-26
    [79] 陈永宗:黄河中游黄土丘陵区坡地的侵蚀发育,中国科学院地理研究所地理集刊(10),科学出版社,1976
    [80] 吴普特,周佩华.地表坡度与薄层水流侵蚀关系的研究[J].水土保持通报,1993,13(3):1-5
    [81] 胡世雄,勒长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报,1999,54(4):347-356
    [82] 杨开宝,王玉宽,巨仁,等.不同坡度径流小区产流产沙结果初报.中科院水利部水土保持研究所集刊,1990,12:59-65
    [83] 江忠善,刘志,贾志伟.地形因素与坡地水土流失关系研究.中科院水利部西北水土保持研究所集刊.1990,12:1-8
    [84] Horton R E. Erosion development of streams and their drainage basins, Hydrophylogical Aproach to Quantitative Morphology. Bull. Geol.Soc.AM Vol.56, 1945
    [85] Melton M A. Intraralley Variation in slope angles related to microclimate, and erosional environment. Bull. Geol. Soc. AM. Vol.71, 1960
    [86] Ruxton B P. Weathering and subsurface erosion granite at Pidement Angle Bolos, Suden, Geol, May, Vol.95, 1958
    [87] Carson M A. An application of the threshold slopes to the Laramic Montains, Wyominy Inst British, Spacial Pub. No.3, 1971
    [88] 蔡强国.坡长对坡耕地侵蚀产沙过程的影响[J].云南地理环境研究,1998,10(1):24-43
    [89] 蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989,4:52-56
    [90] 蔡强国.黄土坡耕地上坡长对径流侵蚀产沙过程的影响.水土流失规律与坡地改良利用.北京:中国环境科学出版社,1995
    [91] 罗来兴.甘肃华亭粮食购坡面细沟侵蚀量的野外测定及其初步分析结果[J].地理学资料,1958,2:111-118
    [92] 牟金泽,孟庆枚.论流域产沙量计算中泥沙输移比[J].泥沙研究,1982,1:32-37
    [93] 张信宝,Higgitt D L D E Walling.~(137)Cs法测算黄土高原侵蚀速率的初步研究[J].地球化学,1991,26(3):48-52
    [94] 林超,李昌文.阴阳坡在山地地理研究中的意义[J].地理学报,1985,40(1):20-28
    [95] 李孝地.黄土高原不同坡向土壤侵蚀分析[J].中国水土保持,1988,8:52-54
    [96] Huang Luji. Rainfall and Aspect-related Differences in Erosion Intensity [M]. Geographical Research on the Topical and Sub-tropical Area of South China, Science Press,1990: 47-52
    [97] 黄录基,Munro D S,张绍贤,等.降水、蒸发和径流的坡向效应[J].水土保持学报1994,8(1):18-25
    [98] 田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗蚀性指标的初步研究[J].土壤学报,1964,12(3):286-296
    [99] 郭陪才,张振中.黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报,1992,6(3):48-51,58
    [100] 胡建忠,范小玲.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):29-34
    [101] 周佩华,武春龙.黄土高原土壤抗冲性的实验研究方法探讨[J].水土保持学报,1993,7(1):48-51,58
    [102] 张启昌,孟庆繁.黄土低山丘陵土壤抗蚀性影响因素的逐步研究[J].水土保持通报,1996,16(3):23-26
    [103] 朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):52-56
    [104] 蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究[J].土壤通报,1979,10(4):37-42
    [105] 蒋定生,黄国俊.黄土高原土壤入渗率的研究[J].土壤学报,1986,23(4):299-305
    [106] 刘秉正,吴发启.刺槐林土壤抗冲性的试验研究[J].西北林学院学报,1984,1:56-60
    [107] 李勇,朱显瑛.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5):11-16
    [108] 吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性的试验研究方法探讨:Ⅱ.草本植物根系提高表层土壤抗冲刷力的试验分析[J].水土保持学报,1990,4(1):390-393
    [109]朱 显谟.黄土高原的形成与开发整治对策[J].水土保持通报,1991,11(1):1-8
    [110] 黄秉维.谈黄河中水土保持问题[J].中国水土保持,1993,1:8-12
    [111] 陈永宗.一项有战略意义的水土保持技术措施[J].中国水土保持,1984,1:5-7
    [112] 孙立达,孙保平,陈宇,等.西吉县黄土丘陵沟壑区小流域土壤侵蚀量预报[J].自然资源学报,1988,3(20):141-153
    [113] R D罗杰斯.稀疏植被覆盖对侵蚀和产沙的影响[J].中国水土保持,1992,4:22-26
    [114] 黄河水利委员会西峰水土保持试验站:1956—1962年子午岭林区测验结果总结,黄河流域水土保持科学研究工作会议汇编,1964
    [115] 杨文治,余存祖(主编).黄土高原区域治理与评价[M].北京:科学出版社,1992
    [116] Hayes, J C, Bafield, B J, Barnhisel, R L. Performance of grass filters under laboratory and field conditions [J]. Transactions of the ASAE, 1984. 27(5): 1321-1331
    [117] Moore, J D, Burch, G J. Physical basis of the Length-slope factor in the universal soil loss equation[J]. Soil Soc. Am.J., 1986, 50: 1294-1298
    [118] Schellinger, G R,Clausen, J C. Betetative filter treatment of dairy barnyard runoff in cold regions[J]. J. Environmental Quality, 1992, 21(1): 40-45
    [119] 侯喜禄,白岗拴,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验[J].水上保持学报,1995,9(3):90-95
    [120] Lal R. Soil erosion and its relation to productivity in tropical soils [C]. In: ELSwaify S.A., Moldenhauer W.C., Lo A, Eds. Soil Erosion and Conservation. Ankeny, lowa: SCSA,1985: 237-247
    [121] 王有科,傅左,李立.坡面水土流失观测分析.中国科学院水利部西北水土保持研究所集刊[C],1991,14:104-109
    [122] 牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算[C].河流泥沙国际学讨论会论文集,1980,第1卷
    [123] 熊贵枢,张胜利.大理河流域减水减沙效益初步分析[J].人民黄河,1983,(1):45-49
    [124] 侯喜禄,杜呈祥.不同植被类型小区的泥沙径流观测分析[J].水土保持通报,1985,5(6):35-37
    [125] 刘昌明,钟俊襄.黄土高原森林对年径流影响的初步分析[J].地理学报,1978,33(2):75-79
    [126] 唐克丽,贺秀斌.第四纪黄土坡面多元古土壤形成发育信息的揭示[J].土壤学报,2002,39(5):609-617
    [127] 郑粉莉,贺秀斌.黄土高原植被破坏与恢复对土壤侵蚀演变的影响[J].中国水土保持,2002,7:21-25
    [128] 刘元保,唐克丽,查轩,等.坡耕地不同地面覆盖的水土流失试验研究[J].水土保持学报,1990,4(1):25-29
    [129] 查轩,唐克丽,张科利,等.植被对土壤特性及土壤侵蚀的影响[J].水土保持学报,1992,6(2):52-58
    [130] Morgan R P C, Morgan D D V, H J Finney. A predictive model for the assessment of soil erosion risk [J]. J. Agr.Eng.Res., 1984, 30: 245-253
    [131] 侯喜禄.黄土丘陵区主要水保林类型及草地水保效益的研究.西北水土保持研究 所集刊.1991,14:96-104
    [132] 罗伟祥,自立强,宋西德,等.不同覆盖度林地与草地的径流量与冲刷量[J].水土保持学报,1990,4(1):36-43
    [133] 王秋生.植被控制土壤侵蚀的数学模型及其应用[J].水土保持学报,1991,5(4):68-72
    [134] 董荣万,朱兴平,何增化,等,定西黄土丘陵沟壑区土壤侵蚀规律研究[J].水土保持通报,1998,18(3):1-9
    [135] 于兴修,杨桂山,王瑶.土地利用/覆被变化的环境效应研究进展与动向[J].地理科学,2004,24(5):627-631
    [136] 柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报,2001,15(5):10-13,17
    [137] 邹亚荣,张增祥,周全斌,等.基于GIS的土壤侵蚀与土地利用关系分析[J].水土保持研究,2002,9(1):67-69,75
    [138] 于东升,史学正,吕喜玺.低丘红壤区不同土地利用方式的C值及可持续性评价[J].水土保持学报,1998,11(1):71-76
    [139] 蔡强国,吴淑安.紫色土陡坡地不同土地利用对水土流失过程的影响[J].水土保持通报,1998,18(2):1-8
    [140] 范建容,柴宗新,刘淑珍,等.基于RS和GIS的四川省李子溪流域土壤侵蚀动态变化[J].水土保持学报,2001,15(4):25-28
    [141] 中国科学院黄土高原综合科学考察队.黄上高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社,1990
    [142] 周佩华,刘炳武,王占礼,等.黄土高原土壤侵蚀特点与植被对土壤侵蚀影响的研究[J].水土保持通报,1991,11(5):26-31
    [143] 魏天兴,朱金兆,朱清科,等.黄土陡坡地农林复合经营设计与水土保持效益研究[J].土壤侵蚀与水土保持学报,1998,5(4):45-51
    [144] 蒋定生等(编著).黄土高原水土流失与治理模式[M].北京:中国水利电力出版社,1997
    [145] 王礼先.水土保持学[M].北京:中国林业出版社,1997:135-136
    [146] 傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246
    [147] 陈松林.基于GIS的土壤侵蚀与土地利用关系研究[J].福建师范大学学报,2000,(1):34-37
    [148] 蒋定生,黄国俊,范兴科.黄土高原坡耕地水土保持措施效益评价实验研究:(Ⅲ)坡耕地水土保持措施综合效益评价[J].水土保持学报,1990,4(4):8-13
    [149] 黄明斌,康绍忠,李玉山.黄土高原沟壑区森林和草地小流域水文行为的比较研究[J].自然资源学报,1999,14(3):226-231
    [150] Rai S C, Sharma, E. Comparative assessment of runoff characteristics under different land use patterns within a Himalayan watershed[J]. Hydrological Process, 1998b, 12: 2235-2248
    [151] 喻权刚.遥感信息研究黄土丘陵区土地利用与水土流失[C].黄土高原水土保持实践与研究(二).郑州:黄河水利出版社,1998:84-92
    [152] Hudson N W. Soil conservation. Cornell University Press, Ithaca, New York, 1961
    [153] 金争平,赵焕勋,和泰,等.黄甫川区小流域土壤侵蚀量预报方程研究[J].水土保持学报,1991,5(1):8-18
    [154] 加生荣.黄丘一区径流泥沙来源研究[J].中国水土保持,1992,1:20-23
    [155] 刘黎明,林培.黄土高原丘陵沟壑区土壤侵蚀定量方法与模型的研究[J].水土保持学报,1992,6(3):73-79
    [156] 段建南,李保国,石元春,等.应用于土壤变化的坡面侵蚀过程模拟[J].土壤侵蚀与水土保持学报,1998,4(1):47-53
    [157] 蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报.1998,51(2):108-116
    [158] Young R A, AGNPs: A nonpoint source pollution model for evaluating agricultural watershed [J]. Journal of soil and water conservation, 1989, 44(2): 168-173
    [159] 余新晓,毕华兴,朱金兆,等.黄土地区森林植被水土保持作用研究[J].植物生态学报,1997,21(5):433-440
    [160] 蔡强国,刘纪根,刘前进.岔巴沟流域次暴雨产沙统计模型[J].地理研究,2004,23(4):433-439
    [161] 王孟楼,张仁.陕北岔巴沟流域次暴雨产沙模型的研究[J].水土保持学报,1990,4(2):11-18
    [162] 田永宏,郭玉梅,张庆伟.黄丘一区一次降雨条件下的产流产沙计算[J].中国水土保持,1997,2:14-18
    [163] Feyen L, Vazquez R F, Christiaens K, et al. Application of a distributed physically based hydrological model to a medium sized catchment. Jurgen Schmidt (Edited). Soil erosion: application of physically based models, Springer Verlag Berlin Heidelberg, 2000: 745-751
    [164] Folly J N, Quinton, R E. Smith. Evaluation of the EUROSEM model using data from the Catsop watershed, the Netherlands [J]. Catena, 1999, 37: 507-519
    [165] Morgan R P C, Quinton J N, Smith R E, et al. The European Soil Erosion Model (EUROSEM): Documentation and user guide[S]. Silsoe College, Cranfield University, 1998
    [166] Morgan R P C, Quinton J N, Smith R E, etal. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from field sand small catchments [J]. Earth Surface Processes and Landforms, 1998, 23(6): 527-544
    [167] Beasly D B, Huggins L F, Monke E J. ANSWERS:A model for watershed planning[J]. Trans. Of ASAE, 23(4): 938-934
    [168] Beasley D B, Huggins L E ANSWERS User's Mannual[C]. West Layette: Dept. If Afric, Eng., Purdue University, 1982
    [169] DeRoo A P J, Wesseling C G, Ritsema C J. LISEM: A single-Event Physically Based Hydrological and soil Erosion Model for Drainage Basins. Ⅰ: Theory, Input and Output [J]. Hydrological Proceses, 1996, 10(8): 1107-1118
    [170] Jetten V. LISEM:Limburg Soil Erosion Model user manual, version2.x[R]. Netherlands: Utrecht University, 2002
    [171] 贾媛媛,郑粉莉.LISEM模型及其应用[J].水土保持研究,2004,11(4):91-93
    [172] 杨勤科,李锐.LISEM:一个基于GIS的流域土壤流失预报模型[J].水土保持通报,1998,18(3): 82-89
    [173] 汪东川,卢玉东.国外土壤侵蚀模型发展概述[J].中国水土保持科学,2004,2(2):35-40
    [174] 谢树楠,王孟楼,张仁.黄河中游黄土沟壑区暴雨产沙模型的研究[R].北京:清华大学,1990
    [175] 汤立群.流域产沙模型的研究[J].水科学进展,1996,7(1):47-53
    [176] 汤立群,陈国祥.小流域产流产沙动力学模型[J].水动力学研究与进展,1997,12(2):164-174
    [177] 符素华,张卫国,刘宝元,等.北京山区小流域土壤侵蚀模型[J].水土保持研究[J],2001,8(4):114-120
    [178] 姚文艺,汤立群.水力侵蚀产沙过程及模拟[M].郑州:黄河水利出版社,2001
    [179] 王星宇.黄土地区流域产沙的数学模型[J].泥沙研究,1987,(3):55-61
    [180] 祁伟,曹文洪,郭庆超,等.小流域侵蚀产沙分布式数学模型的研究[J].中国水土保持科学,2004,2(1):16-21
    [181] 唐莉华,张思聪.小流域产汇流及产输沙分布式模型的初步研究[J].水力发电学报,2002,76(1)(专刊):119-127
    [182] 贾媛媛,郑粉莉,杨勤科.黄土高原小流域分布式水蚀预报模型[J].水利学报,2005,36(3):328-332
    [183] 刘高焕,蔡强国,朱会义,等.基于地块汇流网络的小流域水沙运移模拟方法研究[J].地理科学进展,2003,22(1):71-78.
    [184] 王协康,方铎.土壤侵蚀产沙量的人工神经网络模拟[J].成都理工学院学报,2000,27(2):197-202
    [185] J R Mchenry. Use of tracer technique in soil erosion research [J]. Transactions of the ASAE, 1968, 619-625
    [186] Mchenry J R. and Gary D Bubenzer. Field erosion estimated from ~(137)Cs activity measurements [J]. Transactions of the ASAE, 1985,28: 480-483
    [187] Ritchie and J R Mchenry. Determination of fallout ~(137)Cs and naturally occurring gamma-ray emitters in sediments [J]. Appl.Radiat.Isot. 1973,24: 575-578
    [188] Ritchie J C, J R Mchenry and Angela C Gill. Fallout ~(137)Cs in the soils and sediments of three small watersheds [J]. Ecology, 1974a,55: 887-890
    [189] Ritchie J C, James A. Spraberry and J Roger Mchenry. Estimating soil erosion from the redistribution of fallout ~(137)Cs [J]. SSSAPROC., 1974b,38: 137-139
    [190] Ritchie J C and J Roger Mchenry. Fallout ~(137)Cs: A tool in conservation research [J]. Journal of Soil and Water Conservation, 1975,6: 283-285
    [191] Ritchie J C and J Roger Mchenry. Fallout ~(137)Cs in cultivated and noncultivated North Central United States watersheds [J]. J. Environ. Qual.. 1978,7(1): 40-44
    [192] Ritchie J C and J Roger Mchenry. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A Review [J]. J.Environ. Qual. 1990,19:215-233
    [193] Douglas G Sprugel and Gordon E Bartelt. Erosional removal of fallout plutonium from a large Midwestern Watershed [J]. J.Environ.Qual.,1978,7(2):175-177
    [194] Kiss J J, E de Jong and L W Martz. The distribution of fallout cesium-137 in Sourthern Saskatchewan, Canada [J]. J.Environ.Qual.,1988,17(3):445-452
    [195] Kiss J J, E de Jong and HPW Rostad. An assessment of soil erosion in West-central Saskatchewan using cesium-137[J]. Can. J.Soil Sci. 1986,66:591-600
    [196] Edward A H. Naturally occurring radionuclides in agricultural products: An overview [J]. Journal of Environmental Qual, 1994,23:630-632
    [197] Longmore M E, B M O'Leary, C W Rose, et al. Mapping soil erosion and accumulation with the fallout isotope caesium-137[J]. Aust. J. Soil Res, 1983,21:373-385
    [198] Loughran R J, Newcastle, B L Campbell, et al. Soil erosion and sedimentation indicated by caesium-137: Jackmoor Brook Catchment, Devon, England[J]. Catena, 1987,14: 201-212
    [199] Lowrance Richard, Sherwood M and Clarence Lance. Erosion and deposition in a field/forest system estimated using cesium-137 activity. Journal of Soil and Water Conservaton. 1988,2:195-199
    
    [200] Menzel R.G. Transport of strontium-90 in runoff. Science (Washington). 1960,131:499-500
    [201] Robbins J.A. and D.N.Edgington. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta, 1975,39:285-304
    [202] Simpson H J, Olsen C R, Triver, et al. Man-made radionuclides and sedimentation in the Hudson River [J]. Science,1976,194: 1979-1982
    [203] de Jong E, H Villar and J R Bettany. Preliminary investigations on the use of 137Cs to estimate erosion in Saskatchewan[J]. Can.J.Soil Science,1982,62:673-683
    [204] de Jong E, Begg C M, Kachanoski R G. Estimates of soil erosion and deposition from Saskatchewan soils[J]. Can. J.Soil Science,1983,63:607-617
    
    [205] de Jong E, C Wang and H W Rees. Soil redistribution on three cultivated New Brunswick hillslopes calculated from 137Cs measurements, solum data and the USLE[J]. Can.J.Soil.Sci. 1986,66:721-730
    [206] Spomer R G, J R Mchenry, R F Piest. Sediment movement and deposition using cesium-137 tracer [J]. Transactions oftheASAE,1985,28(3):767-772
    [207] R G Menzel, Pil-kyun Jung, Kwan-shig Ryu, et al. Estimating soil erosion losses in Korea with fallout cesium-137[J].Appl. Radiat.Isot.,1987,38(6):451-454
    [208] Soileau J M, B F Hajek and J T Touchton. Soil erosion and deposition evidence in a small watershed using fallout cesium-137[J]. SSSAJ,1990,54: 1712-1719
    [209] Claude Bernard and Mare R Laverdiere. Spatial redistribution of ~(137)Cs and soil erosion on Orleans Island, Quebec[J]. Can. J.Soil Sci. 1992,72:543-554
    [210] Murray A, Ellen Wohl and Jon East. Thermoluminescence and excess ~(226)Ra decay dating of Lake Quaternary fluvial sands, East Alligator River, Australia[J]. Quaternary Research, 1992,37: 29-41
    [211] Busacca A J, C A Cook and D J Mulla. Comparing landscape-scale estimation of soil erosion in the Palouse using 137Cs and RUSLE [J]. Journal of Soil and Water Conservation, 1993,4: 361-367
    [212] Wauters J, L Sweeck, E Valcke, et al. Availability ofradiocaesium in soils: a new methodology [J]. The Science of the Total Environment, 1994,157: 239-248
    [213] Cao Y Z, D R Coote, M C Nolin, et al. Using ~(137)Cs to investigate net soil erosion at two soil benchmark site in Quebec[J]. Can. J. Soil Sci., 1993,73: 515-526
    [214] Bremer E, E de Jong and H H Janzen. Difficulties in using ~(137)Cs to measure erosion in stubble-mulched soil [J].. Can. J. Soil Sci 1995,75: 357-359
    [215] Pennock D J, D S Lemmen and E de Jong. Cesium-137-measured erosion rates for soils of five parent-material groups in southwestern Saskatchewan [J]. Canadian J.Soil Science, 1995,75: 205-210
    [216] Bajracharya R M, Rattan Lal and John M Kimble. Use of radioactive fallout cesium-137 to estimate soil erosion on three farms in West Central Ohio [J]. Soil Science. 1998,163: 133-142
    [217] Wiranatha A S, C W Rose and M S Salama. A comparison using caesium-137 technique of the relative importance of cultivation and overland flow on soil erosion in a steep semi-tropical sub-catchment [J]. Aust.J Soil Res. 2001,39: 219-238
    [218] 张信宝,李少龙,王成华等.~(137)Cs法测算梁峁坡农耕地土壤侵蚀量的初探[J].水土保持通报,1988,8(5):18-22
    [219] 张信宝,李少龙,王成华,等.黄土高原小流域泥沙来源的~(137)Cs法研究[J].科学通报,1989,34(3):210-213
    [220] 张信宝,汪阳春,李少龙,等.蒋家沟流域土壤侵蚀及泥石流细粒物质来源的~(137)Cs法初步研究[J].中国水土保持,1992,(2):28-31
    [221] 张信宝,李少龙,T.A.Quine,等.犁耕作用对~(137)Cs法测算农耕地土壤侵蚀量的影响[J].科学通报,1993,38(22):2072-2076
    [222] 吴永红,李倬,张信宝.黄土高原沟壑区谷坡农地侵蚀及产沙的~(137)Cs法研究[J].水土保持通报,1994,14(2):22-25
    [223] 赵纯勇,郭跃,张述林,等.川中小流域丘坡耕地土壤侵蚀研究[J].中国水土保持,1994,(9):22-25
    [224] 文安邦,张信宝,D E Walling.黄土丘陵区小流域泥沙来源及其动态变化的~(137)Cs法研究[J].地理学报(增刊),1998,124-133
    [225] 文安邦,张信宝,王玉宽,等.长江上游云贵高原区泥沙来源的~(137)Cs法研究[J].水土保持学报,2000,14(2):25-27
    [226] 文安邦,刘淑珍,范建容,等.雅鲁藏布江中游地区土壤侵蚀的~(137)Cs示踪法研究[J].水土保持学报,2000,14(4):47-50
    [227] 杨明义,田均良,刘普灵.用~(137)Cs法研究农耕地坡面土壤侵蚀空间分布特征初报[J].水土保持研究,1997,4(2):96-99
    [228] 杨明义,田均良,刘普灵.核分析技术在土壤侵蚀研究中的应用[J].水土保持研究,1997,4(2):100-112
    [229] 杨明义,田均良,刘普灵.应用~(137)Cs研究小流域泥沙来源[J].土壤侵蚀与水土保持学报,1999,5(3):49-53
    [230] 濮励杰,包浩生,彭补拙,等.~(137)Cs应用于我国西部风蚀地区土地退化的初步研究[J].土壤学报,1998,35(4):441-449
    [231] 杨浩,杜明远,赵其国,等.基于~(137)Cs地表富集作用的土壤侵蚀速率的定量模型[J].土壤侵蚀与水土保持学报,1999,5(3):42-48
    [232] 李勉,李占斌,刘普灵.水蚀风蚀交错带峁坡不同坡向~(137)Cs示踪研究[C].“全国土壤侵蚀与区域水土保持环境效应”学术研讨会,陕西杨凌,2001
    [233] Li Mian, Tian Jun-liang and Li Zhan-bin. Preliminary Investigations on the Use of ~(137)Cs to Estimate Soil Erosion in Purple Hilly Area. The 3rd Erochinut Workshop, Sept.25~28, 2000,Yangling
    [234] Li Mian, Li Zhanbin and Liu Puling. Estimating Soil Loss in Purple Hilly Area with Fallout Cesium-137. International Symposium on soil erosion management, April 26~30, 2001 Taiyuan, Shanxi, China
    [235] 王晓燕,田均良,杨明义,等.黄土坡面Cs浓度与坡面耕垦历史的关系研究[J].核技术,2005,28(8):607-612
    [236] Mackenzie A B. Environmental radioactivity: experience from the 20th century-trends and issues for the 21st century[J]. The Science of the Total Environment, 2000, 249: 313-329
    [237] Goldberg E D, Koid M. Rates of sediment acculation in the Indian Ocean in: Geiss J, Goldberg E.D eds. Earth science and meteoritics. Amsterdam North-Holland publishing company. 1963, p: 90-120
    [238] Krishanswami S, et al. Geochronology of lake sediments. Earth Planet sci. Lett. 1971,11: 407-414
    [239] Koid M, et al. Marine geochronology with 210 pb. Earth and Planet science letters. 1972,14: 442-446
    [240] Walling D E, He Q. Rates of overbank sedimentation on the flood plains of sevaral British rivers during the past 100 years. IAHS Publ. 1994,229: 267-278
    [241] He Q and Walling D E. Interpreting partical size effect in the sbsorption of ~(137)Cs and unsorpported 210pb by mineal soils and sediments [J]. J. Environ. Radioact., 1996a, 30: 117-137
    [242] He Q, Walling D E. Use of fallout Pb-210 to investigate long-time rates and patterns of overbank sediment desposition on the flood plains of down-land of river[J]. Earth Surf. Processes Landforms, 1996b,21: 141-154
    [243] Buscail R, et al. Pb-210 manganses and carbon: Indicators of focusing processes on the northwestern Mediterranean continental margin[J]. Mar. Geol.. 1997,137: 271-286
    [244] Jensen A. Historical desposition rates of Cd, Cu, Pb and Zn in Norway and Swiden estimated by Pb-210 dating and measurement of trace elements in cores of peat bogs[J]. Water Air Soil Pollut. 1997,95: 205-220
    [245] Kim G, et al. The fallout isotope Bi-207 in a Delaware salt marsh: A comparision with Pb-210 and Cs-137 as a geochronological too[J]. Sci. Total Environ. 1997,196: 31-41
    [246] Walling D E, et al. Use of caesium-137 and lead-210 as tracers in soil erosion investigation. IAHS Publ. 1995,249: 163-172
    [247] Walling D E and He Q. Using of fallout lead-210 measurements to estimate soil erosion on cultivated land [J]. Soil Sci. Soc. Am. J. 1999,63: 1404-1402
    [248] Wallbrink P J and A S Murray. Use of fallout radionuclides as indicators of erosion processes [J]. Hydrological Processes, 1993,7: 297-304
    [249] 白占国,万曦,万国江,等.岩溶山区表土中~7Be、~(137)Cs、~(226)Ra、~(228)Ra的地球化学相分配及其侵蚀示踪意义[J].环境科学学报,1997,17(4):407-411
    [250] 白占国,万国江,Santichi PH,等.宇宙射线散落核素~7Be在山区表土层中的分布特征及其侵蚀示踪原理[J].土壤学报,1998,35(2):266-275
    [251] 白占国.万国江.现代侵蚀作用核素示踪研究新进展.地球科学进展[J].1998,13(3):232-237
    [252] Olsen C R, Larsen I L, Lowry P H, et al. Atmospheric fluxes and marsh-soil in inventories of ~7Be and ~(210)pb[J]. J. Geophys Res., 1985, 90: 10487-10495
    [253] Burch G J, R D Barling and C J Branes, et al. Detection and prediction of sediment sources in catchments: use of Be-7 and Cs-137. Hydrology and Water Resources Symposium 1988,146-150
    [254] Bai Zhanguo, Wan Guojiang, Bai Changsheng, et al.. 7Be distribution in surface soil of central Guizhou Karst region and its erosion trace [J]. Progress in natural science, 1996, 6(6): 700-710
    [255] Walling D E, He Q and W Blake. Use of Be-7 and Cs-137 measurements to document short-medium-term rates of water-induced soil erosion on agriculture land [J]. Water Reasource Research. 1999,35(12): 3865-3874.
    [256] Wallbrink, P J. Fallout of cosmogentic radionuclide ~7Be and its subsequent distribution in the soil profile. Honours Thesis, ANU. Forestry Ded. 1989,30-89
    [257] Wallbrink P J and A S Murray. Determining soil loss using the inventory ratio of excess lead-210 to cesium-137[J]. SSSAJ,1996,60: 1201-1208
    [258] Murray A S. Methods for determining the sources of sediments reaching reserveoirs: targeting soil conservation[J]. Ancold Bulletin, 1990,85: 61-70
    [259] 张信宝,贺秀斌,文安邦,等.川中丘陵区小流域泥沙来源的~(137)Cs和~(210)pb双同位素法研究[J].科学通报,2004,49(15):1537-1541
    [260] 杨明义.多核素示踪定量研究坡面侵蚀过程[D].西北农林科技大学,2001
    [261] Olley J M and A S Murray. Origins of variability in the ~(230)Th/~(232)Th ratio in sediments. "Variability in stream erosion and sediment transport", IAHS Publication.no.224, 1994, 65-70
    [262] He Q and Ovens P. Determination of suspended sediment provenance using cesium-137, unsupported lead-210 and radium-226: Anumerical model approach. In sediment and water quality in river catchments, edited by I.D. Foster, et al. pp: 207-227,John Willey, Newyork, 1995
    [263] Wallbrink P J, Murray A S, Olley J M. Determining sources and transit times of supended sediments in the Murrumbidgee River, New South Wales, Australlia, using fallout ~(137)Cs and ~(210)pb[J]. Water resource research, 1998, 34(4): 879-887
    [264] 朱显谟.黄土区土壤侵蚀的分类,土壤学报,1956,4(2):99-115
    [265] 唐克丽主编.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993
    [266] 刘元保.黄土高原坡面沟蚀的危害及其发生发展规律[D].中国科学院西北水土保持研究,1984
    [267] 张科利.浅沟发育对土壤侵蚀作用的研究[J].中国水土保持,1991,1:17-19
    [268] 孟庆枚主编.黄土高原水土保持[M].郑州:黄河水利出版社,1996
    [269] 曾茂林,朱小勇,康玲玲,等.区淤地坝的拦尼减蚀作用及发展前景[J].保持研究,1999,6(2):126-133
    [270] 罗来兴,延年.陕北无定河、清涧河黄土区域的侵蚀地形与侵蚀量[J].地理学报,1955,21(1):35-44
    [271] 朱震达.南阳盆地边缘花岗岩丘陵地区侵蚀地形的初步观察[J].地理学报,1955,21(1):45-51
    [272] 席承藩,程云生,黄直立.陕北绥德韭园沟土壤侵蚀情况及水土保持办法[J].土壤学报,1953,2(3):148-166
    [273] 龚时砀,蒋德麒.黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理[J].中国科学,1978,11(6):671-678
    [274] 加生荣.黄丘一区径流泥沙来源研究[J].中国水土保持,1992,1:20-23
    [275] 郑宝明等编著.黄土丘陵沟壑区第一副区小流域坝系建设理论与实践[M].郑州:黄河水利出版社,2004.
    [276] 冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙作用研究[J].中国水利,2003,A(9):67-69
    [277] 张胜利,于一呜,姚文艺,著.水土保持减水减沙效益计算方法[M].北京:中国环境科学出版社,1994.
    [278] 内蒙古准格尔旗水土保持局皇甫川治沟骨干工程研究组.川掌沟治沟骨干工程坝系建设及其重大作用[J].中国水土保持,1995,4:15-19.
    [279] 张文英.坝系工程效益及建设体会[J].山西水利,1999,3:11-12.
    [280] 刘汉喜,田永宏,程益民.绥德王茂沟流域淤地坝调查及坝系相对稳定规划[J].中国水土保持,1995,12.16-21
    [281] 方学敏,曾茂林.黄河中游淤地坝坝系相对稳定研究[J].泥沙研究,1996,3:12-20
    [282] 许炯心.黄河中游多沙粗沙区水土保持减沙的近期趋势及其成因[J].泥沙研究,2004,2:5-10
    [283] 范瑞瑜主编.黄土高原坝系生态工程[M].郑州:黄河水利出版社,2004
    [284] 赵昕,李毓祥,韩学士.坝系农业与生态环境建设[J].水土保持研究,2001,8(4):43-45.
    [285] Miller J R and R F Reitemeier. The leaching of radio—strontium and radio—cesium through soils. SSS Process. 1963, 141-144
    [286] MacKenzie A B. Environmental radioactivity: experience from the 20th century—trends and issues for the 21st century[J]. The Science of the Total Environment, 2000, 249:313-329
    [287] Mccabe D C and R Protz. Faunal effects on the distribution of gamma emitting radio-nuclides in four forested soils[J]. Water, Air, and Soil Pollution. 1991, 57-58: 521-532
    [288] Olley J M, A S Murray and P J Wallbrink. Identifying sediment sources in a partially logged catchment using natural and anthropogenic radioactivity[J]. Z. Geomorph. N. F. 1996a, 111-127
    [289] Olley J M, A S Murray and R G Roberts. The effects of disequilibria in the uranium and thorium decay chain on burial dose rates in fluvial sediments. [J]. Quaternary Geochronology. 1996b, 15: 751-760
    [290] Olley J M, A S Murray, D H Mackenzie, et al. Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity[J]. Water Resour. Res. 1993, 29 (4): 1037-1043
    [291] Owens P N, Walling D E, He Q, et al. The use of caseium-137 measurement to establish a sediment budget for the Start catchments [J]. Devon, UK. Hydrological Science, 1997, 42:405-423
    [292] Bruckmann Axel and Volkmar Wolters. Microbial immobilization and recycling of ~(137)Cs in the organic layers of forest ecosystems: relationship to environmental conditions, humification and invertebrate activity[J]. The Science of the Total Environment. 1994, 157:249-256
    [293] Cornett R J, L A Chant, B A Risto, et al. Identifying resuspended particles using isotope ratios [J]. Hydrobiologia. 1994, 284:69-77
    [294] John M R, James N B, Keeley D F, et al. Radio-nuclides in Louisiana Soils[J]. J. Environ. Qual. 1988, 17(4):562-568
    [295] Papastefanou C, Manolopoulou M, Stoulos S, et al. Soil-to-plant transfer of ~(137)Cs, ~(40)K and ~7Be[J]. Journal of Environmental Radioactivity, 1999, 45:59-65
    [296] Wallage A, Romney E M and Wood R A. The role of stable cesium on plant uptake of cesium-137 [J]. Soil Science, 1982, 134(1):71-75
    [297] Graustein W C and KK Turekian. ~(210)Pb and ~(137)Cs in air and soil measure the rates and vertical profile of aerosol scavenging [J]. Journal of Geophysical Research, 1986, 91:14355-14366
    [298] Dorr H and K O Munnich. Lead and Cesium transport in European forest soil[J]. Water Air and Soil Pollution, 1991, 57:809-818
    [299] Turekian K K, Nozaki Y and L K Benninger. Geochemistry of atmospheric radon and radon products [J]. Ann. Rev. Earth Planet Sci., 1977, 5:227-255
    [300] Nozaki Y, Demaster D J, Lewis D M, et al. Atmosphere ~(210)Pb fluxes determined from soil profile[J]. J. Geophys. Res., 1978, 83:348-352
    [301] Appleby P G and Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported ~(210)Pb to the sediment [J]. Catena, 1978,5:1-8
    [302] 项亮.核素示踪对湖泊环境变化的研究[D].中国科学院南京地理与湖泊研究所,1999
    [303] 王秀玉,曾而康,万玉松,等.应用~(210)Pb测定鄱阳湖底泥的沉积速率[J].核技术,1987,10(12):15-18
    [304] Schulz R K, Roy Overstreet and I Barshad. On the soil chemistry of cesium-137[J]. Soil Science, 1959, 111:16-27
    [305] He Q and D E Walling. The distribution of fallout ~(137)Cs and ~(210)Pb in undisturbed and cultivated soils[J]. Appl. Radiat. Isot., 1997, 48(5):677-690
    [306] 张金慧.王茂沟综合防治体系建设试验研究[J].人民黄河,1993,15(9):20-23
    [307] 冯国安.陕北王茂沟流域综合治理的启示[J].人民黄河,1998,20(1):15-17
    [308] 李仁英,杨浩,唐翔宇.土壤中~(137)Cs的化学性质及其分布规律[J].核农学报,2001,15(6):371-379
    [309] 李勉.小流域侵蚀与产沙关系的~(137)Cs、~(210)Pb_(ex)示踪研究[D].中国科学院研究生院,2001
    [310] Van HoofP L and A W Andren. Partitioning and transport of ~(210)pb in Lake Michigan [J]. J. Great Lake Res., 1989, 12:995-1007
    [311] Megumi K, Oka T, Yaskawa K, et al. Contents of natural nuclides in soil in relation to their surface area [J]. J. Geophs. Res., 1982, 87:10857-10860
    [312] 汪阳春,张信宝,李少龙.黄土峁坡侵蚀的~(137)Cs法研究[J].水土保持通报,1991,11(3):34-37
    [313] 唐相宇,杨浩,赵其国,等.~(137)Cs示踪技术在土壤侵蚀估算中的应用研究进展[J].地球科学进展,2000,15(5):576-582
    [314] Kachanoski R G and E de Jong. Predicting the temporal relationship between soil cesium-137 and erosion rate [J]. J. Environ. Qual., 1984, 13 (2):301-304
    [315] Elliott G L, B L Campbell and R J Loughran. Correlation of erosion measurements and soil caesium- 137 content[J]. Appl. Radiat. Isot. 1990, 41(8):713-717
    [316] D L Higgitt. Quantifying erosion raes from caesium-137 measurements: A comment on Elliott and Cole-Clark (1993):'Estimates of erosion on Potato lands on Krasnozems at Dorrigo, N. S. W. using the caesium-137 technique'[J]. Aust. J. Soil Res. 1995, 33:709-714
    [317] Lobb D A, R G Kachanoski and M H Miller. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using ~(137)Cs as a tracer[J]. Canadian Journal of Soil Science, 1995, 75:211-218
    [318] Yang Hao, Du Mingyuan, Chang Qing, et al. Quantitative model for estimating soil erosion rates using ~(137)Cs[J]. Pedoshere, 1998a, 8(3):211-220
    [319] Yang Hao, Qing Chang, Mingyuan Du, et al. Quantitative model of soil erosion rates using ~(137)Cs for uncultivated soil [J]. Soil Science, 1998b, 163(3):248-257
    [320] Wan G J, P H Santschi, M Sturm, et al. Natural (~(210)Pb, ~7Be) and fallout (~(137)Cs, ~(239,240)Pu, ~(90)Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland[J]. Chemical Geology, 1987, 63:181-196
    [321] Walling D E and T A Quine. Calibration of cesium-137 measures to provide quantitative erosion rate date[J]. Land Degrad. Rehab. 1990, 2:161-172
    [322] de Jong E, Begg C M, Kachanoski R G.. Estimates of soil erosion and deposition from Saskatchewan soils[J]. Can. J. Soil Science, 1983, 63:607-617
    [323] Brown R B, G F Kling and N H Cutshall. Agricultural erosion indicated by ~(137)Cs redistribution: Ⅱ. Estimates of erosion rates [J]. SSSAJ. 1981a, 45:1191-1197
    [324] Brown R B, N H Cutshall and G F Kling. Agricultural erosion indicated by ~(137)Cs redistribution: Ⅰ. Levels and Distribution of ~(137)Cs activity in soil[J]. SSSAJ, 1981 b, 45:1184-1190
    [325] Kachanoski R G. Estimating soil loss from changes in soil cesium-137[J]. Can. J. Soil Sci., 1993, 73:629-632
    [326] Zhang X B, D L, Higgitt, D E Walling. A preliminary assessment of the potential for using caseium-137 to estimate rates of soil erosion on the Loess Plateau of China[J]. Hydrological Science J., 1990, 35:243-252
    [327] Walling D E and Q He. Improved models for estimating soil erosion rates from cesium-137 measurements[J]. Journal of Environmental Quality. 1999, 28(2):611-621
    [328] 周维芝.~(137)Cs法研究不同地貌类型土壤侵蚀强度分异[D].中国科学院水土保持研究所,1996
    [329] Pegoyev A N, Fridman S D. Vertical profiles of cesium-137 in soils (English translation) [J]. Pochvove deniye, 1978, 8:77-81
    [330] Owens P N, Walling D E. The use of a numerical mass-balance model to estimate rates of soil redistribution on uncultivated land from ~(137)Cs measurement[J]. J. Environ Radioact., 1998, 40(2):185-203
    [331] 武春龙,刘普灵,郑世清,等.坡面土壤侵蚀垂直分布定量分析研究[J].水土保持研究,1997,4(2):34-40
    [332] 汪阳春,张信宝,李少龙,等.黄土峁坡侵蚀的~(137)Cs法研究[J].水土保持通报,1991,11(3):34-37
    [333] 李勇等.陕北黄土高原陡坡耕地土壤侵蚀变异的空间格局。水土保持学报,2000,14(4):17-21
    [334] 王晓燕.燕沟流域侵蚀强度演变特征研究[D].西北农林科技大学,2003
    [335] 庄作权.利用放射化学及地球化学方法追踪德基水库集水区之泥沙来源[J].水土保持研究,1995,2(3):195-198
    [336] Wailing D E and Quine T A. The use of ~(137)Cs measurements to investigate soil erosion on arable fields in the U. K.: potential application and limitations [J]. J. Soil Sci. 1991, 42:147-165
    [337] Sutherland R A, T Kowalchuk and E de Jong. Cesium-137 estimates of sediment redistribution by wind [J]. Soil Science. 1991b,151: 387-396
    [3381 Dalgleish H Y and Foster I D. ~(137)Cs losses from a loamy surface water gleyed soil(Inceptisol); a laboratory experiment [J]. Catena, 1996,26:227-245
    [339] Wallbrink P J, J M Olley and A S Murray. Measuring soil movement using ~(137)Cs: implications of reference site variability. Variability in stream erosion and sediment transport. Proceedings of Canberra Symposium, December 1994, LAHS Publ. no. 224; 95-102
    [340] Sutherland R A. Examination of caesium-137 aerial activities in control (uneroded) locations [J]. Soil Technology. 1991a,4:33-50
    [341] Martz L W, E de Jong and Saskatoon. Using cesium-137 to assess the variability of net soil erosion and its association with topography in a Canadian prairie landscape[J]. Catena,1987,14:439-451
    [342] Maule C P and M J Dudas. Preliminary identification of soil separates associated with fallout ~(137)Cs[J]. Can. J.Soil Science. 1989,69:171-175
    [343] VandenBygaart A J, D J King, P H Groenevelt, et al. Cautionary notes on the assumptions made in erosion studies using fallout ~(137)Cs as a marker [J]. Can. J.Soil Science. 1999a, 79:395-397
    [344] Larson W E, Lindstrom M J and Schumacher T E. The role of sever stroms in soil erosion: A problem needing consideration [J]. J.Soil Water Conservation. 1997,52:90-95
    [345] VandenBygaart A J, R Protz and D C McCabe. Distribution of natural radionuclides and ~(137)Cs in soils of southwestern Ontario [J]. Can. J. Soil Science.1999b,19:161-171
    [346] Joshi S R, R C McCrea, B S Shukla, et al. Partitioning and transport of lead-210 in the Ottawa River watershed [J]. Water, Air, and Soil Pullution.1991,59:311-320
    [347] Lomenick T F and T Tamura. Naturally occurring fixation of cesium-137 on sediments of lacustrine origin [J]. SSSA Proceedings,1965:383-387
    [348] Pennington W, R S Cambray and E M Fisher. Observations on lake sediments using fallout ~(137)Cs as a tracer [J]. Nature, 1973,242: 324-326
    [349] T Roger and S Wilson. Caesium-137 as a water movement tracer in the St George's Channel [J]. Nature,1974,248:125-127
    [350] Rabbins J K, et al. Effect of deposit feeders on migration of ~(137)Cs in lake sediments[.T]. Earth Planet. Sci. Lett, 1979,42:177-287
    [351] Smith J N. Why should we believe ~(210)Pb sediment geochronologies? [J], J.Environ. Radioactivity. 2001,55:121-123
    [352] Wasson R J, R L Clark and P M Nanninga. 210Pb as a chronometer and tracer, Burrinjuck Reservoir, Australia[J]. Earth Surface Processes and Landforms, 1987,12:399-414
    [353] Quine H and D E Walling. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils[J]. Appl. Radiat. Isot. 1997,48(5):677-690
    [354] Helmut Dorr. Application of 210Pb in soils[J]. Journal of Paleolimnology, 1995, 13:157 -168
    [355] Quine H. and D E Walling. Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers[J]. Earth Surface Processes and Landforms. 1996,21:141-154
    [356] 张信宝,D E Walling,冯明义,等.~(210)Pb_(ex)在土壤中韵深度分布和通过~(210)Pb_(ex)法求算土壤侵蚀速率模型[J].科学通报,2003,48(5):502-506
    [357] 李昌志,刘兴年,曹叔尤,等.前期降雨与不同沙源条件小流域产沙关系的对比研究[J].水土保持学报,2001,15(6):36-39
    [358] 李占斌.黄土地区小流域次暴雨侵蚀产沙研究[J].西安理工大学学报,1996,12(3):177-183
    [359] 李占斌,符素华,靳顶.流域降雨侵蚀产沙过程水沙传递关系研究[J].土壤侵蚀与水土保持学报,1997,3(4):44-49
    [360] 李占斌,符素华,鲁克新.秃尾河流域暴雨洪水产沙特性的研究[J].水土保持学报,2001,15(2):88-91
    [361] Wischmeier W H, Smith D D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation [M]. U. S. Dep. Agric., Agric. Handb. No. 282,1965.
    [362] Wischmeier W H, Smith D D. Predicting rainfall erosion losses: A guide to conservation planning [M]. U. S. Dep. Agric., Agric. Handb. No. 537, 1978
    [363] Renard K G, Foster G R, Weesies G A, et al. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. U. S. Dep. Agric., A-gric. Handb. No.703, 1997.
    [364] Elwell H A, Stocking M A. Parameters for estimating annual runoff and soil loss from agricultural lands in Rhodesia[J]. Water Resources Research, 1975, 11(4):601-605.
    [365] 张汉雄,王万忠.黄土高原的暴雨特性及分布规律[J].水土保持通报,1982,2(1):35-44
    [366] 王万忠.黄土地区降雨特性与土壤流失关系的研究(Ⅰ)[J].水土保持通报,1983,3(4):7-13.
    [367] 谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6)11.
    [368] Xie Y, Liu B, Nearing M A. Practical Thresholds for Separating Erosive and Non- Erosive Storms [J]. Transactions of the ASAE, 2002, 45(6): 1843-1847.
    [369] 周佩华,王占礼.黄土高原土壤侵蚀暴雨标准[J].水土保持通报,1987,7(1):38-44
    [370] 江忠善,李秀英.黄土高原土壤流失方程中降雨侵蚀力和地形因子的研究.中国科学院西北水土保持研究所集刊,1988,7:40-45
    [371] 万国江.~(137)Cs及~(210)Pb_(ex)方法湖泊沉积研究新进展[J].地球科学进展,1995,10(2):188-192
    [372] 张平仓,唐克丽,郑粉丽,等.皇甫川流域泥沙来源及其数量分析[J].水土保持学报 1990,4(4):29-36
    [373] Frere M H and H Roberts. The loss of strontium-90 from small cultivated watersheds [J]. Soil Sci. Soc. Am. Proc., 1963,27: 82-83
    [374] Murray A S, L J Olive, J M Olley, et al. Tracing the source of suspended sediment in the Murrumbidgee river, Australia. Tracers in Hydrology, Proceedings of Yakohama Symposium, 1993a, Iahs Publ. no.215:293-302
    [375] Murray A S, L J Olive, J M Olley, et al. Tracing the source of suspended sediment in the Murrumbidgee river, Australia. Tracers in Hydrology, Proceedings of Yakohama Symposium,1993a,Iahs Publ.no.215,293-302
    [376] 石辉,田均良,刘普灵,等.小流域泥沙来源的REE示踪研究[J].中国科学(E),1997,40(1):12-20
    [377] 李少龙,苏春江,自立新,等.小流域泥沙来源的~(226)Ra分析法[J].山地研究,1995,13(3):199-202
    [378] 唐克丽,席道勤,孙清芳,等.杏子河流域坡耕地的水土流失及其防治[J].水土保持通报,1983,3(5):43-48
    [379] 冯明义,D E Walling,张信宝,等.黄土丘陵区小流域侵蚀产沙对坡耕地退耕响应的~(137)Cs法[J].科学通报,2003,48(13):1452-1457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700