用户名: 密码: 验证码:
无线传感器网络容错拓扑结构特征分析及其控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受恶劣部署环境和有限能量资源的制约,无线传感器网络面临着环境损毁和能量耗尽综合节点失效的威胁,而遭受节点失效的网络拓扑容易出现断接和空洞,造成网络连通及覆盖服务质量的降低,这使得部分(或全部)网络监测信息无法传递到目的节点,导致网络在节点失效下无法继续保障应用功能。因此,无线传感器网络容错拓扑研究,是无线传感器网络实际应用最根本的基础,也是目前无线传感器网络安全领域的一项重要研究内容。本文从建立能量耗尽和环境损毁的综合节点失效模型入手,开展了无线传感器网络容错拓扑的结构特征分析及其控制算法课题研究,通过探索拓扑的节点度特征参量和度分布特征参量对其综合节点失效容错性的影响规律,研究高效的容错拓扑控制算法,实现拓扑对能量耗尽与环境损毁综合节点失效有效容忍的目标。具体研究工作如下:
     考虑能量耗尽和环境损毁综合节点失效因素,建立节点综合故障模型,并采用不等式放缩法和一元函数极值分析法,研究拓扑的节点度特征参量对其综合容错性的影响规律,得出满足网络生命期及综合故障容忍能力要求的最优节点度,进而形成一种冗余容错拓扑控制算法,实现生命期和综合故障容错性的优化。
     针对冗余容错拓扑无法应对多节点失效的不足,从网络连通和覆盖的有效性出发提出拓扑容错性测度,并以容错性测度为工具,采用概率母函数法研究拓扑的度分布特征参量对其综合容错性的影响规律,给出综合节点失效下长时间维持网络连通及覆盖服务拓扑所具有的最佳度分布。
     基于最佳度分布,以延长网络生命期和降低网络干扰为共同优化目标来建立无标度容错拓扑模型,通过求解生命期干扰平衡无标度容错拓扑的度分布表达式,形成一种生命期干扰平衡的无标度容错拓扑控制算法,确保在对多个综合节点失效强容错的同时具备延长生命期和降低干扰的性能。
     面向无标度容错拓扑易出现级联失效的问题,建立可变负载和固定容量的级联失效模型,通过研究无标度容错拓扑负载变化对其级联失效容错性的影响规律,推导出因单一随机节点失效引发无标度容错拓扑大规模级联失效的临界负载值,从参数优化角度避免单一随机节点失效下无标度容错拓扑的级联失效危害。
Under the restraint of the energy exhaustion and environmental damage, WirelessSensor Networks (WSNs) are usually was threatened with the energy exhaustion andenvironmental damage. Then due to nodes failure of the network topology, the servicequality of network connectivity and coverage are reduced. And the disconnection andcavitation of the network are easily appeared. Because the part (or all) of the networkmonitoring information cannot be passed to the destination node, the network can not benormally worked. Therefore, the research on the fault-tolerant topology is the mostfundamental basis of the practical application for the WSNs. And the research is importantin the WSNs security field. The node fault mode of energy exhaustion and environmentaldamage is built in this paper. The structure characteristics and control algorithms offault-tolerant topology is studied based on this model. The efficient control algorithms ofthe fault-tolerant topology are studied according to exploring the influence law oftopological node degree and degree distribution on the aspect of the integrated faulttolerance in WSNs. In this way, the efficitively tolerate of the topologies can be achievedduring the integrated node failures of the energy exhaustion and environmental damage.The main research works are as follows:
     Considering the nodes fault of the energy exhaustion and environmental damage, theintegrated fault model is built in this paper. And the influence law of the topological nodedegree characteristic on integrated fault tolerance is studied by using the inequalitymethod and the unary function extremum method. Using the law, the optimal node degreeis obtained. And the dual requirements of the network lifetime and the integrated faulttolerance ability are met. Then a redundant fault-tolerant topology control algorithm isproposed. The optimizing of the lifetime and integrated fault tolereance is realized byusing this algorithm.
     Considering that the redundant fault-tolerant topology cannot tolerate a large numberof nodes failure, a topology fault-tolerance measurement is proposed based on theeffectiveness of the network connectivity and coverage in this paper. The influence law of the topological degree distribution characteristic on the integrated fault tolerance is studiedby using the probability generating function and fault-tolerance measurement. Then thebest degree distribution of maintaining network connectivity and coverage service isobtained under the condition of integrated node failure during long-time work.
     In order to prolonging the network lifetime and reducing network interference, ascale-free fault-tolerant topology model is built based on the best degree distribution inthis paper. The scale-free fault-tolerant topology control algrotihm is proposed by solvingthe degree distribution expression of the lifetime and interference of scale-freefault-tolerant topology balancing. The effectively tolerate of integrated failure nodes isachieved by this algorithm. And the network lifetime is prolong, the network interferenceis reduced.
     Considering that the cascading failure usually appears in the scale-free fault-toleranttopology, a cascading failure model of the variable load and fixed capacity is built in thispaper. In the situation of large-scale cascading failure of scale-free fault-tolerant topologytriggering by a single failure node, the critical value of load is deduced according toanalyzing the influence law of the topology load on fault tolerance in case of cascadingfailure. The cascading failure causing by a single random failure node can be avoidedeffectively according to optimizing the parameter.
引文
[1] Chong C Y., Kumar S P. Sensor networks: evoluation, opportunities, and challenges[J].Proceedings of the IEEE,2003,91(8):1247-1256.
    [2] Semeer T., Nael B A., Wendi H. A taxonomy of wireless micro-sensor network models[J].Mobile Computing and Communications Review,2002,6(2):28-36.
    [3] Warneke B., Last M., Liebowitz B., et al. Smart dust: communicating with a cubic-millimetercomputer[J]. Computer,2001,34(1):44-51.
    [4] Pottie G J., Kaiser W J. Wireless integrated network sensors[J]. Communications of the ACM,2000,43(5):51-58.
    [5] http://www-mtl.mit.edu/researchgroups/icsystems/uamps/
    [6] Yao K. Sensor networking: concepts applications, and challenges[J]. Acta Automatica Sinica,2006,32(6):839-845.
    [7] Kawadia V. Protocols and architecture for wireless ad hoc networks[D]. Ph.D. Thesis ofUniversity of Illinois,2004,3-15.
    [8] Stattner E., Vidot N., Hunel P., et al. Wireless sensor networks for habitat monitoring: a countingheuristic[C]. LCN,2012,753-760.
    [9] Huang F X. The design of the gateway based on arm and its application in the intelligent firecontrol system[J]. International Journal of Digital Content Technology and its Applications,2012,6(8):275-282.
    [10] Alemdar H., Ersoy C. Wireless sensor networks for healthcare: a survey[J]. Computer Networks,2010,54(15):2688-2710.
    [11]封松林,叶甜春.物联网/传感网发展之路初探[J].中国科学院院刊,2010,25(1):50-54.
    [12]钱志鸿,王义君.面向物联网的无线传感器网络综述[J].电子与信息学报,2013,35(1):215-227.
    [13]蒋一波,王万良,陈伟杰,等.视频传感器网络中无盲区监视优化[J].软件学报,2012,23(2):310-322.
    [14] http://www.technologyreview.com/
    [15] Akyildiz L F., Su W L., Sankarasubramaniam Y., et al. A survey on sensor networks[J]. IEEECommunications Magazine,2002,40(8):102-105.
    [16] Potdar V., Sharif A., Chang E. Wireless sensor networks: a survey[C]. AINA,2009,636-641.
    [17] Zhao Y X., Wu J., Li F., et al. VBS: Maximum lifetime sleep scheduling for wireless sensornetowrks using virtual backbone[C]. IEEE INFOCOM,2010,1-5.
    [18] Challal Y., Ouadjaout A., Lasla N., et al. Secure and efficient disjoint multipath construction forfault tolerant routing in wireless sensor networks[J]. Journal of Network and ComputerApplications,2011,34(4):1380-1397.
    [19] Hajibegloo M., Javadi A. Fast fault detection in wireless sensor networks[C]. DICTAP,2012,62-66.
    [20] Michaelides M P., Laoudias C., Panayiotou C G. Fault tolerant target localization and tracking inwireless sensor networks using binary data[C]. GLOBECOM,2011,1-6.
    [21] Yin B., Shi H C., Shang Y. A two-level topology control strategy for energy efficiency in wirelesssensor networks[J]. International Journal of Wireless and Mobile Computing,2010,4(1):41-49.
    [22] Che-Aron Z., Al-Khateeb W F M.,. Anwar F. ENFAT-AODV: the fault-tolerant routing protocolfor high failure rate wireless sensor networks[C]. ICFCC.2010,467-471.
    [23] http://www.greatduckisland.net
    [24]傅质馨,徐志良,黄成,等.节点失效对无线传感器网络覆盖与连通可靠性影响的模型研究[J].电子与信息学报,2009,31(11):2744-2750.
    [25] Laszka A., Buttyan L., Szeszler D. Designing robust network topologies for wireless sensornetworks in adversarial environments[J]. Pervasive and Mobile Computing,2013,9(4):546-563.
    [26] Wang L M., Ma J F. Self-regeneration based method for topology control with intrusion tolerancein wireless sensor networks[J]. Computer Research and Development,2009,46(10):1678-1685.
    [27] http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [28] Barabasi A L., Albert R., Jeong H. Mean-filed theory for scale-free random networks[J]. PhysicaA: Statistical Mechanics and its Applications,1999,272(1):173-187.
    [29] Blough D M., Leoncini M., Resta G., et al. The k-neigh protocol for symmetric topology controlin ad hoc networks[C]. ACM SIGMOBILE,2003,141-152.
    [30] Barefoot C A., Entringer R., Swart H. Vulnerability in graphs-a comparative survey[J]. Journal ofCombinatorial Mathematics and Combinatorial Computing,1987,1:13-22.
    [31] Moraes R E N., Ribeiro C C., Duhamel C. Optimal solutions for fault-tolerant topology controlin wireless sensor networks[J]. IEEE Transactions on Wireless Communications,2009,8(12):5970-5981.
    [32] Xue F., Kumar P R. The number of neighbors needed for connectivity of wireless networks[J].Wireless Networks,2004,10(2):169-181.
    [33]李晓鸿,张大方,林惠敏,等.无线自组网可生存性保证的拓扑控制[J].清华大学学报(自然科学版),2011,51(S1):1375-1380.
    [34] Boccaletti S., Latora V., Moreno Y., et al. Complex networks: Structure and dynamics[J]. PhysicsReports,2006,424(4-5):175-308.
    [35] Wu J., Tan Y J., Deng H Z., et al. Relationship between degree-rank function and degreedistribution of protein-protein interaction networks[J]. Computational Biology and Chemistry,2008,32(1):1-4.
    [36] Shi D., Liu L., Zhu S X., et al. Degree distributions of evolving networks[J]. Europhysics Letters,2006,76(4):731-737.
    [37] Albert R., Jeng H., Barabasi A L. Error and attack tolerance of complex networks[J]. Nature,2000,406:378-382.
    [38] Barabasi A L., Albert R. Emergence of scaling in random networks[J]. Science,1999,286(5439):509-512.
    [39] Cohen R., Erez K., Ben-Avraham D., et al. Resilience of the internet to random breakdowns[J].Physical Review Letters,2000,85(21):4626-4628.
    [40] Cohen R., Erez K., Ben-Avraham D., et al. Breakdown of the internet under intentional attack[J].Physical Review Letters,2001,86(16):3682-3685.
    [41] Callaway D S., Newman M E J., Strogatz S H., et al. Network robustness and fragility:percolation on random graphs[J]. Physical Review Letters,2000,85(25):5468-5471.
    [42] Crucitti P., Latora V., Marchiori M., et al. Error and attack tolerance of complex networks[J].Physica A: Statistical Mechanics and its Applications,2004,340(1-3):388-394.
    [43] Crucitti P., Latora V., Marchiori M., et al. Efficiency of scale-free netowrks: error and attacktolerance[J]. Physica A,2003,320:622-642.
    [44] Barrat A., Weigt M. On the properties of small-world network models[J]. European PhysicalJournal B,2000,13(3):547-560.
    [45] Newman M E J. Assortative mixing in networks[J]. Physical Review Letters,2002,89(20):20871.
    [46] Younis M., Senturk I., Akkaya K., et al. Topology management techniques for tolerating nodefailures in wireless sensor networks: a survey[J]. Computer Networks,2013,http://dx.doi.org/10.1016/j.comnet.2013.08.021
    [47]沈中,常义林,崔灿,等.一种可自维护无线网络拓扑最小能量特性的分布式拓扑控制算法[J].计算机学报,2007,30(4):569-578.
    [48]沈中,常义林,崔灿,等.一种基于最短路径树的无线Ad hoc网络拓扑维护算法[J].电子与信息学报,2007,29(2):323-327.
    [49] Wang L M., Guo Y B., Zhan Y Z. Security topology control method for wireless sensor networkwith node-failure tolerance based on self-regeneration[J]. Eurasip Journal on WirelessCommunications and Networking,2010,1-14.
    [50] Senel F., Younis M. Relay node placement in structurally damaged wireless sensor networks viatriangular Steiner tree approximation[J]. Computer Communications,2011,34(16):1932-1941.
    [51] Imran M., Younis M., Md Said A., et al. Localized motion-based connectivity restorationalgorithms for wireless sensor and actor networks[J]. Journal of Network and ComputerApplications,2012,35(2):844-856.
    [52] Akkaya K., Senturk I., Vemulapalli S. Handing large-scale node failures in mobile sensor/robotnetworks[J]. Journal of Network and Computer Applications,2013,36(1):195-210.
    [53] Yin R R., Liu B., Zhao L J. Topology slef-healing algorithm based on multi-objective antoptimization for wireless sensor networks[J]. Journal of Information and Computational Science,2010,7(13):2701-2709.
    [54] Yin R R., Liu B., Hao X C. An energy efficient topology maintenance scheme for wireless sensornetworks[J]. Journal of Information and Computational Science,2010,8(13):2815-2822.
    [55] Ataul B., Arunita J., Jin J., et al. Design of fault-tolerant wireless sensor networks satisfyingsurvivbility and lifetime requirements[J]. Computer Communications,2012,35(3):320-333.
    [56] Nicolau M., Schoenauer M. On the evolution of scale-free topologies with a gene regulatorynetwork model[J]. BioSystems,2009,1-12.
    [57] Bahramgiri M., Hajiaghayi M., Mirrokni V S. Fault-tolerant and3-dimensional distributedtopology control algorithms in wireless multi-hop networks[J]. Wireless Networks,2006,12(2):179-188.
    [58] Hajiaghayi M., Immorlica N., Mirrokni V S. Power optimization in fault-tolerant topologycontrol algorithms for wireless multihop networks[J]. IEEE/ACM Transactions on Networking,2007,15(6):1345-1358.
    [59] Ataul B., Arunita J., Jin J., et al. Design of fault-tolerant wireless sensor networks satisfyingsurvivbility and lifetime requirements[J]. Computer Communications,2012,35(3):320-333.
    [60] Ramanathan R., Rosales-Hain R. Topology control of multihop wireless networks using transmitpower adjustment[C]. IEEE INFOCOM,2000,2:404-413.
    [61] Li N., Hou J C. FLSS: a fault-tolerant topology control algorithm for wireless networks[C]. ACMSIGMOBILE,2004,275-286.
    [62]时锐,刘宏伟,董剑,等.自组网容错拓扑控制的研究[J].电子学报,2005,33(11):1978-1982.
    [63] Calinescu G., Wan P J. Range assignment for high connectivity in wireless ad hoc networks[J].Ad-hoc, Mobile, and Wireless Networks,2003,2865:235-246.
    [64] Moraes R E N., Ribeiro C C. Power optimization in ad hoc wireless network topology controlwith biconnectivity requirements[J]. Computers and Operations Research,2012,1-22.
    [65] Dandekar D R., Deshmukh P R. Relay node placement for multi-path connectivity inheterogeneous wireless sensor networks[J]. Procedia Technology,2012,4:732-736.
    [66][66] Shpungin H., Segal M. Low-energy fault-tolerant bounded-hop broadcast in wirelessnetworks[J]. IEEE/ACM Transactions on Networking,2009,17(2):582-590.
    [67] Hsieh H C., Leu J S., Shih W K. A fault-tolerant scheme for an autonomous local wireless sensornetwork[J]. Computer Standards and Interfaces,2010,32(4):215-221.
    [68] Liu H., Wan P J., Jia X H. Fault-tolerant relay node placement in wireless sensor networks[J].Lecture Notes in Computer Science,2005,3595(2005):230-239.
    [69] Zhang W J., Xue G L., Misra S. Fault-tolerant relay node placement in wireless sensor networks:problem and algorithms[C]. IEEE INFOCOM,2007,1649-1657.
    [70] Giuseppe D F., Francesco B., Simone C., et al. Fault tolerant decentralized k-means clustering forasynchronous large-scale networks[J]. Journal of Parallel and Distributed Computing,2013,73(3):317-329.
    [71] Shen C C., Srisathapornphat C., Liu R., et al. CLTC: a cluster-based topoloy control frameworkfor ad hoc networks[J]. IEEE Transactions on Mobile Computing,2004,3(1):1-15.
    [72] Chen B J., Jamieson K., Balakrishnan H., et al. Span: an energy-efficient coordination algorithmfor topology maintenance in ad hoc wireless networks[J]. ACM Wireless Networks Journal,2002,8:1-12.
    [73] Dai F., Wu J. On constructing k-connected k-dominating set in wireless ad hoc and sensornetworks[J]. Journal of Parallel and Distributed Computing,2006,66(7):947-958.
    [74] Wu Y W., Wang F., Tai M T., et al. Constructing k-connected m-dominating set in wireless sensornetworks[C]. MILCOM,2007,1-7.
    [75] Wu Y W., Li Y S. Construction algorithms for k-connected m-dominating sets in wireless sensornetworks[C]. ACM MobiHoc,2008,83-90.
    [76] Shang W P., Wan P J., Yao F., et al. Algorithms for minimum m-connected k-tuple dominating setproblem[J]. Theoretical Computer Science,2007,381(1-3):241-247.
    [77] He J., Ji S L., Pan Y., et al. Approximation algorithms for load-balanced virtual backboneconstruction in wireless sensor networks[J]. Theoretical Computer Science,2012,63-90.
    [78] Wang L L., Dang J X., Jin Y., et al. Scale-free topology for large-scale wireless sensornetworks[C]. ICI,2007,1-5.
    [79] Saramaki J., Kaski K. Scale-free networks generated by random robustness[J]. Physica A,2004,341:80-86.
    [80]陈力军,刘明,陈道蓄,等.基于随机行走的无线传感器网络簇间拓扑演化[J].计算机学报,2009,32(1):69-76.
    [81] Ozik J., Hunt B R., Ott E. Growing networks with geographical attachment prefrence: emergenceof small worlds[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2004,69(22):1-5.
    [82] Qi X Q., Ma S Q., Zhang G Z. Topology evoluation of wireless sensor networks based onadaptive free-scale networks[J]. Journal of Information and Computational Science,2011,8(3):467-475.
    [83] Zheng G Z., Liu Q M. Scale-free topology evolution for wireless sensor networks[J]. Computersand Electrical Engineering,2013,39(6):1779-1788.
    [84] Zhu H L., Luo H., Peng H P., et al. Complex networks-based energy-efficient evoluation modelfor wireless sensor networks[J]. Chaos, Solitons and Fractals,2009,41(4):1828-1835.
    [85] Zheng G Z., Liu S Y., Qi X G. Scale-free topology evolution for wireless sensor networks withreconstruction mechanism[J]. Computers and Electrical Engineering,2012,38(3):643-651.
    [86] Luo X J., Yu H Q., Wang X. Energy-aware topology evoluation model with link and nodedeletion in wireless sensor networks[J]. Mathematical Problems in Engineering,2012,1-14.
    [87] Zheng G Z., Liu S Y., Qi X G. Topology evolution for wireless sensor networks with restorabilitymechanism[J]. Journal of Computational Information Systems,2011,7(11):4098-4104.
    [88] Zhang K., Han D H., Feng H P. A model of linear expanding in the local-world based on the lawsof internal evolution of the wireless sensor networks[C]. ICCASM,2010,4357-4360.
    [89] Zhang X Y. Model design of wireless sensor network based on scale-free network theory[C].WiCOM,2009,1-4.
    [90] Albert R., Barabasi A L. Statistical mechanics of complex networks[J]. Reviews of ModernPhysics,2002,74(1):47-97.
    [91] Wei D Q., Luo X S., Zhang B. Analysis of cascading failure in complex power networks underthe load local preferential redistribution rule[J]. Physica A,2012,391:2771-2777.
    [92] Motter A E., Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E-PhysRev. E,2002,66(6):1-4.
    [93] Dobson I., Carreras B A., Newman D E. A probabilistic loading-dependent model of cascadingfailure[C]. HICSS,2003,2:1-9.
    [94] Dobson I., Carreras B A., Newman D E. Branching process models for the exponentiallyincreasing portions of cascading failure blackouts[C]. HICSS,2005,2:1-10.
    [95] Carreras B A., Lynch V E., Dobson I., et al. Complex dynamics of blackouts in powertransmission systems[J]. Regular Aricles,2004,14(643):1-10.
    [96] Chen Y., An J P., Liu H. Self-organized criticality in ad-hoc communication networks havingsmall-world property[C]. WiCOM,2008,1-4.
    [97] Goh K I., Lee D S., Kahng B., et al. Cascading toppling dynamics on scale-free networks[C].Proceedings of the International Conference on Statistical Physics,2005,346(1):93-103.
    [98] Bao Z J., Cao Y J., Ding L J., et al. Comparison of cascading failures in small-world andscale-free networks subject to vertex and edge attacks[J]. Applications,2009,388(20):4491-4498.
    [99] Bobson L., Carreras B A., Newman D E. A probabilistic loading-dependent model of cascadingfailure and possible implications for blackouts[J]. Hawaii International Conference on SystemSciences,2003,1-10.
    [100]李勇,吴俊,谭跃进.容量均匀分布的物流保障网络级联失效抗毁性[J].系统工程学报,2010,25(6):853-860.
    [101] Wang J W., Rong L L. A model for cascading failures in scale-free networks with a breakdownprobability[J]. Physical A: Statistical Mechanics and its Applications,2009,388(7):1289-1298.
    [102] Dou B L., Wang X G., Zhang S Y. Robustness of networks against cascading failures[J]. PhysicaA: Statistical Mechanics and its Applications,2010,389(11):2310-2317.
    [103] Mizanian K., Yousefi H., Jahangir A H. Modeling and evaluating reliable real-time degree inmulti-hop wireless sensor networks[C]. IEEE Sarnoff,2009,1-6.
    [104] Kleinrock L., Silvester J. Optimum transmission radii for packet radio networks or why six is amagic number[C]. NTC,1978,1-5.
    [105]陈浩,孙建华,金海.对等网络中平均最短路径长度的分析[J].小型微型计算机系统,2006,27(3):407-411.
    [106]毛莺池,龚海刚,刘明,等. ELIQoS:一种高效节能、与位置无关的传感器网络服务质量协议[J].计算机研究与发展,2006,43(6):1019-1026.
    [107] Shen S G., Han R S., Guo L Z., et al. Survivability evluation towards WSNs based on stochasticgame and continuous-time Markov chain[J]. Applied Soft Computing,2012,12:1467-1476.
    [108]熊书明,王良民,詹永照.基于SMP的无线传感器网络拓扑容侵定量评估[J].通信学报,2010,31(7):24-32.
    [109] Gao L., Nelson J. An algorithm for k-connectivity topology in heterogeneous wireless sensornetworks[J]. IET Conference Publications,2010,2010(566):71-75.
    [110]王良民,马建峰,王超.无线传感器网络拓扑的容错度与容侵度[J].电子学报,2006,34(8):1446-1451.
    [111] Li J., Mohapatra P. An anlytical model for the enrgy hole problem in many-to-one sensornetworks[J].2005,2721-2725.
    [112]杨盘隆,陈贵海.无线网状网容量分析与优化理论研究[J].软件学报,2008,19(3):687-701.
    [113]马翊华,康凯.基于非线性和剩余容量的网络级联失效模型[J].系统仿真学报,2013,25(5):876-881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700