用户名: 密码: 验证码:
太谷核不育小麦Ms2基因蛋白质的表达差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以鲁麦15为背景的太谷核不育小麦近等基因系(鲁麦15,Ms2鲁麦15和Rht10+Ms2鲁麦15)不同时期的幼穗为材料,从蛋白质组学角度利用双向电泳技术和质谱技术对太谷核不育基因Ms2的差异表达蛋白进行了研究,得出了以下结果:
     1、经多次重复建立了适用于小麦幼穗蛋白的双向电泳体系。利用TCA-丙酮提取法提取了供试材料减数分裂期、单核期、二核期的全蛋白质组取得了较好的效果。用PH4-7的24cm线性预制干胶条对所提取的蛋白质进行等电聚焦后,用浓度为12%的聚丙烯酰胺凝胶电泳分离后得到了分离效果较好的电泳图谱。
     2、在PH4-7,分子量10-115KD的范围内,在减数分裂期得到约500个蛋白点,单核期、二核期得到600多个蛋白点。大多数等电点在PH4.5-7之间,分子量10-80KD之间居多。各个试验材料的幼穗之间蛋白质表达均存在差异,不同时期的差异蛋白有所不同,即不同时期表达的与育性相关的蛋白不同。
     3、选取差异蛋白点,进行胶内酶解后进行MALDI-TOF-MS进行肽指纹图谱分析。利用Mascot软件对SWISSPROT数据库搜索发现三个时期中共有47个差异蛋白质点得分较高,均在50以上。选取了得分值较低(低于50分)的30个差异蛋白点进行了高效液相色谱质谱(HPLC-MS/MS)鉴定,有8个蛋白点获得了较好的肽指纹图谱。
     4、鉴定出了与败育相关的蛋白:减数分裂时期鉴定出的弹性蛋白酶抑制剂和50S核糖体蛋白L6,单核期鉴定出的含TPR重复的硫氧还原蛋白TTL1,核酮糖1,5二磷酸羧化酶大亚基和ATP合成酶前体;以及二核期鉴定出的磷酸激酶,醌还原酶2和J结构域蛋白是与育性相关的蛋白。另外,还有一些蛋白可能与育性有关,减数分裂期的查尔酮异构酶,细胞周期蛋白依赖性酶抑制因子1;单核期的F-box蛋白、UDP-葡萄糖4差向异构酶、GTP结合蛋白yptV2;二核期的减数分裂重组蛋白SPO11-2、S-腺苷甲硫氨酸合成酶、ras基因相关蛋白Rab7。
     5、对鉴定出的蛋白功能进行分析发现,能量代谢紊乱导致代谢供能不足,信号转导受阻导致细胞抗性减弱,活性氧积累导致细胞中毒,细胞凋亡导致花药发育异常及花粉败育等生理现象很可能导致不育的发生。这些差异蛋白很可能直接或间接地参与了供试材料育性正常发育与败育的某些关键途径。与糖类代谢有关的蛋白,与ABA的合成及分解代谢有关的蛋白可能直接或间接减缓了幼穗的生长发育。
Use Taigu sterile near-isogenic lines of wheat (Lumai 15, Ms2 Lumai 15 and Rht10 + Ms2 Lumai 15) as the materials, and material parts are panicle in different periods. Using of 2-DE technology and mass spectrometry, differentially expressed protein of Ms2 were studied, The main results were as follows:
     1. The two-dimensional electrophoresis fitting to the young panicle protein of common wheat has been set up through many repeats.Precipitation protein with TCA-acetone method, tested the total proteins of meiosis, uninucleate and binucleus stage of the three materials and achieved good results. Detected with PH4-7,24cm prefabricated dry linear strips for IEF of the extracted proteins,then separation with the concentration of 12% polyacrylamide gel electrophoresis and gain good results.
     2. In the pH4-7,10-115KD,there are about 500 protein spots at meiosis stage, 600 spots at uninucleate stage and binucleus,respectively. Most of the protein in the pH4.5-7(strip alkaline side),10-80KD. The differentiation of the protein expression between the immature ears of experimental lines has been found.
     3.The peptite fingerprinting(MALDI-TOF-MS) of 80 protein spots of the three phases were analyzed by matrix-assisted laser desorption time of flight mass spectrometry and used Mascot to search in the swissprot datebase,which identifyed 47 protein spots that had gotten scores above 50.The last 30 protein spots which gain lower scores (less than 50 points) were high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) and 8 protein spots were identified and obtained better peptide fingerprinting.
     4. Elastase inhibitor 4 and 50S ribosomal protein L6 were identified on meiosis, TPR repeat-containing thioredoxin TTL1,ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and mitochondrial ATP synthase precursor were identified at the uninucleate stage; Phosphoglycerate kinase,quinone reductase 2 and J-domain protein were identified at the binucleate stage. In addition, some proteins may be related to fertility: at the meiosis stage, Chalcone--flavonone isomerase, cyclin-dependent inhibitor 1; the F-box protein ORE9, UDP-glucose 4-epimerase , Calcineurin B-like protein 3, GTP-binding protein yptV2 at the stage of binucleus;recombination protein SPO11-2, S-adenosylmethionine synthetase, ras-related protein Rab7 at the binuciate stage.
     5. Functional analysis known protein,speculated that male sterility of wheat may be related to energy metabolism disorder,signal transduction blocked,accumulation of reactive oxygen species,et. These physiological phenomena are likely to lead to the occurrence of infertility. These differential proteins may directly or indirectly involved in the certain key ways of the fertility and abortion of the tested materials. Protein with carbohydrate metabolism, and ABA synthesis and catabolism-related proteins may directly or indirectly slow the growth of the young spike of wheat.
引文
鲍海滢.小麦核不育基因Ms2的分子标记.中国农业科学院硕士论文.2000.
    柴小清,靳飞,张艳萍.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报:自然科学版, 2004, 25(3):46-51.
    陈烨. ABA8’-羟化酶基因的功能鉴定及应用研究,四川农业大学硕士论文. 2008,6.
    陈玮,高辉远,王晓云,邹琦.紫黄质脱环氧化酶的某些特性和研究方法[J].植物生理学通讯,2003,39(5):519-524.
    陈军方.太谷核不育基因Ms2的分子生物学研究.四川农业大学博士论文.2003.
    陈强,刘亚刚,杨雪,黎渊.蛋白质组学的研究进展[J].西南民族大学学报.2005,1 (2):257-260.
    陈秀珍,周荣华,贾继增.小麦小G蛋白Tarab5B基因全长cDNA克隆及表达特性的初步分析[J].作物学报,2005,31(7):897-901.
    陈朱西昭.太谷核不育小麦小孢子发育和败育过程的电子显微镜观察[J].中国农业科学,1985,5:16-20.
    程国栋,袭明月.蛋白质组研究进展[J].黄山学院学报, 2004, 6 (3):106-108.
    邓景扬,高忠丽.太谷核不育小麦的发现和鉴定[J].作物学报,1980, (2):84-98.
    邓景扬,高忠丽.太谷核不育小麦的发现鉴定及利用[J]. 6-12.
    邓景扬,高忠丽.小麦显性雄性不育基因的发现、鉴定及其在遗传学和育种学上的价值[J].中国科学, 1982,47-52.
    邓景扬.太谷核不育小麦研究工作的回顾与展望[J].中国农业科学,1990(3):7-11.
    樊金萍,白锡.野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析[J].作物学报,2008, 34(9): 1581-1587.
    樊路,叶兴国,韩敬花,潘淑婷.Ph1b基因在中国春Ta1 kr ph1b基因综合体与中间偃麦草杂交中的作用[J].中国农业科学,1993,19(6):558-561.
    樊路,韩敬花.通过中国春Tal kr ph1b综合体与中间偃麦草杂交直接将有益基因转移到普通小麦[J].中国农业科学,1992,25(4):88-90.
    范宝莉,王振英,陈宏,彭永康.基于双向电泳技术的小麦细胞质雄性不育系和保持系蛋白质研究L.实验生物学报[J]. 2004, 37 (1): 45-49.
    傅大雄,阮仁武,温海霞.易组“太谷核不育基因”(Ms2)基因定位的研究[J].遗传学报.2002.29(12):1085-1094.
    高庆荣,化斌,张爱民.群体改良面包小麦品质性状的方法与技术[J].麦类作物学报,2005,25(4):19-23.
    高忠丽.太谷核不育小麦发现经过[J].农业科技通讯, 1981 (1):4-5.
    顾其敏,李育庆,赵志安.与太谷雄性不育单基因Ta1连锁的基因表达产物的双向电泳分析)[J].复旦学报(自然科学版),1989,28(3):320-324.
    郭广芳,董坤,高利艳.小麦根蛋白提取与双向电泳方法的优化与应用[J].植物遗传资源学报.2010,11(2):244-248.
    化斌,高庆荣,王瑞霞.Ta1小麦轮选群体高分子量谷蛋白亚基组成分析[J].西北植物学报,2004,24(5):793-797.
    黄健,王国华.细胞周期蛋白依赖性激酶抑制因子研究进展[J].华夏医学1999,12(1):110-112.
    纪凤高,邓景扬.显性雄性不育基因Ta1在小黑麦育种中的应用Ⅰ-利用Ta1基因创造更多的小黑麦初级品系[J].遗传,1986,8(4):117-121.
    纪凤高,邓景扬.显性雄性不育基因Ta1在小黑麦育种中的应用Ⅱ-显性雄性不育八倍体小黑麦的育成及其应用[J].遗传,1986,8(5):15-18.
    纪凤高,刘友华,张有前,胡献祥,潘志良,黄茂甫.小麦Ms2基因易位后的染色体组定位研究[J].遗传,1992,14(4): 11-21.
    姜涛,李爱丽,骆蒙.小麦矮秆基因同源序列的克隆与BAC混合池的构建.中国农业科学院博士论文,2002.
    蒋业贵,李兆申.蛋白质组学在肿瘤研究中的应用进展[J].中华实验外科杂志, 2003, 20 (11): 1053-1054.
    矫永庆.小麦太谷核不育基因Ms2紧密连锁的分子标记开发.中国农业科学院硕士论文,2005.
    李晓春,朱汉如,朱列平.小麦雄性不育基因Tal与Rht10基因的连锁遗传[J].浙江农业大学学报, 1991, 17(2):165- 168..
    李振生.蓝粒单体小麦研究)[J].遗传学报, 1982 , 9 (6): 431- 439.
    刘秉华,邓景扬,杨丽.小麦显性雄性不育单Ta1基因的端体分析[J].遗传,1986, 8(3):25-27.
    刘秉华,邓景扬.小麦显性雄性不育基因的染色体组定位[J].遗传,1984,6(6):10-12.
    刘秉华,杨丽,王山荭.群体改良工具:从太谷核不育小麦到矮败小麦[J].作物杂志,2000,(40):33-34.
    刘秉华.小麦轮回选择的程序和方法)[J].国外农学—麦类作物,1993,3:36-39.
    刘秉华.矮败小麦的选育及利用前景[J].科学通报, 1991, (4) : 306-308.
    刘璐.小麦ζ-胡萝卜素脱饱和酶(ZDS)基因的克隆及序列分析,华中科技大学硕士论文.2007,5.
    刘卫,陈蕊红,张改生,牛娜.小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J].遗传, 2008, 30 (8): 1063-1068.
    刘秀珍.小麦幼穗、花药发育及太谷核不育基因的差异表达.山东农业大学硕士论文,2002.
    刘越.矮败-中国春小麦品系BAC文库的构建与筛选.中国农业科学院硕士论文,2003.
    刘正斌,化斌,高庆荣.Ta1小麦不同轮选世代不育株的HMW-GS组成与分析[J].麦类作物学报, 2006,26(2):72-76.
    门淑珍,刘博林.小麦显性核不育材料后代不育株与可育株不同器官的蛋白质比较研究)[J].作物学报2001(1):117-122.
    秘彩莉,刘旭,张学勇.F-box蛋白质在植物生长发育中的功能[J].遗传,2006,28(10): 1337-1342.
    宁正元,王爱荣,林文伟.拟南芥DNA_J结构域蛋白的生物信息学分析及其亚细胞定位验证[J].福建农林大学学报(自然科学版), 2007,36(4):427-434.
    山西省太谷核不育小麦科研协作组.太谷核不育小麦研究的成就[J]. 1987, 12: 22-25.
    沈季孟,邓景扬.离子注入诱导太谷核不育小麦蓝粒标记的初步研究[J].北京农业科学,1994, 12(2):6-8.
    沈季孟,邓景扬,樊路,张云芝.太谷核不育小麦籽粒标记蓝色性状的初步研究[J].作物学报, 1994, 7(5): 386 -391.
    石峰.植物小G蛋白功能的最新研究进展[J].热带农业科学.2009,29(7):69-75
    史志中.江苏省水稻机插秧技术的现状和发展展望[J].现代农业装备,2001,17(5): 56-59
    苏璇,水稻类钙调磷酸酶B亚基蛋白基因OsCBL6的功能分析,南京农业大学, 2007.
    隋新霞,孙兰珍.太谷核不育小麦的研究和利用[J].山东农业大学学报(自然科学版),2001,32(2):239-244.
    隋新霞,孙兰珍.与太谷核不育小麦Tal基因连锁的RAPD分子标记的筛选[J].山东农业大学学报(自然科学版),2001,32(1):1-5.
    隋新霞,孙兰珍.与太谷核不育小麦Tal基因连锁的RAPD标记的筛选[J].山东农业大学学报(自然科学版)2001,32(1):1-5.
    孙敬三,路铁钢,辛化伟.利用染色体消除法获得太谷核不育小麦纯合体[J]植物学报, 1999, 41(3):254-257.
    孙兰珍.太谷显性核不育小麦的利用研究-鲁麦15号的选育[J].山东农业科学,1994,(4):6-8.
    孙元枢.雄性不育小黑麦在育种上利用的研究[J].作物学报, 1992,18(2) : 145-149.
    孙正娟,高庆荣,王茂婷等.Rht10对’鲁麦15’农艺性状及光合生理特性的影响, 2011,31(3):0525-0530.
    滕晓月,陈雪晖.小麦T型细胞之雄性不育系和保持系蛋白质的比较研究[J].作物学报.1996,22(3): 264-270.
    田宁.太谷核不育小麦标记蓝粒性状研究初报[J].山西农业科学, 1991, (9): 6-7.
    王振海,孙野青.Clp蛋白酶研究进展.药物生物技术2005,06.
    卫功宏,印莉萍.蛋白质组学相关概念与技术及其研究进展[J].生物学杂志,2002,19(4): 1-3.
    魏磊,丁毅,胡耀军,余金洪.紫稻细胞质雄性不育系叶片全蛋白双向电泳分析[J].遗传学报,2002, 29(8):696- 699.
    文李,刘盖,李绍清,李国民,陶钧,朱英国.水稻花粉总蛋白质双向凝胶电泳方法建立及应用,中国水稻科学, 2007, 21(1):13-19.
    文李,刘盖,张再君,陶钧.红莲型水稻细胞质雄性不育花药蛋白质组学初步分析[J].遗传, 2006, 28 (3):311-316.
    薛光行,邓景扬.Ta1基因对EMC和PMCs减数分裂的影响[J].作物学报.1987, 13(3):229-234.
    杨丽,刘秉华,王山荭.北方冬麦区高产小麦新品种轮选987[J].中国种业,2004,12, 51.
    杨丽,王山荭,刘秉华.利用矮败小麦建立高效育种技术新体系[J].中国农科技导报, 2004,6(5):8-9.
    杨守萍,曾维英,段美萍,喻德跃,盖钧镒.大豆雄性不育突变体NJ89-1核不育基因的SSR标记和定位[J].大豆科学,2006(4):344-348.
    叶水英,陈素珍.植物血红蛋白的类型及其功能,安徽农学通报.2008,14(17):82-83.
    易平,汪莉,孙清萍.红莲型细胞质雄性不育水稻线粒体atp6基因转录本的编辑位点研究[J].生物化学与生物物理进展,2002,29(5):729-733.
    应燕如,蔡以欣.用同工酶鉴定太谷核不育小麦授粉后籽粒育性的初探).遗传.1987, 9(6):1-4.
    曾维英,杨守萍,喻德跃,盖钧镒.大豆雄性不育系与其保持系不同器官蛋白质比较[J].西北植物学报, 2008, 28(8):1619-1624.
    张党权,谭晓风,王晓红.查尔酮合酶与查尔酮异构酶基因特征及转基因应用.中南林业科技大学学报. 2004,27(2):87-108.
    张吉斌,刘月平,方美英.线粒体ATP合酶基因组成及生化机制研究进展.中国畜牧杂志. 2010, 46(7):64-68.
    张少斌,刘慧.双向电泳技术在植物蛋白质组研究中的应用,安徽农业科学.2006, 34(10):2049-2050.
    张天宇,王玲燕,姜蓉,李元.链霉菌来源的UDP-葡萄糖-4-差向异构酶基因的克隆表达及酶性质研究.2005,45(6):882-884.
    张卫星,朱德峰,林贤青.不现播量及育秧基质对机插水稻秧苗素质的影响.扬州大学学报(农业与生产科学版), 2007, 28 (1): 45-48.
    张云芝,邓景扬,纪凤高.太谷核不育小麦雄性不育性状稳定性研究[J].山西农业科学,1987,(6):5-81.
    张政值.太谷核不育小麦(Triticum aestivum L)雄性不育相关基因的克隆研究.南京农业大学博士论文,2005.
    周时佳,韩敬花.太谷核不育小麦可育株、不育株及型不育系小麦同工酶的比较研究[J].作物学报. 1985, 11(2):109-114.
    朱广廉,曹宗龚.太谷核不育小麦不育株和可育株花药内游离氨基酸成分的比较分析[J].植物生理学报.1984, 10(2):185-189.
    朱宏,张中恒,王同昌.小麦叶片蛋白质双向电泳的改良[J].东北林业大学学报,2004, 32(4):68-69.
    Abel Rosado, Arnaldo L. Schapire. Botella The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity[J]. Plant Physiology. 2006, 142: 1113-1126.
    Amane Makino, Tadahiko Mae. Colorimetric Measurement of Protein Stained with Coomassie Brilliant Blue R250 on Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis by Eluting with Formamide[J]. Agric Biol Chern 1986, 50(7) :1911-1912.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254.
    Brent N. Kaiser, Patrick M. Finnegan, Stephen D. Tyerman. Characterization of an Ammonium Transport Protein from the Peribacteroid Membrane of Soybean Nodules [J].Science. 1998, 281 :1202-1206.
    Candiano G, Bruschi M, Musante L. Blue silver:A very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25: 1327-1333.
    Cao W, Somers DJ and Fedak G. A molecular marker closely linked to the male sterile Ms2 gene in common wheat (Triticum aestivum)[J]. 2009, 1-4.
    Cnovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossingnol M Plant proteome analysis [J]. Proteomics, 2004(4): 285-298.
    Daryl J, Somers, Peter Isaac, Keith Edwards. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2004, 109:1105-1114.
    Devos K M, Gale MD, Genome relationships: the model in research [J]. Plant Cell, 2000, (12):637-646.
    Dirk Benndorf, Norbert Loffhagen, Wolfgang Babel. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus [J]. Electrophoresis, 1999, 20 (4-5): 781-789.
    Donnelly B.E., Robin D. Madden, Patricia Ayoubi, David R. Porter, Jack W. Dillwith. The wheat (Triticum aestivum L.) leaf proteome [J]. PROTEOMICS 2005, 5:1624-1633.
    Downs C A, Heckathorn S A. The mitochondrial small heatshock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress inplants[J]. FEBS Lett, 1998, 430(3):246-250.
    Gale M D, Chao S, Sharp P J. RFLP mapping in wheat-progress and proble Ms, In: Gustafson JP (Ed.) [M]. Gene manipulation in plant improvement II, Plenum Press, 1990, 353-363.
    Gianfranco Mamone, Francesco Addeo Lina Chianese. Characterization of wheat gliadin proteins by combined two-dimensional gel electrophoresis and tandem mass spectrometry[J]. Proteomics. 2005, 5: 2859-2865.
    Gimore E L. Suggested of using reciprocal recurrent selection in some naturally self-pollinated.[J]. Crop Science, 1964, (4) :323-325.
    H.Jakob. WaterborgMultiplicity of Histone H3 Variants in Wheat, Barley, Rice, and Maize1[J]. Plant Physiol. 1991, 96:453-458.
    Hermann HESSLINGER, Kunhard POLLOW. A NEW HIGH SENSITIVE ANALYTICAL MICRO-SCALE PROCEDURE FOR CHROMOSOMAL PROTEINS*[J]. Molec. Biol. Rep. 1978,4(3):171-175.
    Huang Y.Y, Deng J.Y. Preliminary analyses of the effectiveness of utilization of Taigu genic male-sterile wheat in recurrent selection and complex crossing, Proc, Int[J]. Wheat Genetics Symp. 1998, 2: 1105-1108.
    Imin N, Kerim T, Rolfe B G, Weinman J. Effect of early cold stress on the maturation of rice anthers[J]. Proteomics, 2004, 4: 1873-1882.
    James C. Nelson, Mark E. Sorrells, Allen E.Molecular Mapping of Wheat: Major Genes and Rearrangements in Homoeologous Groups 4, 5, and 7 [J].Genetics, 1995, 141: 721-731.
    Jin-Hwan Cho, Heeyoun Hwang, Man-Ho Cho. The Effect of DTT in Protein Preparations for Proteomic Analysis: Removal of a Highly Abundant Plant Enzyme, Ribulose Bisphosphate[J]. Journal of Plant Biology, July 2008, 51(4): 297-301.
    Jung-Kap Choi and Gyurng Soo Yoo. Fast Protein Staining in Sodium Dodecyl Sulfate Polyacrylamide Gel using Counter ion-Dyes, Coomassie Brilliant Blue R-250 and Neutral Red[J]. Arch Pharm Res. 2002, 25(5):704-708.
    Kiera B, Elena C, Thomas H.S.Background-free, high sensitivity staining of proteins in one-and two-dimensional sodium dodecyl sulfate polyacrylamide gels using a luminescent ruthenium complex. [J]. Electrophoresis.2000, 21:2509-2521.
    Kim ST, Cho KS, Jang YS, Kang KY. Two-dimensional electro-phoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays[J]. Electrophoresis 2001 (22): 2103-2109.
    LANFEN H, BERNDT P, RODERD. Two-dimensional map of human brain protein [J]. Electrophoresis, 1999, 20(4-5): 907-916.
    Laura Bertini, SilviaProietti, CarloCaporale CarlaCaruso. Molecular Characterization of a Wheat Protein Induced by Vernalisation [J]. The Protein Journal, 2009,28: 253-262.
    Low D, Brandle K, Nover L. Cytosolic heat stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo[J]. Planta, 2000, 211(4): 575-582.
    Majoul T., Emmanuelle Bancel, Eugène Tribo?, Jeannette Ben Hamida, Gérard Branlard. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat responsive proteins from non prolamins fraction[J]. PROTEOMICS, 2004, 4: 505-513.
    Majoul T., Emmanuelle Bancel, Eugène Tribo?, Jeannette Ben Hamida, Gérard Branlard. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm [J]. PROTEOMICS, 2003, 3:175-183.
    MartinJ.E.WubbenII, StevenR. Rodermel and ThomasJ.BaumMutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots[J]. The Plant Journal, 2004, 40, 712-724.
    Nardjis Amiour, Marielle Merlino, Philippe Leroy, Gérard Branlard. Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels[J]. Proteomics, 2002,(2): 632-641.
    Nazrul Islam, Sun-Hee Woo1, Hisashi T. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.) [J]. Proteomics. 2002, (2): 1146–1155.
    O’Farrell.High resolution two-dimensional gel. Electrophoresis of proteins [J]. JBiol Chem. 1975, 25:4007-4021.
    Quadroni M, James P. Proteomics and antomation[J]. Electrophoresis, 1999, 20: 664.
    Rabilloud T, Jean-Marc Strub, Sylvie Luche. A comparison between Sypro Ruby and rutheni- um II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels [J]. Proteomics.2001, 22 (1): 699-704.
    S. Komatsu, H. Kajiwara, H. Hirano. A rice protein library: a data-file of rice proteins separated by two-dimensional electrophoresis [J]. Theor Appl Genet . 1993, 86: 935-942.
    Samy Gobaa, Emmanuelle Bancel, Gerard Branlard. Proteomic analysis of wheat recombinant inbred lines: Variations in prolamin and doughrheology[J]. Journal of Cereal Science. 2008, 47: 610-619.
    Sergio Encarnaci, Magdalena Hernndez.Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes[J]. Biol. Proced. Online.2005,7(1):117-135.
    SeungOeLim, Sung-JunPark, WonKim. Proteome Analysis of Hepatocellular Carcinoma Biochemical and Biophysical Research Communications 291, 2002: 1031-1037.
    Sun Tae Kim, Kyu Seong Cho, Yu Sin Jang, Kyu Young Kang. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays [J]. Electrophoresis 2001(22): 2103-2109.
    Takehito Furuyama and Valdis A. Dzelzkalns.A novel calcium-binding protein is expressed in Brassica pistils and anthers late in flower development[J]. Plant Molecular Biology. 1999(39): 729-737.
    Vensel W.H., Charlene K. Tanaka, Nick Cai, Joshua H. Wong, Bob B. Buchanan, William J. Hurkman. Developmental changes in the metabolic protein profiles of wheat endosperm [J]. PROTEOMICS, 2005, 5: 1594-1611.
    WANG Peng, DING Ye Zhang, LU Qiong Xian. Development of Gossypium barbadense chromosome segment substitution lines: in the genetic standard line TM-1 of Gossypium hirsutum[J]. Chinese Science Bulletin.2008, 53(10): 1512-1517.
    Xiaojuan Xiao, Yuanzhu Yang. Comparative analysis of young panicle proteome in thermosensitive genic male-sterile rice under sterile and fertile conditions[J]. Biotechnology Letters, 2009, 31: 157-161.
    YANG Xin Quan, LIU Peng, HAN Zong. Comparalative Analys is of Genetic Diversity Revealed by Genomic SSR, EST SSR and Pedigreein Wheat (Triticuma setivum L) [J]. FuActa Genetic sinica, 2005, 32(4 ): 406-416.
    Zhu H. Protein arrays and microarrays[J]. Current Opinion in Chemical Biology, 2001, 5(1): 40-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700