用户名: 密码: 验证码:
大肠杆菌E.coli CVCC249在分批和连续培养条件下的生长动力学和生理特性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在限制性培养条件下生长形成的微生物群体组成具有异质性的特点,其生长是一非线性并涉及多变量的复杂性的动态过程。因此,如果通过构建微分速率模型来概括这一复杂的动力学过程,势必不得不做出若干简化的假定,例如,在Malthus指数增长模型(dN/dt=rN或N(t)=N_0d~(-rt))基础上,Logistic方程(dN/dt=rN-βN~2)中加入阻滞因子β,Gompertz方程(dN/dt=μ_0Ne~(-st))中加入衰减参数s,以及Richards方程(Vt=A(1-Be~(-kt))~(1/(1-m)))中再加入调整曲线形状的参数m等,但它们也都只能表征一定情况下的生长过程,而难以概括全部可能发生的情况。尽管可在多项式生长速率方程中加入高次项来适合生长过程的变化:dN/dt=F(N)=C_0+C_1N+C_2N~2+…+C_nN~i,但引入高次项CnN~i(i≥3)后,模型参数的生物学意义经常很难符合。建立多参数的非线性微分方程组也一直是此领域的研究方向,但模型的求解困难,以及其参数的生物学意义不明,仍然是一难题。用分段函数方程来描述生长过程,并以其作为生长阶段划分的依据仍然有待讨论。研究细菌增殖规律时,也通常假定细菌群体的组成是均质性的,认为细菌以“一分为二”的模式进行增殖,即产生同质的2个子细胞后,母细胞不复存在,这又与细菌群体组成的异质性相矛盾,无法体现细菌群体增殖的内在规律。
     本论文针对上述存在的问题,通过对E.coli CVCC249群体瞬时生长速率的研究,分析了不同生长条件下菌群生长的动力学特性,表明用菌群瞬时生长速率,可揭示出菌群异质性形成的机理。通过对生长动力学过程的分析,指出了经典方程在限制性培养条件下表征生长动力学过程的局限性,建立了新的区分生长阶段、估算生长参数,以及准确表征菌群异质性对生长动态过程的影响的新方法。进一步用Fibonacci数列分析,以及连续培养法与流式细胞技术相结合的研究策略,提出了细菌群体增殖的新模式。测定了均质性和非均质性细菌群体对抗菌药物的敏感性。并在此基础上,将数值微分法成功应用于菌群生长过程中酶催化的研究。与此领域中广为认可的研究结果相比较,本论文在以下5个方面取得了具有一定原始创新性的结果:
     1.提出了分批培养条件下细菌群体生长阶段的区分及确定生长参数的新方法
     为减少光吸收测定数据的误差,应用3次样条插值法(Spline Interpolation Method)将观测数据的离散点转化为连续光滑曲线,以真实反映动态过程,再用数值微分法(Numerical Differential Method)直接求得瞬时生长速率(instantaneous growth rate,v_(inst))。然后用Gaussian分布函数拟合过程曲线,求解出具有明确生物学含义的参数,简称该方法为SNG法(Spline-Numerical-Gaussian)。由此提出了区分群体生长阶段的新方法:即依据瞬时生长速度和瞬时生长加速度规律性的变化,把细菌群体生长过程区分为加速生长期、恒速生长期、减速生长期和衰亡期四个阶段(图1),并得到新的生长参数。测定了群体生长过程中DNA、蛋白质含量,以及脱氢酶比活力的变化与瞬时生长速率的相关性。
     在上述研究过程发现,在经典的表征群体生长的Logistic方程中,通常都假定群体中每个个体都是同质的,因此,解方程时的初值仅限定为N(t_0)=N_0,这样,对N_0相同而生理状态不同的接种物的生长动力学就不能区分,这一影响生长方程正确求解的思路在广泛应用的生物生长方程中都存在。事实上,在菌群生长的任一时刻,只有一定比例的细胞在进行分裂(设为θ),这样,dN/dt不仅由N,而且实际上应由N和θ共同决定。因此,解方程的初值条件还应加入θ(t_0)=θ_0,而这一重要和必需条件又被在构建生长方程时所忽略,但这一附加条件使Logistic方程的求解甚为复杂。基于细菌生长过程的瞬时生长速率v_(inst)的时间过程曲线都呈Gauss分布形状这一特点,在用瞬时生长速率成功地表征限制性条件下区分群体生长阶段的基础上,进一步用Gaussian分布近似函数表达式(Y_i=αe~([-0.5((x_i-x_0)/b)~2]))以求得异质性群体的生长参数,这些参数可真实地表征不同生理状态细菌群体的生长动态,为微生物学基础研究和在生物工程等方面的应用提供了一个新方法。将新的表征群体生长的建模方法(SNG法)与依据Logistic方程划分生长阶段的传统方法作了比较,表明此方法可克服Logistic方程中存在的问题,而能准确表征E.coli CVCC249在分批培养下的生长动力学过程。
     2.根据在分批和连续培养条件下菌群对药敏试验的不同影响,提出了一个准确进行药敏试验的新方法
     根据菌群瞬时生长速率的变化,将E.coli CVCC249的分批培养过程区分为加速生长期、恒速生长期、减速生长期和衰亡期四个阶段,各阶段中菌群的核酸、蛋白质含量和脱氢酶活力都有明显差别;分别取样,测定各阶段菌群的浓度-杀菌曲线(Concentration-killing Curve,CKC),检测结果表明这种生理异质性会导致各阶段菌群对药物敏感性的不同,同时,菌群内个体间药物敏感性也存在差异,呈现正态分布。以加速生长期菌群的CKC曲线为参照,对于庆大霉素,恒速生长期和衰亡期菌群药物敏感性增强;对于恩诺沙星,恒速生长期反而减弱,其它阶段差别不大。这是常规药敏试验方法难以显示的,表明对不同生理状态菌群的药敏试验测定结果可反映出药物的不同杀菌机理,但这同时也表明常规的药敏检测不能给出一个稳定的药物敏感性结果(图2)。而在连续培养下得到的“同步生长”状态的菌群,则可得到稳定的药敏试验结果(图3),这有助于常规药敏试验方法的改进,并可为抗菌药物的合理使用和抗菌药物的筛选提供新方法。
     3.证实了连续培养下细菌菌群以1→1+1'…模式进行增殖
     用Fibonacci数列分析方法对在分批和连续培养下E.coli CVCC 249菌株的群体增殖过程进行了分析。Fibonacci数列模式是一经典递增函数,已广泛应用于表征生物生长发育过程。其数列分析属于数列的差分分析方法,它可把一个复杂的动力学、动态学过程简化求解。本文首次由数列的递推系数(recurrent coefficient for sequence)、递增系数(incremental recurrent coefficient for sequence)和净增率(net increment%)(或增长百分比)表征群体的增殖规律。分析结果表明,E.coli CVCC 249在连续培养下,群体中的细胞以1_(-M)(母细胞)→1_(-M)(母细胞)+1_(-D)(子细胞)→…的分裂模式进行增殖,即子细胞形成后,母细胞仍可继续进行同样的分裂增殖,简称为1→1+1'…(1…母细胞,1'…子细胞)模式。在分批培养条件下,菌群的净增率逐渐下降,最终成为不再进行增殖的状态,这是在营养供给受限和产物抑制双重作用下,代时逐渐延长的结果。在分批培养下,菌群的瞬时生长率,DNA复制和蛋白质合成的瞬时增长率,以及表征代谢还原能力的脱氢酶的比活力,都呈现正态分布,其数列分析结果也与活细胞数的分析结果一致。在相同的分批培养条件下,低密度接种可得到高的细胞净增率,而高密度接种则可迅速达到最高生长量。稳态接种材料的生长动力学类似于低密度接种。在连续培养条件下,稀释率的增加可加速淘汰最快和最慢增殖的个体,更快达到同步生长状态,从而使群体增殖率分布更趋于正态化,这与以流式细胞技术检测的不同稀释率下菌群内细胞尺度分布的结果相一致。数列分析结果表明,稳态下群体净增率为零,存在于培养罐中菌群的递增系数恒定在1.0(图4),表明在开放系统条件下E.coli CVCC 249群体以1→1+1'…模式增殖。用Fibonacci数列分析方法对大肠杆菌以1→1+1'…(即类似于DNA的半复制模式)这一增殖模式的确定,涉及细菌基本增殖规律性的认识。对细菌突变率的测定、药敏测定中不确定性等难题的解决,以及生物工程中条件优化设计等,都会提供新的策略。
     4.用瞬时速率可准确表征β-半乳糖苷酶的催化效率并证实了活性中间体的存在
     通常依Michaelis-Menten方程进行测试时,酶的最大反应速率v_(max)和最初反应速率v_0决定着酶催化反应速率的常数k_(cat)。但由于v_0和v_(max)测试和拟合中的不确定性,从而导致k_(cat)结果的不确定性。因此本文采用一种改进的方法即数值微分法来准确的估算β-半乳糖苷酶的催化反应速率常数。依照IUPAC(International Union of Pure andApplied Chemistry)用ξ来定义反应速率的建议和国标的类似规定,dξ/dt定义为瞬时反应速率(v_(inst))。用实验数据直接得到瞬时反应速率,并以其作为目标函数,来确定β-半乳糖苷酶水解邻硝基苯酚-β-D-半乳糖苷(ONPG)的最适反应条件(如最适温度、时间、pH值和[S]/[E]等)。β-半乳糖苷酶的活性可以由反应过程中不断生成的邻硝基苯酚(ONP)的UV-Vis吸收光谱来表征。因此,在最适反应条件下,得到的瞬时反应速率的最大值(v_(inst-max))与达到瞬时反应最大值时的酶浓度([E]_(inst-max))之比,可准确的估算β-半乳糖苷酶的催化反应速率常数。未经纯化的样品中的β-半乳糖苷酶也可以通过这种方法估测。由这种改进方法与广为应用的Michaelis-Menten方程(v=v_(max)[s]/k_m+[s])得到的v_(max)和k_m求k_(cat)进行了比较,进一步剖析了Michaelis-Menten测试方法中不能得到稳定的k_(cat)等问题的原因。
     通常用固定温度下求不同时间过程对反应速率影响的方法,或固定时间而改变温度的方法,来表征温度和时间对反应速率的影响。此方法属于求偏导数方法,因而无法全面表征温度和时间对速率的复合作用。而这2个变量的复合函数c-v_(inst)=[(?)v/(?)t]_T+[(?)v/(?)T]_t则可表征2者的共同影响。β-半乳糖苷酶降解ONPG过程中,ONPG的减少及ONP的增加可以用UV动态光谱图来测定,此过程的净转化速率(d[ONPG]/dt-d[ONP]/dt)即可表示活性中间产物(ES-复合物)的存在(图5)。温度和时间对ES-复合物形成的v_(inc)的复合影响,可用等高线作图法进行展示(图6)。通过这种途径,可以得出ONPG转化成ONP酶解过程中一些新的信息,即活性中间物并不是动力学曲线中的一个点,而是在三维空间上从反应物到产物酶解过程中的一个运动聚集体,并且受温度和时间的综合影响。活性中间物的动力学行为也可以在三维图上直观地表征出来。研究结果可为酶促反应动力学研究的深入开展提供一种新思路。
     5.提出了β-半乳糖苷酶催化邻硝基苯酚-β-半乳糖苷(ONPG)水解机理的新模式
     以固定浓度的β-半乳糖苷酶,对不同浓度的ONPG在0℃下进行结合。以紫外线光谱、荧光光谱的变化分别确定酶的饱和结合位点数SBP。结果表明,β-半乳糖苷酶的SBP数为8,即酶分子的一个亚基可结合2个ONPG分子。通过用新的de Donder方程v_f/v_r=e~(A_i/RT)和公式dG_i=-RT×ln(d[ONPG]/dt/d[ONP]/dt)计算Gibbs自由能变化,表明随着温度的升高和时间的延长,自由能由相对高的区域逐渐低移,至最低点时催化反应不再进行,体现了热力学过程和动力学过程的一致性(图7)。综合上述结果,提出了糖苷酶类催化底物水解的新机理,即(?),表明在水解反应不能进行的条件下,结合可导致ONPG的分子构型转变为ONP分子构型,而β-半乳糖苷酶的构象变化则可循环发生。“ONPG-β-半乳糖苷酶复合物”与β-半乳糖苷酶和ONPG之间不存在可逆性的平衡过程,在酶分子不断循环进行的结合/解离过程中,由β-半乳糖苷酶构象变化提供的能量,使ONPG分子不断转化为ONP分子构型,结合复合物解离出ONP与半乳糖后,再生的β-半乳糖苷酶又可与ONPG结合,而形成的产物半乳糖作为抑制性因子在水解过程中起作用。这是与通常假定的酶催化过程为一系列可逆平衡反应组成,不可逆反应仅发生于ES复合物分离出产物P的阶段这一传统认识所不同的新观点。
Under batch culture conditions, a bacterial population may be heterogeneous in many important characteristics, such as age-specific reproduction and death rates, cell shape and size and biochemical activities; therefore, the growth of bacterial population presents a nonlinear process with very complicated dynamics. Thus, due to such complexity, the construction of the growth model has to be based on some plausible or implicit assumptions, such as introducing the "β" factor into the Malthus equation (dN/dt=rN ) asin Logistic equation (dN/dt=rN -βN~2), parameter "s" as in Gompertz equation(dN/dt=μ_0Ne~(-st)) and parameter "m" (shape factor) as in Richards equation(Vt = A(1- Be~(-kt))~(1/(1-m))). Generally, these models are constructed based on some simplisedassumptions that may not reflect the well known properties of a biological system and cannot be adapted for all circumstances.
     There is a tendency in mathematics to rush into the analysis of a growth model without truly understanding the underlying biology. For example, the term CnN~i (i≥3) hasbeen introduced to the polynomial growth equation(dN/dt=F(N)=C_0+C_1N+C_2N~2+…+C_nN~i),however, the biological significance of theparameters in the model is unclear. Similarly, non-linearity equations with multi-parameters were proposed in biological studies, but did not serve the purposes. It was difficult or impossible to find a sufficient scheme to establish an adequate definition of biological parameters. An exponential polygonal model for population growth has been recently proposed, but it does not provide a sufficient basis for distinction of the growth curve. Microbiologically, it is usually assumed that bacteria divide by a process referred to as binary fission in which one cell divides to produce two cells and a bacterial population is homogeneous. Naturally, there is no complete homogeneous system for a bacterial population and it is only a hypothesized state.
     Experimental design and investigation of this thesis focuses on the above mentioned problems. Using the instantaneous growth rate as an index, we analyzed the kinetics characteriactic of a bacterial population at different conditions, discussed the formation mechanism of the population kinetics, and elucidated the relationship between the population heterogeneity and the instantanneous growth rate. Based on the analysis of growth kinetics, a new method was developed to study the growth kinetics of bacterial populations and to distinguish the growth phases in batch culture. We extensively discussed many difficulties confronted by Logistic growth model when describing microbial growth. Five new discoveries were established during my Ph.D. studies, as follows:
     1. A novel approach was developed for estimating growth phases and parameters of bacterial population in batch culture
     Using mathematical analysis, a new method has been developed to study the growth kinetics of bacterial populations in batch culture. First, sample data were smoothed with the spline interpolation method. Second, the instantaneous rates were derived by numerical differential techniques and finally, the derived data were fitted with the Gaussian function to obtain growth parameters. We named this the Spline-Numerical-Gaussian or SNG method. This method yielded more accurate estimates of the growth rates of bacterial populations and new parameters. It was possible to divide the growth curve into four different but continuous phases based on changes in the instantaneous rates. They are the accelerating growth phase, the constant growth phase, the decelerating growth phase and the declining phase (Fig.1.). Total DNA content was measured by flow cytometry and it varied with the growth phase. The SNG system provides a very powerful tool for describing the kinetics of bacterial population growth. The SNG method avoids the unrealistic assumptions generally used in traditional growth equations.
     During past 50 years, different types of the Logistic model are constructed based on a simple assumption that the microbial populations are all composed of homogeneous members and consequently, the condition of design for the initial value of these models has to be rather limited in the case of N(t_0)=N_0. Therefore, these models cannot reflect the different dynamic behavior of the populations possessing the same No from heterogeneous phases. In fact, only a certain ratio of the cells in a population is dividing at any time duringgrowth progress, termed asθ, and thus,dN/dt not only depends on N, but also onθ. SoN(t_0)=N_0 is a necessary element for the condition design of the initial value. Unfortunately, this idea has long been neglected in widely used growth models. However, combining together the two factors (N_0 andθ) into the initial value often leads to the complexity in the mathematical solution. This difficulty can be overcome by using instantaneous rates (V_(inst)) to express growth progress. Previous studies in our laboratory suggested that the V_(inst), curve of the bacterial populations all showed a Guassian function shape and thus, the different growth phases can be reasonably distinguished. In the present study, the Gaussian distribution function was transformed approximately into an analytical form(Y_i=αe~([-0.5((x_i-x_0)/b)~2]))that can be conveniently used to evaluate the growth parameters and inthis way the intrinsic growth behavior of a bacterial species growing in heterogeneous phases can be estimated. In addition, a new method has been proposed, in this case, the lag period and the doubling time for a bacterial population can also be reasonably evaluated. This approach proposed could thus be expected to reveal insight of bacterial population growth. Some aspects in modeling population growth are also discussed.
     2. A new method was proposed for estimating the effect of physiological heterogeneity of E.coli population on antibiotic susceptivity test
     According to the instantaneous growth rate (dN/dt) of E.coli CVCC249 growing in batch culture, the entire growth curve was distinguished into four phases: accelerating growth phase, constant growth phase, decelerating growth phase and declining phase.Each of four phases have obvious variation in physiological and biochemical properties, including total DNA content, total protein content and MTT-dehydrogenase activity, etc. that leaded to the difference in their antibiotic susceptivity. Antibiotic susceptivity of a population sampled from each phase was tested respectively by Concentration-killing Curve (CKC) approachfollowing the formula N =N_0/1+e~( r(x-BC_(50))), showing as normal distribution at individual cell levelfor an internal population, in which the median bactericidal concentration BC_(50) representedthe mean level of susceptivity, while the bactericidal span BC_(1-99)=2/r lnN_0 indicated thevariation degree of the antibiotic susceptivity. Furthermore, tested by CKC approach, the antibiotic susceptivity of E.coli CVCC249 population in each physiological phase to gentamicin or enoxacin varied: susceptivity of population in constant growth phase and declining phase all increased, compared with that in accelerating growth phase, for gentamicin but declined for enoxacin. This primary investigation revealed that physiological phase should be taken account of in the context of both antibiotic susceptivity test and research into antimicrobial mechanism and bacterial resistance (Fig.2.). However there are few reports regarding this aspect, therefore, further research using different kinds of antibiotics with synchronized continuous culture of different bacterial strains is necessary(Fig.3.).
     3. A new model was proposed for expressing the reproduction of a heterogeneous bacterial population
     According to the Fibonacci sequence analysis, three parameters, the recurrent coefficient, the incremental recurrent coefficient, and the net increment (%), were used to analyze the growth and reproduction behaviour of E.coli under batch and continuous culture. The analysis result suggested that under continuous culture, E. coli CVCC 249 divided as in regular model of 1_(-M) (mother)→1_(-M)(mother ) + 1_(-D) (daughter)→…termed as 1→1 + 1'…model. Under batch culture, the net increment of the population growth continuously decrease and finally a zero rate will be reached due to nutrition exhaust and the production increase as inhibitor that can lead to the prolonged generation time. All curves including the instantaneous rate, DNA and protein biosynthesis, and MTT activity appear to fit in the normal distribution. Under same batch culture, the net increment (%) will decrease with the increase in the inoculum size, but the highter biomass will be obtained at larger inoculum size. As steady state cultures were used as the inoculum, the growth dynamic behaviour was similar to that lower inoculum size. Under continuous culture, individual at low growth rate wash out with the increase in the dilution rate and the population growth curve present a normal distribution which is similar to that cell size distribution. The research results showed that the incremental recurrent coefficient for sequence is 1.0 (Fig.4.), which suggests that the bacteria reproduce in regular model of 1→1 + 1'…This new model will provide a good indication for accurately determining the mutation rate and the degree susceptivity of bacteria to antibiotic et al.
     4. The instantaneous reaction rate was used to express the catalytic efficiency ofβ-galactosidase
     To overcome the difficulties in determining the initial rate (V_0) of enzyme-catalyzed reactions based on the classic Michaelis-Menten kinetic assumption and to avoid the uncertainty of calculating the catalytic rate constant (k_(cat)) by extrapolation of V_(max)and k_m data, the instantaneous reaction rate was used to estimate the k_(cat) ofβ-galactosidase. This was based on analysis of the changes in relationship between input data [the value of added O-nitrophenylβ-D-galactoside (ONPG)] and output data [the instantaneous rate of O-nitrophenol (ONP) formation] for entire process of the enzyme-catalyzed reaction. The amount of ONP was determined based on the online UV-visible dynamic spectrum during the entire course of the reaction and its instantaneous change rate (v_(inst)) was directly derived from the dynamic spectrum curve. v_(inst) was used as an objective function to determine the optimum assay conditions forβ-galactosidase activity with variables such as temperature, time, pH, and the ratio of [E] to [S]. Under these optimal assay conditions, the maximum value of v_(inst) (v_(inst-max)) and the corresponding concentration of enzyme ([E] inst-max) could be accurately determined. Then the k_(cat) of p-galactosidase was calculated with the formula: k_(cat) = v_(inst-max)/[E]_(inst-max) .
     The amount ofβ-galactosidase in a sample could also be easily determined by this approach without a pre-purification step. The general effectiveness of this new approach and the problems of applying the Michaelis-Menten approximation, particularly for estimating the initial velocity, are also discussed in detail.
     The disappearance of ONPG and the appearance of ONP were synchronously measured during the hydrolysis of ONPG byβ-galactosidase using UV-visible spectrum in situ on-line. The conversion process of ONPG to ONP was calculated using d[ONPG]/dt - d[ONP]/dt (Fig.5.). The combined effects of temperature and time on v_(inst) and v_(inc) were expressed as relative variability and visualized by the isograms method - contour plots. With this approach, new insights into the irreversible-continuous conversion of ONPG to ONP during hydrolysis can be clearly observed. That is, the intermediate was a moving-mass flow in three-dimensional space from substrate converting to product during hydrolysis and the temperature-time compensating effects. The dynamic behavior of the intermediate was effectively visualized in a two-dimensional plot (Fig.6.). The results of the present study provide evidence to support the isograms method as a useful tool in understanding the reaction mechanisms of enzyme catalysis.
     5. A new model for enzyme-catalyzed reaction was proposed based on a case study on the hydrolysis of ONPG byβ-galactosidase
     Based on the synchronously measuring the disappearance of ONPG and the appearance of ONP during hydrolysis of ONPG byβ-galactosidase, the existence of ES-complex as an intermediate can be estimated by the differences between d[ONPG]/dt and d[ONP]/dt. The new de Donder equation (v_f/v_r=exp (A_i/RT)) was used to calculate the changes in Gibbs free energy (dG_i=-RT·ln(d[ONPG]/dt)/(d[ONP]/dt)) (Fig.7.). The results suggested that the interaction of substrate with enzyme in binding process is controlled by the active sites on the surface of enzyme and the conversion of substrate to product is an irreversible reaction. Combining current experimental findings with the previous studies, a new model termed as an irreversible-catalysis model was proposed for glycosidase-catalyzed reaction, written as (?),in which the regenerated enzyme from the dissociation ofES-complex will re-bind with substrate and then the catalysis is going again. The product formed plays key roles as a completive inhibitor for catalysis process.
引文
1. Neidhardt, F.C. Bacterial growth: Constant obsession with dN/dt. Journal of Bacteriology, 1999, 181: 7405-7408.
    
    2. Ferenci, T. "Growth of bacterial cultures" 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Res Microbiol, 1999, 150: 431-438.
    
    3. Kell, D.B., Ryder, H.M., Kaprelyants, A.S., et al. Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie Van Leeuwenhoek, 1991, 60:145-158.
    
    4. Nebe-von-Caron, G., Stephens, P., Badley, R.A. Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl. Microbiol, 1998, 84: 988-998.
    
    5. Mantzaris, N.V., Srienc, F., Daoutidis, P. Nonlinear productivity control using a multi-staged cell population balance model. Chem Eng Sci, 2002, 57:1-14.
    
    6. Sen, R., Swaminathan, T. Response surface modeling and optimization to clucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engg Journal, 2004, 21:141-148.
    
    7. Konopka, A. Microbial physiological state at low growth rate in natural and engineered ecosystems. Current Opinion in Microbiology, 2000, 3:244-247.
    
    8. Kim, W., Surette, MG. Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online, 2003, 5:189-196.
    
    9. Kim, W., Surette, MG. Metabolic differentiation in actively swarming Salmonella. Mol Microbiol, 2004, 54:702-714.
    
    10. Cuenca-Estrella, M.T., Diaz-Guerra, M., Mellado, E., Rodriguez-Tudela, J.E. Influence of glucose supplementation and inoculum size on growth kinetics and antifungal tolerance testing of Candida spp. Clin Microbiol, 2001, 39: 525-532.
    
    11. Davey, H.M., Kell, D.B. Flow Cytometry and Cell Sorting of Heterogeneous??Microbial Populations: the Importance of Single-Cell Analyses. Microbiological Reviews, 1996, p. 641-696.
    
    12.薛京伦.表观遗传学-原理、技术与实践.上海科学技术出版社,2006.
    
    13.修志龙,曾安平.微生物细胞连续培养过程中振荡和混沌行为的研究进展.生物 工程进展,1999,P.58-63.
    
    14.姚玉华,孙丽华,修志龙.一类具有时滞的微生物连续培养数学模型研究.生物 数学学报,2005,20:325-331.
    
    15. Darzynkiewicz, Z., Kapuscinski, J. Acridine orange: a versatile probe of nucleic acids and other cell constituents, p. 291-314. In M.R. Melamed, T. Lindmo, and ML. Mendelsohn (ed), Flow cytometry and sorting, 2nd ed. Wiley-Liss Inc., New York. 1990.
    
    16. Hjortso, M.A., Dennis, K.E., Bailey, J.E. Quantitative characterization of plasmid instability in Saccharomyces cerevisiae using flow cytometry cell sorting. Biotechnol. Lett, 1985, 7:21-24.
    
    17. Nebe-von-Caron, G, Stephens, P.J., Hewitt, C.H., Powell, JR., Badly, R.A. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods, 2000,42:97-114.
    
    18. Wallner, G, Fuchs, B., Spring, S., Beisker, W., Amann, R. Flow sorting of microorganisms for molecular analysis. Appl Environ Microbiol, 1997, 63:4223-4231.
    
    19.刘实.液态培养基内跟踪细菌生长和一个新的细菌生命模式.中国科学,1999,29: 571-579.
    
    20.张汉波,丁骅孙.细菌群体的异质性.微生物学通报.2001,28(2):93-96.
    
    21. Cairns, J., Overbaugh, J., Miller, S. The origin of mutants. Nature (London), 1988, 335:142-145.
    
    22. Foster, PL. Adaptive mutation: the uses of adversity. Annu Rev Microbiol, 1993, 47:467-504.
    
    23. Fox Keller, E. Between language and science: the question of directed mutation in molecular genetics. Perspect Biol Med,1992, 35:292-306.
    
    24. Hall, B.G. Selection or mutation-which, if either, comes first. FEMS Microbiol Lett, 1994, 117:237-242.
    25. Lenski, R., Mittler, J.E. The directed mutation controversy and neo-Darwinism.Science, 1993, 259:188-194.
    
    26. Neijssel, O.M., Tempest, D.W. The role of energy spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch Microbiol, 1976,110:305-311.
    
    27. Kell, D.B. Forces, fluxes and the control of microbial growth and metabolism. The twelfth Fleming lecture. J Gen Microbiol, 1987, 133:1651-1665.
    
    28. Lloyd, D. Flow cytometry: a technique waiting for microbiologists, p.1-9. In D. Lloyd (ed.), Flow cytometry in microbiology. Springer-Verlag, London, 1993.
    
    29. Cooper, S. Leucine uptake and protein synthesis are exponential during the division cycle of Escherichia coli b/r. J Bacteriol, 1988, 170:436-438.
    
    30. Cooper, S. Bacterial growth and division. Academic Press, Inc., San Diego, Calif,1991.
    
    31. Kubitschek, H.E., Pai, S.R. Variation in precursor pool size during the division cycle of Escherichia coli-further evidence for linear cell-growth. J Bacteriol, 1988,170:431-435.
    
    32. Bugeja, V.C., Saunders, P.T., Bazin, M.J. Estimating the mode of growth of individual microbial cells from cell volume distributions. Biosystems, 1985, 18:47-63.
    
    33. Davey, C.L., Kell, D.B., Dixon, N.M. SKATFIT: a program for determining the mode of growth of individual microbial cells from flow cytometric data. Binary, 1990,2:127-132.
    
    34. Lee, S.Y. Suppression of filamentation in recombinant Escherichia coli by amplified ftsZ activity. Biotechnol Lett, 1994, 16:1247-1252.
    
    35. Hai, C. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theoretical population biology, 1978, 14: 215-230.
    
    36. Yang, Q.Y. A numerical method of estimating the parameters in a generalized logistic model of single population growth. JBiomath, 1997, 12(4): 316-320.
    
    37. Wu, X.Y. A numerical method fitting the logistic curve. J Biomath, 1990, 5(1): 26-32.
    
    38. 陈兰荪,陈健.非线性生物动力学系统.北京:科学出版社, 1993.
    
    39. Ge, X.C., Wu, C.F. The character comparison combinational prediction and application
    ??population models. J Biomath, 2000, 15 (3) : 367-374.
    
    40.姜启源,谢金星,叶俊.数学模型(第三版).北京:高教出版社,2003.
    
    41. Cui ,Q.W. G. Lanson. A new model of single-species population-by extending of the logistic and exponential equations with several limiting condition. ACTA ECOLOGICA SINICA, 1982, 2 (4): 403-41
    
    42.胡作生,傅维洁,高培基.关于崔-L单种群增长模型的讨论及其推广.生物数学 学报,1990,5(3):94-101.
    
    43. Chin, L.C. A true rate of population growth-lotka's intrinsic rate of natural increase. Revisited. Mathematical Biosciences, 1991, 103:139-152.
    
    44. Ana, T.P., Castanera, E.S. Estimation of the intrinsic rate of natural increase and its error by both algebraic and resampling approaches. CABIOS, 1993, 9(5): 535-540.
    
    45. Lendenmann, U., Egli, T. Kinetic models for the growth of Escherichia coli with mixtures of sugars under carbon-limited conditions. Biotechnology and Bioengineering, 1998, 59: 99-107.
    
    46. Baranyi, J., Pin, C. Estimating bacterial growth parameters by means of detection times. Appl Environ Microbiol, 1999, 65:732-736.
    
    47. William, A., Poorter, H.H. Avoiding bias in calculations of relative growth rate. Annals of Botany, 2002, 80:37-42.
    
    48. Wang, S.S. A generalized logistic model of single population growth. J Biomath, 1990, 5(1) :21-25.
    
    49. Kuang, Y.Y. Basic properties of mathematical population models. J Biomath, 2002, 17(2): 139-142.
    
    50. Robert, R.C., Robert, B.H., Steven, Y.N. Comparison of methods for measurement of bacterial growth rates in mixed batch cultures. Applied and Environmental Microbiology, 1982, pp.1160-1165.
    
    51. Stanier, R.Y, Jugraham, J.H., Wheelis, M.L, Painter, P.R. The Microbial world fifth edition, New Jersey07632, Prentice-Hall, 1986, pp.183
    
    52. Nicklin, J., Grenll-Cook, K., Paget, T., Killiagton, R. Instant notes in microbiology. Translated by LIN Z L el at, Beijing: Science Press, 2000.
    
    53. Monod, J. The growth of bacterial culture. Ann.Ren.Microbiol, 1949, 3(2): 371-392.
    
    54.杨纪珂等编译.生物数学概论.北京:科学出版社,1982.
    
    55. Hohath, S. Important of the generation time in Microbiology. Folia Microbiology, 1970, 15(4): 259-266.
    
    56. Kovarova-Kovar, K., Thomas, E. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate. Kinetics Microbiology and Molecular Biology Reviews, 1998, 62(3): 646-666
    
    57. Powell, E.Q. Growth rate and generation time of bacteria with special reference to continuous culture. J Gen. Microbial, 1956, 15(3): 492-511.
    
    58. Zwicteting, M.H, Rombouts, F.M. Comparison of definition of the lag phase and the exponential phase in bacterial growth. J Appl Microbiology, 1992, 72(1): 139-145.
    
    59.高培基等.微生物生长与发酵工程.山东大学出版社,1990,48-49.
    
    60. Wang, L.S., Zhang, Y.Z., Yan, H., Gao, P.J. Quantitative estimate of the effect of cellulase components during degradation of cotton fibers. Carbohydrate Research, 2004, 339(4): 819-824.
    
    61. Gao, P.J., Qu, Y.B., Wang, Z.N. The use of multiple regression analysis for estimating the action pattern of cellulase fraction in hydrolysis of cellulose. J Biomath, 4: 144-150.
    
    62. Wang, D., Qu, YB., Sun, H.Q., Gao, P.J. Regulation of cellulose synthesis in mycelion fungi participation of ATP and cyclic AMP. 1995, Biotech letters, 17: 593-598.
    
    63.张洪林,刘永平,南照东,孙海涛,高培基.应用微量热法构建限制性条件下微生 物生长模型.生物工程学报,1994,10:333-337.
    
    64.刘永平,南照东,孙海涛,高培基.限制性条件下药物对细菌抑制作用的微量量热 法研究.生物工程学报,1996,12:60-64.
    
    65. Li, Z.L., Liu, L.F. An exponential polygonal model of the population growth and the estimation of parameters. J Biomath, 1998, 13(l):22-25.
    
    66. May, R.M. Simple mathematical models with very complicated dynamics. Nature, 1976, 261(10): 459-467.
    
    67. Nomenclature Committee of the Interaction Union of Biochemistry (NC-IUB). Symbolism ant terminology in enzyme kinetics Recommendations 1981. Eur J Biochem, 1982, 128: 281-291.
    68. Lu, W.P., Fei, L. A logarithmic approximation to initial rates of enzyme reactions. Anal Biochem, 2003, 316:58-65.
    
    69. Waley, S.G. An easy method for the determination of initial rates. Biochem J. 1981, 193:1009-1012.
    
    70. Wahl, R.C. The calculation of initial velocity from product progress curves when [s]<<[Km]. Anal Biochem, 1994, 219: 383-384.
    
    71. Boeker, E.A. Initial rates. Anew plot. Biochem J, 1982, 203:117-123.
    
    72. Petersen, L.C. Determination of Michaelis parameters from differentials of progress curves. Biochem J, 1983, 215:589-595.
    
    73. Juhasz P., Vestal, M.L., Martin, S.A. On the initial velocity of ions generated by matrix-assisted laserdesorption, ionization and its effect on Gilibration of delayed extraction time-flight mass spectra. J Am Soc Mass Spectrom. 1997, 8:209-217.
    
    74. Schumaker, L.L. Spline functions: Basic Theory, Pure & Applied mathematics. John Wiley & Sons Inc, New York. 1981.
    
    75. Lee, T.C.M. Improved smoothing spline regression by combining estimates of different smoothness. Stat Probab Lett, 2004, 67:133-140.
    
    76. Rescigno, A. Area under the curve and bioavailability. Pharmacol Res, 2000,42:539-540.
    
    77. Purves, R.D. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J Pharmacokinet Biopharm, 1992, 20:211-226.
    
    78. Kubitschek, H.E. Introduction to research with continuous cultures. Prentice-Hall, Inc.,Englewood Cliffs, N, J. Chapters two and three. 1970.
    
    79. Webb, R.B., Kubitschek H E. Photodynamic mutation in continuous cultures.p. 145-148. In Argonne National Laboratory Biological and Medical Research Division Annual Report, ANL-7136.
    
    80. James, T.W. Continuous culture of microorganisms. Ann Rev Microbiol, 1961,15:27-46.
    
    81. Deam, AC, Rogers, P.L. The action of Drugs on Aerobacter Aerogenes in various systems of continuous culture. Biochem Biophys Acta, 1967, 148:280-292.
    82. Branson, E. Clinical relevance of Minimum Inhibitory Concentration. Aquaculture,2001.196:289-296.
    
    83. Mouton, J.W. Breakpoints: current practice and future perspectives. International Journal of Antimicrobial Agents, 2002, 19:323-331.
    
    84. Liu, Y.Q, Zhang, Y.Z, Gao, P.J. Novel Concentration-Killing Curve method for estimation of bactericidal potency of antibiotics in an in vitro dynamic model.Antimicrob Agents Chemother, 2004, 48:3884-3891.
    
    85. Editorials. The rise in bacterial resistance. BMJ, 2000, 320:199-200.
    
    86. Hiramatsu, K., Hanak, H., Yahuta, K., Oguri, T., Tenover, F.C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob chemother, 1997, 40:135-146.
    
    87. Http://www.who.int/emc/amrpdfsAVHO. Global Strategy English. Pdf. Who Global Strategy for Containment of Antibiotic Resistence, 2001.
    
    88. Witte, W. Medical consequences of antibiotic use in agriculture. Science, 1998,279:996-997.
    
    
    1. Scavizzi, M.R., Labia. R., Petitjean, O.J., Elbhar, A. Antimicrobial susceptibility test: from bacterial population analysis to therapy. International Journal of Antimicrobial Agents, 2002, 19: 9-20.
    
    2. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk and dilution tolerance tests for bacteria isolated from animals: approved standard, 2nd ed. NCCLS document M31-A2. 2002, National Committee for Clinical Laboratory Standards, Wayne, Pa.
    
    3. Liu, Y.Q., Zhang, Y.Z., Gao, P.J. Novel Concentration-Killing Curve method for estimation of bactericidal potency of antibiotics in an in vitro dynamic model.Antimicrob Agents Chemother, 2004, 48:3884-3891.
    
    4. Cooper, S. Bacterial growth and division, biochemistry and regulation of prokaryotic and eukaryotic division cycles. Academic press, 1991.
    
    5. Kim, L. Programmed death in bacteria. Microbiology and Molecular Biology Reviews, 2000, 64:503-514.
    
    6.张怀强,刘玉庆,刘波,高培基.分批培养条件下细菌群体生长阶段的区分及生 长参数的确定.中国科学,C辑,2005,35(6):502-512.
    
    7.张怀强,卢丽丽,阎雪岚,高培基.细菌群体异质性对生长动态过程的影响及其 表征.中国科学,C辑,2007,37(2)246-256.
    
    8.张汉波,丁骅孙.细菌群体的异质性.微生物学通报,2001,28(2):93-96.
    
    9. Holmstr(?)m, K., Tolker-Nielsen, T., Molin, S. Physiological states of individual Salmonella typhimurium cells monitored by in situ re-verse transcription-PCR. Journal of Bacteriology, 1999,181: 1733-1738.
    
    10. Tolker-Nielsen, T., Holmstrem, K., Molin, S. Visualization of specific gene expression in Salmonella typhimurium by in situ PCR. Appl Env Microbiol, 1997, 63: 4196-4203.
    
    11.Konopka, A. Microbial physiological state at low growth rate in natural and engineered ecosystems. Current Opinion in Microbiology, 2000, 3:244-247.
    
    12. Kim, W., Surette, MG Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online, 2003, 5:189-196.
    
    13. Kim, W., Surette, MG. Metabolic differentiation in actively swarming Salmonella. Mol Microbiol, 2004, 54:702-714.
    
    14. Cuenca-Estrella, M.T., Diaz-Guerra, M., Mellado, E., Rodriguez-Tudela, J.E.??Influence of glucose supplementation and inoculum size on growth kinetics and antifungal tolerance testing of Candida spp. Clin Microbiol, 2001, 39: 525-532.
    
    15. Mueller, M., Pena, A., Derendorf, H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: Kilt curves versus MIC. Antimicrob Agents Chemother, 2004, 48: 369-377.
    
    16.金志华,林建平,岑沛霖.替考游动放线菌发酵生产替考拉宁的动力学模型.生 物数学学报,2004,19:103-108.
    
    17. Sat, B., Hazan, R., Fisher, T., et al. Programmed cell death in Escherichia coli. Some antibiotics can trigger mazEF lethality. J Bacteriol, 2001, 183: 2041-2045.
    
    18. Keren, I, Shah, D., Spoering, A., et al. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol, 2004, 186: 8172-8180.
    
    19. Keren, I., Kaldalu, N,, Spoeting, A,, et al. Persister cells and tolerance to antimicrobials. FEMS Microbiology letters, 2004, 230:13-18.
    
    20. Levin, B.R. Noninherited resistance to antibiotics. Science, 2004, 305: 1578-1579.
    
    21. Tuomanen, E., Durack, D.T., Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob Agents Chemother, 1986, 30:521-527.
    
    22.刘实.液态培养基内跟踪细菌生长和一个新的细菌生命模式.中国科学C辑:生 命科学,1999,29:571-579.
    
    23.陈代杰.抗菌药物与细菌耐药性.上海:华东理工大学出版社.2001.
    
    1. Kell, D.B., Ryder, H.M., Kaprelyants, A.S., Westerhoff, H.V. Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie van Leeuwenhoek, 1991, 60: 145-158.
    
    2. Davey, H.M., Winson, M.K. Using flow cytometry to quantify microbial heterogeneity. Curr Issues Mol Biol, 2003, 5: 9-15.
    
    3. 张怀强,卢丽丽,阎雪岚,高培基.细菌群体异质性对生长动态过程的影响及其表 征,中国科学,C辑,2007,37(2)246-256.
    
    4. 张汉波,丁骅孙.细菌群体的异质性.微生物学通报.2001,28(2):93-96.
    
    5. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., Leibler, S. Bacterial persistence as a phenotypic switch. Science, 305, 2004, p: 1622-1626.
    
    6. Torvisk, V.; Salte, K.; Sorheim, R.; Goksoyr, J. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol, 1990,56:776-781.
    
    7. Wiacek, C, Müller, S., Benndorf, D. A cytomic approach reveals population heterogeneity of Cupriavidus necator in response to harmful phenol concentrations. Proteomics, 2006, 6: 5983-5994.
    
    8. Heersma, H.F., van Soolingen, D. Genetic heterogeneity in Mycobacterium tuberculosis isolates reflected in IS6110 restriction fragment length polymorphism patterns as low-intensitybands. Journal of Clinical Microbiology, 2000, p: 4478-4484.
    
    9. Vives-Rego, J., Lebaron, P., Nebe-von Caron, G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev, 2000, 24: 429-448.
    
    10. Bunin, V.D., Voloshin, A.G. Determination of cell structures, electrophysical parameters, and cell population heterogeneity. Journal of Colloid and interface science, 1996, 180:122-126.
    
    11. Robert, A.A. et al, Population heterogeneity of Salmaonella enterica serotype??Typhimurium resulting from phase variation of the lpf operon in vitro and in vivo, J Bacteriol, 2002, p. 2352-2359.
    
    12. Wakefield, A. E. Genetic heterogeneity in Pneumocystis carinii: an introduction. FEMS Immunol Med Microbiol, 1998, 22:5-13.
    
    13. Shapiro, H.M. Membrane potential estimation by flow cytometry. Methods, 2000, 21:271-279.
    
    14. Holmstrom, K., Tolker-Neilsen, T., Molin, S. Physiological States of Individual Salmonella typhimurium Cells Monitored by In Situ Reverse Transcription-PCR, Journal of Bacteriology, J. Bacteriol, 1999, 181: 1733-1738.
    
    15. Tolker-Nielsen, T., Holmstrem, K., Molin, S. Visualization of specific gene expression in Salmonella typhimurium by in situ PCR. Appl Env Microbiol. 1997, 63:4196-4203.
    
    16.肖树铁.数学实验.北京:高等教育出版社,2002,51-76.
    
    17. Alsharif R, Godfrey W. Bacterial detection and live/dead discrimination by Flow Cytometry. BD Biosciences Application Note, 2001, p. 1-6.
    
    1. Carr, P.W. Kinetic and equilibrium assay based on the effect of extent of reaction and the uncertainty of rate parameters. Analytical Chemistry, 1978, 50:1603-1807.
    
    2. Klonowski, W. Simplifying principles for chemical and enzyme reaction kinetics. Biophy Chem, 1983, 18:73-87.
    
    3. Segel, L.A. On the validity of the steady state assumption of enzyme kinetics. Bull Math Biol, 198,50:579-593.
    
    4. Schnell, S., Mendoza, C. Closed form solution for time-dependent enzyme kinetics. JTheor Biol, 1997, 187:207-212.
    
    5. Südi, J. Control analysis of enzyme mechanism in terms of the classical steady-state description. Biochem Biophys Acta, 1997, 1341:108-136.
    
    6. Schnell, S., Maini, P.K. Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math Comput mode, 2002, 35:137-144.
    
    7. Noethen, L and Walcher, S. Quasi-steady state in the Michaelis- Menten system. Nonlinear Analysis, 2007, 8:1512-1535.
    
    8. Shiner, J.S. Transient intermediates, fast "equilibria" and the rate of enzyme catalysis. J TheorBiol, 1982,99:309-318.
    
    9. Yan, B.X., Sun, Y.Q. Domain structure and conformation of a cellobiohydrolase I from Trichodrma Pseudokoningii S-38. Protein Chem, 1997, 16: 59-66.
    
    10. Wang, T.H., Wang, C.H., Gao, P.J., Ling, Y.X. Subcloning and expression of coding region for cellulase binding domain of CBHI from P. janthinelium in E.coli. Acta Microbiologica Sinica, 1998, 38: 269-275.
    
    11. Xiao, Z.H., Gao, P.J., Qu, Y.B., Wang, T.H. Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose.Biotechnol Lett, 2001,23: 711-715.
    
    12. Gao, P.J., Cheng, G.J., Wang, T.H., Zhang, Y.Z., Lie. J. Non- hydrolytic disruption of crystalline structure of cellulose by cellulose binding domain and linker sequence of cellobiohydrolase I from Penicillium janthinelium. ACTA biochemical et Biophysical Sinica, 2001, 33:13-18.
    
    13. Wang, L.S., Liu, J., Zhang, Y.Z., Zhao, Y., Gao, P.J. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S-38 by limited proteolysis. J Mol Catal B: Enzymatic, 2003, 24-25:27-38.
    
    14. Wu, B., Wang, L.S., Gao, P.J. Structural changes of cellobiohydrolase I (1,4-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitrophenyl-P-D-cellobioside) during the binding process. Science in China Series C: Life Science, 2008, 51:459-469.
    
    15. Wang, L.S., Zhang, Y.Z., Gao, P.J. A novel function for the cellulose binding module of cellubiohydrolase I. Science in China Series C: Life Science, 2008, 51:620-629.
    
    16. Van Rysselberghe, P. Reaction rates and affinities. J. Phys.Chem, 1958, 29:640-642.
    
    17. John, R., and Garcia-Colin, L.S. Thermodynamics of chemical system far from equilibrium. J Phys Chem, 1989, 93:2091-2092.
    
    18. Tinoco I., Jr., Bustamante, C. The effect of force on thermodynamics and kinetics of single molecule reactions. Biophys Chem. 2002, 101-102: 513-33.
    
    19. Van der Loo, B. Cytochemical detection of a senescence-associated P-galactosidase in endothelial and smooth muscle cells from human and rabbit blood vessels. Exp Cell Res. 1998,241:309-315.
    
    20. Jezewska, M.J., Bujalowski, W. Quantitative analysis of ligand-macromolecule interactions using differential dynamic quenching of the ligand fluorescence to monitor the binding. Biophys Chem, 1997, 64: 253-269.
    
    21. Kumar, V, Sharma, V.K., Kalonia, D.S. Second derivative tryptophan fluorescence spectroscopy as a tool to characterize partially unfolded intermediates of proteins. Int J Pharm, 2005, 294: 193-199.
    
    22. Mozo-Villarias, A. Second derivative fluorescence spectroscopy of tryptophan in proteins. J Biochem Biophys Methods, 2002, 50: 163-178.
    
    23. Huang, C.Y, Determination of binding stochiometry by the continuous variation methods: the job plot. Methods Enzymol, 1982, 87:509-525.
    
    24. Argirova, M.D., Argirov, O.K. Correlation between the UV spectra of glycated peptides and amino acids, Specrochimica Acta Part A, 1999, 55:245-250.
    
    25. Toptygin, D., Brand, L. Analysis of equilibrium binding data obtained by linear-response spectroscopic techniques. Anal. Biochem, 1995, 234:330-338.
    
    26. Svehia, G. International union of pure and applied chemistry- Nomenclature of kinetic methods of analysis (IUPAC recommendation 1993), Pure and Applied Chem, 1993,65:2291-2298.
    
    27. Nomenclature committee of the interaction union of biochemistry (NC-IUB).Symbolism ant terminology in enzyme kinetics Recommendations 1981. Eur J Biochem, 1982,128:281-291.
    
    28. Henin, F., Prigogine, I., George, C.L., and Mayne, F. Kinetic equations and quasi particle description. Physica, 1966,32: 1828-1872.
    
    29. Cleland, WAV. Partition analysis and the concept of net rate constants as tool in enzyme kinetics. Biochemistry, 1975, 14:3220-3224.
    
    30. Solaz, J.J., Quilez, J. Changes in extent of reaction in open chemical equilibria. Chemical Education: Research and practice in Europe, 2001, 2:303-312.
    
    31. Parchevsky, K.V., and Parchevsky, VP. Determination of instantaneous growth rates using a cubic spline approximation, Thermochimica Acta, 1998, 309: 181-192.
    
    32. Yourgrau, W., Raw, C.J.G. Time variation of chemical affinity. Nature, 1958, 181:480.
    
    33. Bronshtein, I.N., Semendyayev, K.A. Handbook of Mathematics. 4rd ed. Springer Verlag, New York, Chapters 2 and 3. 1997.
    34. Rescigno, A. Area under the curve and bio-availability. Pharmacological Research,2000, 42:539-540.
    
    35. Purves, R.D. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J Pharmacokinet Biopharm, 1992, 20: 211-226.
    
    36. Harrington, P.B., Urbas, A., Tandler, P.J. Two-dimensional correlation analysis. Chemometrics and intelligent laboratory systems, 2000, 50:149-174.
    
    37. Kumar, G.S., Kalra, P.K., Dhande, S.G. Curve and surface reconstruction from points. an approach based on self-oranizing maps. Applied soft computing, 2004, 5: 53-66,
    
    38. Tsou, C.L. Inactivation precedes overall molecular conformation changes during enzyme denaturation. Biochim Biophys Acta, 1995, 1253: 151-162.
    
    39. Sulkowska, A., Rownicka, J., Bojko, B. et al. Effect of guanidine hydrochloride on bovine serum albumin complex with anti-thyroid drugs: Fluorescence study. J Mol Struct, 2004, 704: 291-295.
    
    40. Anderson, K.S., Johson, K.A. Kinetic and structural analysis of enzyme intermediates:lessons from EPSP synthase. Chem Rev, 1990, 90:1131-1149.
    
    41. Anderson, K.S. Detection of novel enzyme-intermediates in PEP-utilizing enzymes.Arch Biochem Biophys, 2005, 433:47-58.
    
    42. Miller, J.H. Assay of beta-Galactosidase. In: Experiments in Molecular Genetics. Cold Spring Harbor, N. Y: CSH Laboratory Press, 1972, 352-355.
    
    43. Segel, I.H. Enzyme Kinetics. New York, John Wiley and Sons, Inc, chapter 2, 1975.
    
    44. Fersht, A. Enzyme structure and mechanism. W.H. Freeman and Company, 2nd ed.,Chapters 3, 4, and 7, 1985.
    
    45. Berlett, B.S., Levine, R.L., Stadtman, E.R. Use of isosbestic point wavelength shifts to estimate the fraction of a precursor that is converted to a given product, Anal Biochem,2000, 287: 329-333.
    
    46. Segel, .I.H. Enzyme Kinetics, John Wiley and Sons, Inc., New York, 1975, pp926-941.
    
    47. Borghans, J.A.M., De Boer, R., Segel, L.A. Extending the quasi-steady state approximation by changing variables. Bulletin of methematical bilology, 1996, 58:43-63,
    
    48. Klotz, I M, Honston, D.I, Mathematical models for ligan-Receptor binding, J Biol Chemistry, 1984,259:10060-10062.
    
    49. Kuang, Y. Basic properties of mathematical population models. J of Biomathematics,2002, 17: 129-142.
    
    50. Malcolm, A.D. The measurement of enzyme-ligand dissociation constant by relaxation kinetics. Anal Biochem, 1977, 77:529-531.
    
    51. Price, N.G, Dnek, R.A. The problem of physicochemical principle in biochemical, pp.42-55, Clarendon Press, Oxford, 1979.
    
    52. Fuchs, H., Gessner, R. The result of equilibrium-constant calculations strongly depends on the evaluation method used and on the type of experimental errors. Biochem J, 2001,359:411-418.
    
    53. Nicklaus, M.C, Wang, S., Driscoll, J.S., Milne, G.W.A. Conformational changes of small molecules binding to proteins. Bioorg Med Chem, 1995, 3: 411-28.
    
    54. Stockwell, G R., Thornton, J.M. Conformational diversity of ligands bound to proteins.J Mol Biol, 2006, 356: 928-944.
    
    55. Ma, B., Kumar, S., Tsai, C.J., Hu, Z., Nussinov, R. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? J Theory Biol, 2000, 203:383-397.
    
    56. Allison, R.D., Purich, D.L. Practical considerations in the design of initial velocity enzyme rate assays. Methods in Enzymol, 1979, 63:3-22.
    
    57. Eisenthal, R., Danson, M. J., Hough, D.W. Catalytic efficiency and k_(cat) /k_m : a useful comparator? Trends in Biotechnology, 2007,25: 247-249.
    
    58. Wu, B., Wang, L.S., Gao, P.J. The combined effects of temperature and assay time on the catalytic ability and stability of 1, 4-P-D-glucancellobiohydrolase I. Enzyme Microb.Technology, 2008, 43:237-244.
    
    59. Koshland, D.E. The application and usefulness of the ratio k_(cat)/k_m . Biooganic Chemistry, 2002, 30:211-213.
    
    60. Liao, F., Zhu, X.Y., Wang, Y.M., Zuo, Y.P. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables. J Biochem Biophys Methods, 2005, 62:13-24.
    61.Hibino, T. Non-fixed relationship of the Michaelis constant and maximum velocity with their corresponding rate constants. J Biol Chem, 2005, 280:30671-30680.
    62. Kuo, Y.H., ScM, M.S. Extrapolation of correlation between 2 variables in 4. General medical journals. JAMA, 2002, 287:2815-2817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700