用户名: 密码: 验证码:
软物质团簇制备金纳米粒子的可调控软模板作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术是当前最前沿的研究领域。纳米材料的形貌和尺寸控制则是纳米技术的重要组成部分。纳米材料在尺寸、形态以及表面与体相原子数比和表面性质等方面均与普通同质材料有很大的不同,它们在光学、微电子学、磁学、催化和生物学等领域有着重要的应用。纳米材料的制备是胶体化学、材料科学和界面科学的新兴交叉领域,也是当今科学研究十分活跃的领域。
     本论文考察了表面活性剂十二烷基硫酸钠(SDS)与大分子聚乙二醇(PEG)或聚乙烯吡咯烷酮(PVP)形成的软物质团簇与氯金酸(HAuCl4)之间的相互作用以及软物质团簇在溶液中的结构。在此研究基础上,以SDS-PEG软团簇为模板,利用超声还原和光还原方法制备了粒径可控的球形金纳米粒子;以SDS-PEG软团簇为模板,利用PEG自还原能力制备了片状、环状和弧形金纳米粒子;以SDS-PVP软团簇为模板,利用柠檬酸钠为还原剂,在微波辐射条件下制备了多脚状金纳米粒子。初步探讨了表面活性剂SDS与大分子PEG或PVP组成的软团簇在制备金纳米粒子过程中的模板作用。其主要包括以下四个部分:
     第一部分主要通过表面张力、稳态荧光猝灭、荧光分子探针和激光光散射等技术研究了HAuCl4对表面活性剂SDS与大分子PEG或PVP组成的水溶液体系的表面张力曲线的临界浓度、比饱和簇集量[Γ∞]、胶束聚集数N b、微环境极性(I1/I3)和水动力学半径Rh等的影响。实验发现HAuCl4促使SDS-PEG或SDS-PVP体系表面张力的第一临界浓度c1减小,而对于其第二临界浓度c2的影响不大。HAuCl4可促使SDS-PEG或SDS-PVP体系的束缚胶束聚集数和饱和簇集量增加,微环境极性减小,并且随着SDS浓度增加,水动力半径随之增大。
     第二部分着重研究了以SDS-PEG组成的软团簇作为模板,利用超声和光还原手段,分步诱导合成不同粒径的球形金纳米粒子。研究发现SDS和PEG含量对合成金纳米粒子的尺寸和形貌有明显影响,当SDS浓度较低时,随着SDS浓度增加,纳米粒子粒径逐渐变小;当SDS浓度高于一定值时,纳米粒子形貌发生变化,出现三角和截头三角形等不规则形状;在含较高浓度PEG的反应液生成的金纳米粒子的分布较窄。
     第三部分研究PEG自还原HAuCl4合成金纳米粒子时,SDS-PEG组成的软团簇作为模板对于金纳米粒子尺寸和形貌的影响。该制备过程中只有SDS-PEG模板中的PEG组分参与还原反应,而不添加外加任何还原剂。研究发现PEG自还原HAuCl4后首先形成金量子点;然后在软模板的作用下使金量子点自组装成金纳米片形貌的金量子阱,再通过控制不同的反应周期将此金纳米片母体经老化处理得到不同空洞尺寸的纳米环形貌的金量子阱;最终金纳米环裂解为金纳米弧。这里,SDS与PEG组成的软模板控制金纳米粒子的尺度和形貌,PEG既作为稳定剂保护金纳米结构,又作为自还原剂将水溶液中的金离子还原成金纳米粒子。
     第四部分采用SDS-PVP形成的软团簇为模板,在微波辐射条件下,以柠檬酸钠作为还原剂,快速还原HAuCl4并自组装成当量直径50 nm且粒径分布窄的多脚状金纳米粒子,并对微波辐射条件下合成多脚状金纳米粒子的模板作用进行了探讨。研究发现,通过改变SDS和PVP的含量,可以对金纳米粒子形貌实施调控,方便地实现金纳米粒子在球形-多脚状-球形形貌间的依次转变。
At present, nanotechnology is the pioneering research fields and controllable synthesis of nanoparticles with special size and morphology is one of the most important components. It is well known that nanomaterials are different from the conventional materials due to the size, morphology, and the atom ratio of surface and bulk phase of particles, etc, and are widely and significantly used in such fields as photonics, microelectronics, magnetism, catalytic properties and biology. The formation of nanostructures is a new cross-field of colloid and interface chemistry and material science and also is one of the most active research fields.
     The characteristics of soft clusters composed of surfactant sodium dodecyl sulfate (SDS) and polyethyleneglycols (PEG) or polyvinylpyrrolidone (PVP) adding HAuCl4 were studied. Sphereial gold nanoparticles were synthesized in the soft template of SDS-PEG with the assistant of ultrasound and UV. Gold nanoplates, nanorings and nanoarcs were also synthesized in SDS-PEG soft template, but no metal hard template or extra reducer was needed and HAuCl4 was self-reduced by PEG component in the soft template. Multipod-like gold nanoparicles were then synthesized through reducing HAuCl4 by sodium citrate in the soft template composed of SDS-PVP clusters assisted by microwave irradiation. The effect of soft template for gold nanoparticles was studied. In a word, there are main four parts below:
     The first one includes in the critical concentration, specific saturation capacity of clusterization ([Γ∞]), aggregation number of bound micelle (Nb), polarity of microenvironment (I1/I3) and hydrodynamic radius distribution (Rh) of SDS-PEG or SDS-PVP system effected by HAuCl4, which were studied by means of surface tension, steady-state fluorescence quenching, fluorescent molecule probe and laser light scattering. It is found that HAuCl4 reduced the first critical concentration (c1), had no effect on the second critical concentration (c2), increased Nb, and decreased I1/I3 of SDS-PEG or SDS-PVP system. With the increase of SDS in solution, Rh increased when HAuCl4 in n SDS-PEG or SDS-PVP system.
     The second one is that gold nanoparticles of different diameters were synthesized in a soft template of SDS-PEG with the assistant of ultrasound and UV. The concentrations of PEG (cPEG) and SDS (cSDS) were found to have a dramatic influence on the formation of gold nanoparticles. At a certain concentration of PEG, when the concentration of SDS is low, the more the SDS was in solution, the smaller the diameter of gold nanoparticles was. When cSDS was too high there were anisotropic particles such as triangle or truncated triangle formed in solution. When cPEG was higher the distribution of gold nanoparticles was narrow.
     The third one studied the effect of SDS-PEG template on the size and morphology of gold nanostructures which were self-reduced by PEG component in the soft template and no extra reducer was needed. HAuCl4 formed gold quantum dots, and then these gold quantum dots self-assembled to construct quantum wells, for example, nanoplates. These gold nanoplates were aged in their mother solution in different reduction periods and turned into ring-like structures, and eventually were splited into nanoarcs. Here PEG played the roles of both the reducer for HAuCl4 and the stabilizer for fresh gold nanoparticles. SDS and PEG together controlled the size and morphology of gold nanoparticles.
     The last part is to synthesize multipod-like gold nanoparticles with equivalent diameter around 50 nm through reducing HAuCl4 by sodium citrate in the soft template composed of SDS-PVP clusters assisted by microwave irradiation. It is found that the concentration of SDS and PVP effected on the morphology of gold nanoparticles. The shape the gold nanoparticles changed from sphere to multipod, then to sphere again when the concentration of SDS increased.
引文
[1]张立德,牟季美.纲米材料和纳米结构[M].北京:科学出版社, 2001.
    [2]朱屯,王福明,王习东.国外纳米材料技术进展与应用[M].北京:化学工业出版社, 2002.
    [3]徐国财,张立德.纳米复合材料[M].北京:化学工业版社, 2002.
    [4]姚楠,王中林.纳米技术中的显微学手册(第二卷:电子显微学)-21世纪科技前沿丛书[M].北京:清华大学出版社, 2005.
    [5] Birringer R, Gleiter H, Klein H P, etc. Nanocrystalline Materials: an Approach to a Novel Solid Structure with Gas-like Disorder?[J]. Physics Letters A, 1984, 102 (8): 365-369.
    [6]顾宁,付德刚,张海黔.纳米技术及应用[M].北京:人民邮电出版社, 2002.
    [7]张立德.材料新星-纳米材料科学[M].长沙:湖南科学技术出版社, 1998.
    [8] iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354 (6348): 56-58.
    [9] Li W Z, Xie S S, Qian L X, etc. Large-Scale Synthesis of Aligned Carbon Nanotubes[J]. Science, 1996, 274 (5293): 1701-1703.
    [10] Hone J, Batlogg B, Benes Z, etc. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes[J]. Science, 2000, 289 (5485): 1730-1733.
    [11] Poncharal P, Wang Z L, Ugarte D, etc. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes[J]. Science, 1999, 283 (5407): 1513-1516.
    [12] Yurke B, Turberfield A J, Mills A P, etc. A DNA-fuelled Molecular Machine Made of DNA[J]. Nature, 2000, 406: 605-608.
    [13] Soong R K, Bachand G D, Neves H P, etc. Powering an Inorganic Nanodevice with a Biomolecular Motor[J]. Science, 2000, 290 (5496): 1555-1558.
    [14] Wang Z L, Song J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science, 2006, 312 (5771): 242-246.
    [15]余家国,赵修建. TiO2纳米粉体的溶胶-凝胶工艺制备和光催化活性表征[J].中国粉体技术, 2000, 6 (2): 7-10.
    [16] Wronski C R M. The Size Dependence of the Melting Point of Small Particles of Tin[J]. British Journal of Applied Physics, 1967, 18 (12): 1731-1737.
    [17] Maltesh C, Somasundaran P. Effect of Binding of Cations to Polyethylene Glycol on Its Interactions withSodium DodecylSulfate[J]. Langmuir, 1992, 8 (8): 1926-1930.
    [18] Seo K, Borguet E. Potential-Induced Structural Change in a Self-Assembled Monolayer of 4-Methylbenzenethiol on Au(111)[J]. Journal of Physical Chemistry C, 2007, 111 (17): 6335-6342.
    [19] Yoshimoto S, Tsutsumi E, Narita R, etc. Epitaxial Supramolecular Assembly of Fullerenes Formed by Using a Coronene Template on a Au(111) Surface in Solution[J]. Journal of the American Chemical Society, 2007, 129 (14): 4366-4376.
    [20] Wang M, Yang Y, Deng K, etc. Uncoiling Process of Helical Molecular Fibrillar Structures Studied by AFM[J]. Journal of Physical Chemistry C, 2007, 111 (17): 6194-6198.
    [21] Liang J, Scoles G. Nanografting of Alkanethiols by Tapping Mode Atomic Force Microscopy[J]. Langmuir, 2007,:.
    [22] Latham A H, Wilson M J, Schiffer P, etc. TEM-Induced Structural Evolution in Amorphous Fe Oxide Nanoparticles[J]. Journal of the American Chemical Society, 2006, 128 (39): 12632-12633.
    [23] Kaneko K, Inoke K, Freitag B, etc. Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis[J]. Nano Letters, 2007, 7 (2): 421-425.
    [24] Hirahara K, Saitoh K, Yamasaki J, etc. Direct Observation of Six-Membered Rings in the Upper and Lower Walls of a Single-Wall Carbon Nanotube by Spherical Aberration-Corrected HRTEM[J]. Nano Letters, 2006, 6 (8): 1778-1783.
    [25] Pratt C, Shilton A, Pratt S, etc. Phosphorus Removal Mechanisms in Active Slag Filters Treating Waste Stabilization Pond Effluent[J]. Environmental Science & Technology, 2007, 41 (9): 3296-3301.
    [26] Shigekura Y, Furukawa H, Yang W, etc. Anisotropic Gelation Seeded by a Rod-Like Polyelectrolyte[J]. Macromolecules, 2007, 40 (7): 2477-2485.
    [27] Hong R Y, Zhang S Z, Han Y P, etc. Preparation, Characterization and Application of Bilayer Surfactant-Stabilized Ferrofluids[J]. Powder Technology, 2006, 170 (1): 1-11.
    [28] Brouwer D H, Darton R J, Morris R E, etc. A Solid-State NMR Method for Solution of Zeolite Crystal Structures[J]. Journal of the American Chemical Society, 2005, 127 (29): 10365-10370.
    [29] Shen X F, Ding Y S, Hanson J C, etc. In situ Synthesis of Mixed-Valent Manganese Oxide Nanocrystals: An In situ Synchrotron X-ray Diffraction Study[J]. Journal of the American Chemical Society, 2006, 128 (14): 4570-4571.
    [30] Cahn R W. Strategies to Defeat Brittleness[J]. Nature, 1988, 332: 112-113.
    [31] Karch J, Birringer R, Gleiter H. Ceramics Ductile at Low Temperature[J]. Nature, 1987, 330: 556-558.
    [32] Haruta M, Yamada N, Kobayashi T, etc. Cold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and Carbon Monoxide[J]. Journal of Catalysis, 1989, 115 (2): 301-309.
    [33] Postm H W C, Teepen T, Yao Z, etc. Carbon Nanotube Single-Electron Transistors at Room Temperature[J]. Science, 2001, 293 (5527): 76-79.
    [34] Harada T, Tai O A. Improvement of Nickel Catalyst for The Enatiface-differentiating Hydrogenation of Methyl Acetoacetate[J]. Chemistry Letters, 1977, 10 (1): 1131-1137.
    [35] Zielasek V, Jurgens B, Schulz C, etc. Gold Catalysts: Nanoporous Gold Foams[J]. Angewandte Chemie International Edition, 2006, 45: 1-5.
    [36] Luo Y, Sun X. One-step Preparation of Poly(vinyl alcohol)-protected Pt Nanoparticles through a Heat-treatment Method[J]. Materials Letters, 2007, 61 (10): 2015-2017.
    [37] Tian X, Chen K, Cao G. Seedless, surfactantless photoreduction synthesis of silver nanoplates[J]. Materials Letters, 2006, 60 (6): 828-830.
    [38] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews, 2004, 104 (1): 293-346.
    [39] Turkevich J, Stevenson P C, Hiller J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold[J]. Discussed Faraday Society, 1951, 11: 55-75.
    [40] Chen D H, Huang Y W. Spontaneous Formation of Ag Nanoparticles in Dimethylacetamide Solution of Poly(ethylene glycol)[J]. Journal of Colloid and Interface Science, 2002, 255 (2): 299-302.
    [41]蒋治良,刘绍璞,王力生,等.金纳米粒子-荧光素体系的光谱特性[J].高等学校化学学报, 2003, 24 (7): 1201-1203.
    [42] Sakai T, Alexandridis P. Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymer Solutions at Ambient Temperature[J]. Langmuir, 2004, 20 (20): 8426-8430.
    [43] Li C C, Cai W P, Cao B Q, etc. Mass synthesis of Large, Single-crystal Au Nanosheets Based on a Polyol Process[J]. Advanced Functional Materials, 2006, 16: 83-90.
    [44] Zhang X, Li D. Metal-Compound-Induced Vesicles As Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres[J]. Angewandte Chemie International Edition, 2006, 45 (36): 1-5.
    [45]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社, 2004.
    [46] Mafune F, Kondow T. Formation of Small Gold Clusters in Solution by Laser Excitation of Interband Transition[J]. Chemical Physics Letters, 2003, 372 (1-2): 199-204.
    [47] Yang S, Zhang T, Zhang L, etc. Continuous Synthesis of Gold Nanoparticles and Nanoplates with Controlled Size and Shape Under UV Irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296 (1-3): 37-44.
    [48] Park J E, Atobe M, Fuchigami T. Synthesis of Multiple Shapes of Gold Nanoparticles with Controlled Sizes in Aqueous Solution using Ultrasound[J]. Ultrasonics Sonochemistry, 2006, 13 (3): 237-241.
    [49] Cao L, Zhu T, Liu Z. Formation Mechanism of Nonspherical Gold Nanoparticles During Seeding Growth: Roles of Anion Adsorption and Reduction Rate[J]. Journal of Colloid and Interface Science, 2006, 293 (1): 69-76.
    [50] Su C H, Wu P L, Yeh C S. Sonochemical Synthesis of Well-Dispersed Gold Nanoparticles at the Ice Temperature[J]. Journal of Physical Chemistry B, 2003, 107 (51): 14240-14243.
    [51] Caruso R A, Ashokkumar M, Grieser F. Sonochemical Formation of Gold Sols[J]. Langmuir, 2002, 18 (21): 7831-7836.
    [52] Park J, Atobe M, Fuchigami T. Synthesis of Multiple Shapes of Gold Nanoparticles with Controlled Sizes in Aqueous Solution Using Ultrasound[J]. Ultrasonics Sonochemistry, 2006, 13: 237-241.
    [53] Tsuji M, Hashimoto M, Nishizawa Y, etc. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution[J]. Chemistry- A European Journal, 2005, 11: 440–452.
    [54]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社, 2005.
    [55] Huang C J, Chiu P H, Wang Y H, etc. Electrochemical Formation of Crooked Gold Nanorods and Gold Networked Structures by the Additive Organic Solvent[J]. Journal of Colloid and Interface Science, 2007, 306 (1): 56-65.
    [56]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报, 2005, (10): 723-730.
    [57]江国华,王立,陈涛,等.液相高分子保护纳米粒子形状可控制备研究进展[J].材料导报, 2004, 18 (3): 47-50.
    [58] Sun X, Dong S, Wang E. Large-scale Synthesis of Micrometer-scale Single-crystalline Au Plates of Nanometer Thickness by a Wet-chemical Route[J]. Angewandte Chemie International Edition, 2004, 43: 6360-6363.
    [59] Holmberg K. Surfactant-templated Nanomaterials Synthesis[J]. Journal of Colloid and Interface Science, 2004, 274 (2): 355-364.
    [60] GabriellaSMétraux, Cao Y C, Jin R, etc. Triangular Nanoframes Made of Gold and Silver[J]. Nano Lett., 2003, 3 (4): 519-522.
    [61] Sun Y, Xia Y. Triangular Nanoplates of Silver: Synthesis, Characterization, and Their Use as Sacrificial Templates in Generating Triangular Nanorings of Gold[J]. Advanced Materials, 2003, 15 (9): 695-699.
    [62] Liao D L, Liao B Q. Shape, Size and Photocatalytic Activity Control of TiO2 Nanoparticles with Surfactants[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187 (2-3): 363-369.
    [63]宋根萍,郭荣.十二烷基苯磺酸钠胶束体系中聚苯乙烯/α-Fe2O3复合纳米粒子的制备[J].应用化学, 2000, 17 (2): 195-197.
    [64] Kameo A, Suzuki A, Torigoe K, etc. Fiber-like Gold Particles Prepared in Cationic Micelles by UV Irradiation: Effect of Alkyl Chain Length of Cationic Surfactant on Particle Size[J]. Journal of Colloid and Interface Science, 2001, 241 (1): 289-292.
    [65]徐建,李亚栋.单晶Pb纳米线及纳米粒子的溶液法制备[J].高等学校化学学报, 2004, 25 (4):595-597.
    [66] Karkamkar A J, Kanatzidis M G. Chemical Routes to Nanocrystalline Thermoelectrically Relevant AgPbmSbTem+2 Materials[J]. Journal of the American Chemical Society, 2006, 128 (18): 6002-6003.
    [67] Sim J H, Park J, Kim M, etc. Formation of Nanoparticles on Reverse Micelles: SANS studies[J]. Physica B, 2006, 385-386 (Part 1): 216-218.
    [68] Chiang C L. Controlled Growth of Gold Nanoparticles in AOT/C12E4/Isooctane Mixed Reverse Micelles[J]. Journal of Colloid and Interface Science, 2001, 239 (2): 334-341.
    [69] Pileni M, Gulik-krzywicki T, Tanori J, etc. Template Design of Microreactors with Colloidal Assemblies: Control the Growth of Copper Metal Rods[J]. Langmuir, 1998, 14 (26): 7359-7363.
    [70] Kimijima K, Sugimoto T. Effects of the Water Content on the Growth Rate of AgCl Nanoparticles in a Reversed Micelle System[J]. Journal of Colloid and Interface Science, 2005, 286 (2): 520-525.
    [71] Petit C, Lixon P, Pileni M P. In Situ Synthesis of Silver Nanocluster in AOT Reverse Micelles[J]. Journal of Physical Chemistry, 1993, 97 (49): 12974-12983.
    [72] Binks B P, Rodrigues J A, Frith W J. Synergistic Interaction in Emulsions Stabilized by a Mixture of Silica Nanoparticles and Cationic Surfactant[J]. Langmuir, 2007, 23 (7): 3626-3636.
    [73] Crespy D, Stark M, Hoffmann-richter C, etc. Polymeric Nanoreactors for Hydrophilic Reagents Synthesized by Interfacial Polycondensation on Miniemulsion Droplets[J]. Macromolecules, 2007, 40 (9): 3122-3135.
    [74] Macintyre F S, Sherrington D C, Tetley L. Synthesis of Ultrahigh Surface Area Monodisperse Porous Polymer Nanospheres[J]. Macromolecules, 2006, 39 (16): 5381-5384.
    [75] Macintyre F S, Sherrington D C, Tetley L. Synthesis of Ultrahigh Surface Area Monodisperse Porous Polymer Nanospheres[J]. Macromolecules, 2006, 39 (16): 5381-5384.
    [76] Gao L, Wang E, Lian S, etc. Microemulsion-directed Synthesis of Different CuS Nanocrystals[J]. Solid State Communications, 2004, 130 (5): 309-312.
    [77] Gauffre F, Roux D. Studying a New Type of Surfactant Aggregate ("Spherulites") as Chemical Microreactors. A First Example: Copper Ion Entrapping and Particle Synthesis[J]. Langmuir, 1999, 15 (11): 3738-3747.
    [78] Markowitz M A, Dunn D N, Chow G M, etc. The Effect of Membrane Charge on Gold Nanoparticle Synthesis via Surfactant Membranes[J]. Journal of Colloid and Interface Science, 1999, 210 (1): 73-85.
    [79] Lo S H, Wang Y Y, Wan C C. Synthesis of PVP Stabilized Cu/Pd Nanoparticles with Citrate Complexing Agent and Its Application as an Activator for Electroless Copper Deposition[J]. Journal of Colloid and Interface Science, 2007, 310 (1): 190-195.
    [80] Bhattacharjee R R, Mandal T K. Polymer-mediated Chain-like Self-assembly of Functionalized Gold Nanoparticles[J]. Journal of Colloid and Interface Science, 2007, 307 (1): 288-295.
    [81] He B, Ha Y, Liu H, etc. Size Control Synthesis of Polymer-stabilized Water-soluble Platinum Oxide Nanoparticles[J]. Journal of Colloid and Interface Science, 2007, 308 (1): 105-111.
    [82] Luo C, Zhang Y, Zeng X, etc. The Role of Poly(ethylene glycol) in the Formation of Silver Nanoparticles[J]. Journal of Colloid and Interface Science, 2005, 288 (2): 444-448.
    [83]刘庆业,覃爱苗,蒋治良,等.聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究[J].光谱学与光谱分析, 2005, 25 (11): 1857-1860.
    [84] Pastoriza-santos I, Liz-marzan L M. Formation of PVP-Protected Metal Nanoparticles in DMF[J]. Langmuir, 2002, 18 (7): 2888-2894.
    [85] He B, Ha Y, Liu H, etc. Size Control Synthesis of Polymer-stabilized Water-soluble Platinum Oxide Nanoparticles[J]. Journal of Colloid and Interface Science, 2007, 308 (1): 105-111.
    [86] Garcia-martinez J C, Scott R W, Crooks R M. Extraction of Monodisperse Palladium Nanoparticles from Dendrimer Templates[J]. Journal of the American Chemical Society, 2003, 125 (37): 11190-11191.
    [87] C R A, S J H, G A. Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers[J]. Advanced Materials, 2001, 13 (20): 1577-1579.
    [88] Kim J U, Cha S H, Shin K, etc. Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions[J]. Advanced Materials, 2004, 16 (5): 459-464.
    [89] SpatzJp, RoescherA,MollerM. Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide)films. Size and interparticle distance control in monoparticle films[J]. Advanced Materials, 1996, 8 (4): 337-340.
    [90] Leontidis E, Kyprianidou-leodidou T, Caseri W, etc. From Beads-on-a-String to Colloidal Aggregation: Novel Crystallization Phenomena in the PEO-SDS System[J]. Langmuir, 1999, 15 (10): 3381-3385.
    [91] Cao X, Yu F, Li L, etc. Copper Nanorod Junctions Templated by a Novel Polymer–surfactant Aggregate[J]. Journal of Crystal Growth, 2003, 254: 164-168.
    [92] Zhang D, Qi L, Ma J. Synthesis of Submicrometer-sized Hollow Silver Spheres in Mixed Polymer-surfactant Solutions[J]. Adv. Mater., 2002, 14 (20): 1499-1502.
    [93] Shi H, Wang X, Zhao N, etc. Growth Mechanism of Penniform BaWO4 Nanostructures in Catanionic Reverse Micelles Involving Polymers[J]. Journal of Physical Chemistry B, 2006, 110 (2): 748-753.
    [94] Stoll S, Buffle J. Computer Simulation of Bridging Flocculation Processes: The Role of Colloid to Polymer Concentration Ratio on Aggregation Kinetics[J]. Journal of Colloid and Interface Science, 1996, 180: 548-563.
    [95] Bronstein L M, Platonova O A, Yakunin A N, etc. Complexes of Polyelectrolyte Gels with Oppositely Charged Surfactants: Interaction with Metal Ions and Metal Nanoparticle Formation[J]. Langmuir, 1998, 14 (2): 252-259.
    [96] Orphanou M, Leontidis E, Kyprianidou-leodidou T, etc. Study of Copper Sulfide Crystallization in PEO-SDS Solutions[J]. Langmuir, 2004, 20 (13): 5605-5612.
    [97] Tao C, Zheng S, Mohwald H, etc. Cds Crystal Growth of Lamellar Morphology with Templates of Polyelectrolyte/Surfactant Complex[J]. Langmuir, 2003, 19: 9039-9042.
    [98] Torigoe K, Esumi K. Formation of Nonspherical Palladium Nanocrystals in SDS/Poly(acrylamide) Gel[J]. Langmuir, 1995, 11 (11): 4199-4201.
    [99] Wei H, Shen Q, Zhao Y, etc. Crystallization Habit of Calcium Carbonate in the Presence of Sodium Dodecyl Sulfate and/or Polypyrrolidone[J]. Journal of Crystal Growth, 2004, 260: 511-516.
    [100] Zhang D, Qi L, Ma J. Synthesis of Submicrometer-sized Hollow Silver Spheres in Mixed Polymer-surfactant Solutions[J]. Advanced Materials, 2002, 14 (20): 1499-1502.
    [101] Cao X, Yu F, Li L, etc. Copper Nanorod Junctions Templated by a Novel Polymer–surfactant Aggregate[J]. Journal of Crystal Growth, 2003, 254: 164-168.
    [102] Jones M N. The Interaction of Sodium Dodecyl Sulfate with Polyethylene Oxide[J]. Journal of Colloid and Interface Science, 1967, 23: 36-42.
    [103] Silva R C D, Loh W, Olofsson G. Calorimetric Investigation of Temperature Affect on the Interaction Between PEO and SDS[J]. Thermochimica Acta, 2004, 417: 293-300.
    [104] Benkhira A, Bagassi M, Lachhab T, etc. Interactions of Ethylene Oxide/methylene Oxide Copolymers with Sodium Dodecyl Sulphate[J]. Polymer, 2000, 41 (20): 7415-7425.
    [105]方云,蔡琨,宗李燕,等.水溶性非离子大分子与烷基硫酸钠同系物团簇化的比饱和簇集量[J].高等学校化学学报, 2004, 25 (5): 888-891.
    [106]黄盛友,方云,陈方博,等.碱金属硫酸盐-十二烷基硫酸钠-聚乙二醇三元复合体系的束缚胶束特性[J].高等学校化学学报, 2005, 26 (9): 1881-1885.
    [107] Zana R, Linaos P, Lange J. Fluorescence Probe Studies of The Interactions Between Poly(oxyethylene) and Surfactant Micelles and Microemulsion Droplets in Aqueous Solutions[J]. Journal of Physical Chemistry, 1985, 89 (1): 41-44.
    [108] Turro N J, Baretz B H, Kuo P L. Photoluminescence Probes for the Investigation of Interactions Between Sodium Dodecylsulfate and Water-soluble Polymers[J]. Macromolecules, 1984, 17 (7): 1321-1324.
    [109] Winnik F M, Regismond S T A. Fluorescence Methods in the Study of the Interactions of Surfactant with Polymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 118 (1): 1-39.
    [110]朱麟勇,戴玉华,李妙贞,等.树枝聚醚改性聚丙烯酰胺和阴离子表面活性剂的缔合行为[J].化学学报, 2003, 61 (5): 671-675.
    [111] Turro N J, Baretz B H, Kuo P L. Photoluminescence Probes for the Investigation of Interactions between Sodium Dodecylsulfate and Water-soluble Polymers[J]. Macromolecules, 1984, 17 (7): 1321-1324.
    [112] Aoudia M, Zana R. Aggregation Behavior of Sugar Surfactants in Aqueous Solutions: Effects of Temperature and the Addition of Nonionic Polymers[J]. Journal of Colloid and Interface Science, 1998, 206 (1): 158-167.
    [113] Felippe A C, Schweitzer B, Dal B A, etc. Self-association of Sodium Cholate with Poly(ethyleneoxide) Cooperatively Induced by Sodium Dodecyl Sulfate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294 (1-3): 247-253.
    [114] Vanyur R, Biczok L, Miskolczy Z. Micelle Formation of 1-alkyl-3-methylimidazolium Bromide Ionic Liquids in Aqueous Solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299 (1-3): 256-261.
    [115] Dai S, Tam K C. Laser Light Scattering and Isothermal Titration Calorimetric Studies of Poly(ethylene oxide) Aqueous Solution in Presence of Sodium Dodecyl Sulfate[J]. Journal of Colloid and Interface Science, 2005, 292 (1): 79-85.
    [116]董姝丽,徐桂英.激光光散射和电子自旋共振技术研究十二烷基硫酸钠与聚乙烯吡咯烷酮的相互作用[J].化学学报, 2004, 62 (7): 674-679.
    [117] Minatti E, Norwood D P, Reed Y F. Surfactant/Polymer Assemblies. 2. Polyelectrolyte Properties[J]. Macromolecules, 1998, 31 (9): 2966-2971.
    [118] Norwood D P, Minatti E, Reed A W F. Surfactant/Polymer Assemblies. 1. Surfactant Binding Properties[J]. Macromolecules, 1998, 31 (9): 2957-2965.
    [119] Sorci G A, Reed W F. Electrostatic and Association Phenomena in Aggregates of Polymers and Micelles[J]. Langmuir, 2002, 18 (2): 353-364.
    [120] Xia J, Dubin P L, Kim Y. Complex Formation between Poly(oxyethylene) and Sodium Dodecyl Sulfate Micelles: Light Scattering, Electrophoresis, and Dialysis Equilibrium Studies[J]. Journal of Physical Chemistry, 1992, 96 (16): 6805-6811.
    [121] Asaro F, Feruglio L, Pellizer G. 23Na Relaxation in SDS and SDES-polymer Systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 245 (1-3): 127-132.
    [122]方云,刘雪锋,夏咏梅,等.十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的1H和13C及2D-NMR表征[J].高等学校化学学报, 2006, 27 (4): 731-734.
    [123] Cabane B. Structure of Some Polymer-detergent Aggregates in Water[J]. Journal of Physical Chemistry, 1977, 81 (17): 1639-1645.
    [124] Romani A P, Gehlen M H, Itri R. Surfactant-Polymer Aggregates Formed by Sodium Dodecyl Sulfate, Poly(N-vinyl-2-pyrrolidone), and Poly(ethylene glycol)[J]. Langmuir, 2005, 21 (1): 127-133.
    [125] Middleton H, English R J, Williams P A, etc. Interaction of Sodium Dodecyl Sulfate with Methacrylate-PEG Comb Copolymers[J]. Langmuir, 2005, 21 (11): 5174-5178.
    [126] Shiraishi Y, Morishita M, Teshima Y, etc. Vanadium-Containing Mesoporous Silica of High Photocatalytic Activity and Stability Even in Water[J]. Journal of Physical Chemistry B, 2006, 110 (13): 6587-6594.
    [127] Miwa Y, Drews A R, Schlick S. Detection of the Direct Effect of Clay on Polymer Dynamics: The Case of Spin-Labeled Poly(methyl acrylate)/Clay Nanocomposites Studied by ESR, XRD, and DSC[J]. Macromolecules, 2006, 39 (9): 3304-3311.
    [128] Shirahama K, Tohdo M, Murahashi M. The Interaction between Surfactant and Polymer as Observedby a Spin Probe Method[J]. Journal of Colloid and Interface Science, 1982, 86 (1): 282-283.
    [129] Morales-cas A M, Moya C, Coto B, etc. Adsorption of Hydrogen and Methane Mixtures on Carbon Cylindrical Cavities[J]. Journal of Physical Chemistry C, 2007, 111 (17): 6473-6480.
    [130] Mitternacht S, Schnabel S, Bachmann M, etc. Differences in Solution Behavior among Four Semiconductor-Binding Peptides[J]. Journal of Physical Chemistry B, 2007, 111 (17): 4355-4360.
    [131] Demoraes J N, Figueiredo W. Equilibrium States of Self-Assembly Systems: Monte Carlo Simulations[J]. Journal of Physical Chemistry B, 2007, in press.
    [132] Wallin T, Linse P. Monte Carlo Simulations of Polyelectrolytes at Charged Micelles. 3. Effects of Surfactant Tail Length[J]. Journal of Physical Chemistry, 1997, 101 (28): 5506-5513.
    [133]苑世领,徐桂英,蔡政亭.表面活性剂与聚合物相互作用的动力学模拟[J].化学学报, 2002, 60 (4): 585-589.
    [134] Kido J, Hiyoshi M, Endo C, etc. Solvatochromic Probes for the Investigation of Polymer-micelle Interactions[J]. Journal of Colloid and Interface Science, 1991, 142 (2): 326-330.
    [135]纪云,张晓红,郭荣.明胶和阳离子表面活性CTAB的相互作用[J].化学学报, 2004, 62 (4): 345-350.
    [136] Zanette D, Soldi V, Romani A P, etc. The Role of the Carboxylate Head Group in the Interaction of Sodium Dodecanoate with Poly(ethylene oxide) Investigated by Electrical Conductivity, Viscosity, and Aggregation Number Measurements[J]. Journal of Colloid and Interface Science, 2002, 246 (2): 387-392.
    [137] Cabane B, Duplessix R. Organization of Surfactant Micelles Adsorbed on a Polymer Molecule in Water-a Neutron-scattering Study[J]. Journal of Physique, 1982, 43: 1529-1542.
    [138]夏咏梅,方云,杨扬,等. AS-PEG及AS-PVP体系的聚合物相对分子质量阈值及表面活性剂临界浓度[J].精细化工, 2001, 18 (10): 572-575.
    [139]方云,夏咏梅,杨扬,等. SDS-PEG及SDS-PVP体系的聚合物相对分子质量阈值及表面活性剂临界浓度[J].精细化工, 2001, 18 (11): 627-630.
    [140]夏咏梅,方云,刘雪锋,等.阴离子表面活性剂与非离子水溶性大分子二元体系的临界类胶束聚集数[J].高等学校化学学报, 2002, 23 (10): 1911-1914.
    [141] Fang L, Ganzuo L, Guiying X. Studies on The Interactions Between Anionic Surfactants and Polyvinylpyrrolidone: Surface Tension Measurement, NMR and ESR[J]. Colloid & Polymer Science, 1998, 276: 1-10.
    [1] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews, 2004, 104 (1): 293-346.
    [2] Sun Y, Mayers B T, Xia Y. Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors[J]. Nano Letters, 2002, 2 (5): 481-485.
    [3] Sun Y, Xia Y. Triangular Nanoplates of Silver: Synthesis, Characterization, and Their Use as Sacrificial Templates in Generating Triangular Nanorings of Gold[J]. Advanced Materials, 2003, 15 (9): 695-699.
    [4] Jiang L P, Xu S, Zhu J M, etc. Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings[J]. Inorgic Chemistry, 2004, 43 (19): 5877-5883.
    [5] Wu M L, Chen D H, Huang T C. Preparation of Pd/Pt Bimetallic Nanoparticles in Water/AOT/Isooctane Microemulsions[J]. Journal of Colloid and Interface Science, 2001, 243 (1): 102-108.
    [6] Pileni M, Gulik-krzywicki T, Tanori J, etc. Template Design of Microreactors with Colloidal Assemblies: Control the Growth of Copper Metal Rods[J]. Langmuir, 1998, 14 (26): 7359-7363.
    [7] Mandal M, Ghosh S K, Kundu S, etc. UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles[J]. Langmuir, 2002, 18 (21): 7792-7797.
    [8] Hao E, Bailey R C, Schatz G C, etc. Synthesis and Optical Properties of“Branched”Gold Nanocrystals[J]. Nano Letters, 2004, 4 (2): 327-330.
    [9] Kuo C H, Chiang T F, Chen L J, etc. Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate[J]. Langmuir, 2004, 20 (18): 7820-7824.
    [10] Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles[J]. Langmuir, 2001, 17 (22): 6782-6786.
    [11] Lisiecki I, Billoudet F, Pileni M P. Control of the Shape and the Size of Copper Metallic Particles[J]. Journal of Physical Chemistry, 1996, 100 (10): 4160-4166.
    [12] Lu L, Sun G, Xi S, etc. A Colloidal Templating Method To Hollow Bimetallic Nanostructures[J]. Langmuir, 2003, 19 (7): 3074-3077.
    [13] Wang C, Chen M, Zhu G, etc. A Novel Soft-Template Technique to Synthesize Metal Ag Nanowire[J]. Journal of Colloid and Interface Science, 2001, 243 (2): 362-364.
    [14] Sun X, Dong S, Wang E. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process[J]. langmuir, 2005, 21 (10): 4710-4712.
    [15]邱晓峰,朱俊杰.超声化学制备单分散金属纳米钯[J].无机化学学报, 2003, 19 (7): 766-770.
    [16] Kim J U, Cha S H, Shin K, etc. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions[J]. Advanced materials, 2004, 16 (5): 459-464.
    [17] Kim D, Choi J, Kim J Y, etc. Size Control of Polyaniline Nanoparticle by Polymer Surfactant[J]. Macromolecules, 2002, 35 (13): 5314-5316.
    [18] Luo Y, Sun X. One-step Preparation of Poly(vinyl alcohol)-protected Pt Nanoparticles through a Heat-treatment Method[J]. Materials Letters, 2007, 61 (10): 2015-2017.
    [19] Sun X, Luo Y. Synthesis of gold microplates and polyhedral nanoparticles[J]. Materials Letters, 2006, 60 (24): 2988-2990.
    [20] W. Guo, Y. W. Sun, G.s. Luo. Y J W. Interaction of PEG with ionic surfactant SDS to form template for mesoporous material[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2005, 252: 71-77.
    [21] Qi L, Li J, Ma J. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers[J]. Advanced Materials, 2002, 14 (4): 300-303.
    [22] Wei H, Shen Q, Zhao Y, etc. Crystallization Habit of Calcium Carbonate in the Presence of Sodium Dodecyl Sulfate and/or Polypyrrolidone[J]. Journal of Crystal Growth, 2004, 260: 511-516.
    [23] Leontidis E, Kyprianidou-leodidou T, Caseri W, etc. From Beads-on-a-String to Colloidal Aggregation: Novel Crystallization Phenomena in the PEO-SDS System[J]. Langmuir, 1999, 15 (10): 3381-3385.
    [24] Leontidis E, Kyprianidou-leodidou T, Caseri W, etc. From Colloidal Aggregates to Layered Nanosized Structures in Polymer-Surfactant Systems. 1. Basic Phenomena[J]. Journal of Physical Chemistry B, 2001, 105 (19): 4133-4144.
    [25] Orphanou M, Leontidis E, Kyprianidou-leodidou T, etc. Study of Copper Sulfide Crystallization in PEO-SDS Solutions[J]. Langmuir, 2004, 20 (13): 5605-5612.
    [26] Shi H, Wang X, Zhao N, etc. Growth Mechanism of Penniform BaWO4 Nanostructures in Catanionic Reverse Micelles Involving Polymers[J]. Journal of Physical Chemistry B, 2006, 110 (2): 748-753.
    [27]苑世领,刘成卜,徐桂英,等.聚合物PVP与表面活性剂AOT相互作用的介观模拟[J].高等学校化学学报, 2003, 24 (6): 1048-1051.
    [28] Jones M N. The Interaction of Sodium Dodecyl Sulfate with Polyethylene Oxide[J]. Journal of Colloid and Interface Science, 1967, 23: 36-42.
    [29] Norwood D P, Minatti E, Reed A W F. Surfactant/Polymer Assemblies. 1. Surfactant Binding Properties[J]. Macromolecules, 1998, 31 (9): 2957-2965.
    [30] Pettersson E, Topgaard D, Stilbs P, etc. Surfactant/Nonionic Polymer Interaction. A NMR Diffusometry and NMR Electrophoretic Investigation[J]. Langmuir, 2004, 20 (4): 1138-1143.
    [31] Minatti E, Norwood D P, Reed Y F. Surfactant/Polymer Assemblies. 2. Polyelectrolyte Properties[J]. Macromolecules, 1998, 31 (9): 2966-2971.
    [32]方云,刘雪锋,夏咏梅,等.十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的1H和13C及2D-NMR表征[J].高等学校化学学报, 2006, 27 (4): 731-734.
    [33]董姝丽,徐桂英.激光光散射和电子自旋共振技术研究十二烷基硫酸钠与聚乙烯吡咯烷酮的相互作用[J].化学学报, 2004, 62 (7): 674-679.
    [34]方云,蔡琨,宗李燕,等.水溶性非离子大分子与烷基硫酸钠同系物团簇化的比饱和簇集量[J].高等学校化学学报, 2004, 25 (5): 888-891.
    [35] Yuan S, Xu G, Luan Y, etc. The interaction between polymer and AOT or NaDEHP in aqueous solution: mesoscopic simulation study and surface tension measurement[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256 (1): 43-50.
    [36] Briz J I, Velazquez M M. Effect of Water-Soluble Polymers on the Morphology of Aerosol OT Vesicles[J]. Journal of Colloid and Interface Science, 2002, 247 (2): 437-446.
    [37]黄盛友,方云,陈方博,等.碱金属硫酸盐-十二烷基硫酸钠-聚乙二醇三元复合体系的束缚胶束特性[J].高等学校化学学报, 2005, 26 (9): 1881-1885.
    [38] Turro N J, Baretz B H, Kuo P L. Photoluminescence Probes for the Investigation of Interactions between Sodium Dodecylsulfate and Water-soluble Polymers[J]. Macromolecules, 1984, 17 (7): 1321-1324.
    [39] Hai M, Han B. The solubilization of n-pentane gas in sodium dodecyl sulfate-polyethylene glycol solutions with and without electrolyte[J]. Journal of Colloid and Interface Science, 2003, 267 (1): 173-177.
    [40] Zanette D, Soldi V, Romani A P, etc. The Role of the Carboxylate Head Group in the Interaction of Sodium Dodecanoate with Poly(ethylene oxide) Investigated by Electrical Conductivity, Viscosity, and Aggregation Number Measurements[J]. Journal of Colloid and Interface Science, 2002, 246 (2): 387-392.
    [41] Esquenet C, Buhler E. Aggregation Behavior in Semidilute Rigid and Semirigid Polysaccharide Solutions[J]. Macromolecules, 2002, 35 (9): 3708-3716.
    [42] Quina F H, Nassar P M, Bonilha J B, etc. Growth of Sodium Dodecyl Sulfate Micelles with Detergent Concentration[J]. Journal of Physical Chemistry B, 1995, 99 (46): 17028-17031.
    [43] Stoll S, Buffle J. Computer Simulation of Bridging Flocculation Processes: The Role of Colloid to Polymer Concentration Ratio on Aggregation Kinetics[J]. Journal of Colloid and Interface Science, 1996, 180: 548-563.
    [44] Longenberger L, Mills G. Formation of Metal Particles in Aqueous Solutions by Reactions of MetalComplexes with Polymers[J]. Journal of Physical Chemistry, 1995, 99 (2): 475-478.
    [45]方云,夏咏梅,杨扬,等. SDS-PEG及SDS-PVP体系的聚合物相对分子质量阈值及表面活性剂临界浓度[J].精细化工, 2001, 18 (11): 627-630.
    [46]夏咏梅,方云,刘雪锋,等.阴离子表面活性剂与非离子水溶性大分子二元体系的临界类胶束聚集数[J].高等学校化学学报, 2002, 23 (10): 1911-1914.
    [1] Cui Y, Wei Q Q, Park H K, etc. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species[J]. Science, 2001, 293: 1289-1292.
    [2]潘宏程,蒋治良,袁伟恩,等.金纳米粒子共振散射与共振吸收的关系[J].应用化学, 2005, 22 (3): 282-285.
    [3]蒋治良,冯忠伟,李廷盛,等.金纳米粒子的共振散射光谱[J].中国科学B辑, 2001, 31 (2): 183-188.
    [4] Mafune F, Kondow T. Formation of Small Gold Clusters in Solution by Laser Excitation of Interband Transition[J]. Chemical Physics Letters, 2003, 372 (1-2): 199-204.
    [5] Sosa I O, Noguez C, Barrera R G. Optical Properties of Metal Nanoparticles with Arbitrary Shapes[J]. Journal of Physical Chemistry B, 2003, 107 (26): 6269-6275.
    [6] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews, 2004, 104 (1): 293-346.
    [7] Wang W, Wang Y, Dai Z, etc. Nonlinear Optical Properties of Periodic Gold Nanoparticle Arrays[J]. Applied Surface Science, 2007, 253 (10): 4673-4676.
    [8] Zhang S B, Wu Z S, Guo M M, etc. A Novel Immunoassay Strategy Based on Combination of Chitosan and a Gold Nanoparticle Label[J]. Talanta, 2007, 71 (4): 1530-1535.
    [9]蒋治良,刘绍璞,王力生,等.金纳米粒子-荧光素体系的光谱特性[J].高等学校化学学报, 2003, 24 (7): 1201-1203.
    [10]李春喜,王子镐.超声技术在纳米材料制备中的应用[J].化学通报, 2001, (5): 268-271267.
    [11] Mandal M, Ghosh S K, Kundu S, etc. UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles[J]. Langmuir, 2002, 18 (21): 7792-7797.
    [12] Su C H, Wu P L, Yeh C S. Sonochemical Synthesis of Well-Dispersed Gold Nanoparticles at the Ice Temperature[J]. Journal of Physical Chemistry B, 2003, 107 (51): 14240-14243.
    [13] Pal A, Esumi K, Pal T. Preparation of Nanosized Gold Particles in a Biopolymer Using UV Photoactivation[J]. Journal of Colloid and Interface Science, 2005, 288 (2): 396-401.
    [14] Cutler E C, Lundin E, Garabato B D, etc. Dendritic functionalization of monolayer-protected gold nanoparticles[J]. Materials Research Bulletin, 2007, 42 (6): 1178-1185.
    [15] Turkevich J, Stevenson P C, Hiller J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold[J]. Discussed Faraday Society, 1951, 11: 55-75.
    [16] Han M Y, Quek C H, Huang W, etc. A Simple and Effective Chemical Route for the Preparation of Uniform Nonaqueous Gold Colloids[J]. Chemistry Materials, 1999, 11 (4): 1144-1147.
    [17] Lu L, Sun G, Xi S, etc. A Colloidal Templating Method To Hollow Bimetallic Nanostructures[J]. Langmuir, 2003, 19 (7): 3074-3077.
    [18] Song Y, Yang Y, Medforth C J, etc. Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures[J]. Journal of the American Chemical Society, 2004, 126 (2): 635-645.
    [19] Sim J H, Park J, Kim M, etc. Formation of Nanoparticles on Reverse Micelles: SANS studies[J]. Physica B, 2006, 385-386 (Part 1): 216-218.
    [20] Lo S H, Wang Y Y, Wan C C. Synthesis of PVP Stabilized Cu/Pd Nanoparticles with Citrate Complexing Agent and Its Application as an Activator for Electroless Copper Deposition[J]. Journal of Colloid and Interface Science, 2007, 310 (1): 190-195.
    [21] Liao D L, Liao B Q. Shape, Size and Photocatalytic Activity Control of TiO2 Nanoparticles with Surfactants[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187 (2-3): 363-369.
    [22] Bhattacharjee R R, Mandal T K. Polymer-mediated Chain-like Self-assembly of Functionalized Gold Nanoparticles[J]. Journal of Colloid and Interface Science, 2007, 307 (1): 288-295.
    [23] Jana N R, Wang Z L, Pal T. Redox Catalytic Properties of Palladium Nanoparticles: Surfactant and Electron Donor-Acceptor Effects[J]. Langmuir, 2000, 16 (6): 2457-2463.
    [24] Lisiecki I, Billoudet F, Pileni M P. Control of the Shape and the Size of Copper Metallic Particles[J]. Journal of Physical Chemistry, 1996, 100 (10): 4160-4166.
    [25] Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles[J]. Langmuir, 2001, 17 (22): 6782-6786.
    [26]刘庆业,覃爱苗,蒋治良,等.聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究[J].光谱学与光谱分析, 2005, 25 (11): 1857-1860.
    [27] Wei H, Shen Q, Zhao Y, etc. Crystallization Habit of Calcium Carbonate in the Presence of Sodium Dodecyl Sulfate and/or Polypyrrolidone[J]. Journal of Crystal Growth, 2004, 260: 511-516.
    [28] Zhang D, Qi L, Ma J. Synthesis of Submicrometer-sized Hollow Silver Spheres in Mixed Polymer-surfactant Solutions[J]. Advanced Materials, 2002, 14 (20): 1499-1502.
    [29] Cao X, Yu F, Li L, etc. Copper Nanorod Junctions Templated by a Novel Polymer–surfactant Aggregate[J]. Journal of Crystal Growth, 2003, 254: 164-168.
    [30] Tao C, Zheng S, Mohwald H, etc. Cds Crystal Growth of Lamellar Morphology with Templates of Polyelectrolyte/Surfactant Complex[J]. Langmuir, 2003, 19: 9039-9042.
    [31] Shi H, Wang X, Zhao N, etc. Growth Mechanism of Penniform BaWO4 Nanostructures in Catanionic Reverse Micelles Involving Polymers[J]. Journal of Physical Chemistry B, 2006, 110 (2): 748-753.
    [32] Torigoe K, Esumi K. Formation of Nonspherical Palladium Nanocrystals in SDS/Poly(acrylamide) Gel[J]. Langmuir, 1995, 11 (11): 4199-4201.
    [33]黄盛友,方云,陈方博,等.碱金属硫酸盐-十二烷基硫酸钠-聚乙二醇三元复合体系的束缚胶束特性[J].高等学校化学学报, 2005, 26 (9): 1881-1885.
    [34]方云,刘雪锋,夏咏梅,等.十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的1H和13C及2D-NMR表征[J].高等学校化学学报, 2006, 27 (4): 731-734.
    [35]方云,夏咏梅,杨扬,等. SDS-PEG及SDS-PVP体系的聚合物相对分子质量阈值及表面活性剂临界浓度[J].精细化工, 2001, 18 (11): 627-630.
    [36] Chow M K, Zukoski C F. Gold Sol Formation Mechanisms: Role of Colloidal Stability[J]. Journal of Colloid and Interface Science, 1994, 165 (1): 97-109.
    [37] Chiang C L. Controlled Growth of Gold Nanoparticles in AOT/C12E4/Isooctane Mixed Reverse Micelles[J]. Journal of Colloid and Interface Science, 2001, 239 (2): 334-341.
    [38] Kim F, Song J H, Yang P. Photochemical Synthesis of Gold Nanorods[J]. Journal of the American Chemical Society, 2002, 124: 14316-14317.
    [39]王俊中,胡源,陈祖耀.超声化学制备纳米材料的研究进展[J].稀有金属材料与工程, 2003, 32 (8): 585-590.
    [40]付志兵,邱龙会,刘德斌,等.超声化学法制备纳米WO3掺杂聚苯乙烯及其表征[J].强激光与粒子束, 2006, 18 (9): 1491-1494.
    [41]邱晓峰,朱俊杰.超声化学制备单分散金属纳米钯[J].无机化学学报, 2003, 19 (7): 766-770.
    [42] Mizukoshi Y, Oshima R, Maeda Y, etc. Preparation of Platinum Nanoparticles by Sonochemical Reduction of the Pt(II) Ion[J]. Langmuir, 1999, 15 (8): 2733-2737.
    [43] Niidome Y, Nishioka K, Kawasaki H, etc. Effects of Ammonium Salts and Anionic Amphiphiles on the Photochemical Formation of Gold Nanorods[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects A selection of papers from the 10th International Conference on Organised Molecular Films, 2005, 257-258: 161-164.
    [44] Okitsu K, Yue A, Tanabe S, etc. Formation of Colloidal Gold Nanoparticles in an Ultrasonic Field: Control of Rate of Gold(III) Reduction and Size of Formed Gold Particles[J]. Langmuir, 2001, 17 (25): 7717-7720.
    [45] Caruso R A, Ashokkumar M, Grieser F. Sonochemical Formation of Gold Sols[J]. Langmuir, 2002, 18 (21): 7831-7836.
    [46] Park J E, Atobe M, Fuchigami T. Synthesis of Multiple Shapes of Gold Nanoparticles with Controlled Sizes in Aqueous Solution using Ultrasound[J]. Ultrasonics Sonochemistry, 2006, 13 (3): 237-241.
    [47] Mizukoshi Y, Okitsu K, Maeda Y, etc. Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution[J]. Journal of Physical Chemistry B, 1997, 101 (36): 7033-7037.
    [48] Fu X, Wang Y, Wu N, etc. Shape-Selective Preparation and Properties of Oxalate-Stabilized Pt Colloid[J]. Langmuir, 2002, 18 (12): 4619-4624.
    [49] Yang S, Zhang T, Zhang L, etc. Continuous Synthesis of Gold Nanoparticles and Nanoplates with Controlled Size and Shape Under UV Irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296 (1-3): 37-44.
    [50] K Z, X Z, X D, etc. Seed-mediated Synthesis of Silver Nanostructures and Polymer/silver Nanocables by UV Irradiation[J]. Journal of Crystal Growth, 2004, 273 (1-2): 285-291.
    [51]林铭章,朱清时.人工控制液相金属纳米粒子的组装[J].化学进展, 1998, 10 (3): 237-245.
    [52] Eustis S, Hsu H Y, El-sayed M A. Gold Nanoparticle Formation from Photochemical Reduction of Au3+ by Continuous Excitation in Colloidal Solutions. A Proposed Molecular Mechanism[J]. Journal ofPhysical Chemistry B, 2005, 109 (11): 4811-4815.
    [53] Kim F, Song J H, Yang P. Photochemical Synthesis of Gold Nanorods[J]. Journal of the American Chemical Society, 2002, 124 (48): 14316-14317.
    [54] Pal A, Ghosh S K, Esumi K, etc. Reversible Generation of Gold Nanoparticle Aggregates with Changeable Interparticle Interactions by UV Photoactivation[J]. Langmuir, 2004, 20 (3): 575-578.
    [55] Longenberger L, Mills G. Formation of Metal Particles in Aqueous Solutions by Reactions of Metal Complexes with Polymers[J]. Journal of Physical Chemistry, 1995, 99 (2): 475-478.
    [56] Yu Y Y, Chang S S, Lee C L, etc. Gold Nanorods: Electrochemical Synthesis and Optical Properties[J]. Journal of Physical Chemistry B, 1997, 101 (34): 6661-6664.
    [57] Chari K, Antalek B. The Viscosity of Polymer-surfactant Mixtures in Water[J]. Journal of Chemical Physics, 1994, 100 (7): 5294-5300.
    [58] Hao E, Bailey R C, Schatz G C, etc. Synthesis and Optical Properties of“Branched”Gold Nanocrystals[J]. Nano Letters, 2004, 4 (2): 327-330.
    [59] Kuo C H, Huang M H. Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach[J]. Langmuir, 2005, 21: 2012-2016.
    [60]董姝丽,徐桂英.激光光散射和电子自旋共振技术研究十二烷基硫酸钠与聚乙烯吡咯烷酮的相互作用[J].化学学报, 2004, 62 (7): 674-679.
    [61] Jiang W H, Han S J. Viscosity of Nonionic Polymer/Anionic Surfactant Complexes in Water[J]. Journal of Colloid and Interface Science, 2000, 229: 1-5.
    [62] Burgess I, Zamlynny V, Szymanski G, etc. Electrochemical and Neutron Reflectivity Characterization of Dodecyl Sulfate Adsorption and Aggregation at the Gold-Water Interface[J]. Langmuir, 2001, 17 (11): 3355-3367.
    [63] Warshawsky A, Kalir R, Deshe A, etc. Polymeric Pseudocrown Ethers. 1. Synthesis and Complexation with Transition Metal Anions[J]. Journal of the American Chemical Society, 1979, 101 (15): 4249-4258.
    [1] Cui Y, Wei Q Q, Park H K, etc. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species[J]. Science, 2001, 293: 1289-1292.
    [2] Zhang Z, Sun X, Dresselhaus M S, etc. Electronic transport properties of single-crystal bismuth nanowire arrays[J]. Physical Review B, 2000, 61 (4850-4861):.
    [3] Bockrath M, Liang W, Bozovic D, etc. Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes[J]. Science, 2001, 291: 283-285.
    [4] Lin C C, Yeh Y C, Yang C Y, etc. Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in Escherichia coli[J]. Journal of the American Chemical Society, 2002, 124 (14): 3508-3509.
    [5] Hao E, Bailey R C, Schatz G C, etc. Synthesis and Optical Properties of“Branched”Gold Nanocrystals[J]. Nano Letters, 2004, 4 (2): 327-330.
    [6] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews, 2004, 104 (1): 293-346.
    [7] Jin R, Cao Y W, Mirkin C A, etc. Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science, 2001, 294 (5548): 1901-1903.
    [8] Ibano D, Yokota Y, Tominaga T. Preparation of gold nanoplates protected by an anionic phospholipid[J]. Chemistry Letters, 2003, 32 (7): 574-575.
    [9] Kim J U, Cha S H, Shin K, etc. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions[J]. Advanced materials, 2004, 16 (5): 459-464.
    [10] Sun X, Dong S, Wang E. Large-scale Synthesis of Micrometer-scale Single-crystalline Au Plates of Nanometer Thickness by a Wet-chemical Route[J]. Angewandte Chemie International Edition, 2004, 43: 6360-6363.
    [11] Ah C S, Yun Y J, Park H J, etc. Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates[J]. Chemistry of Materials, 2005, 17 (22): 5558-5561.
    [12] Aliumar A, Oyama M. Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(vinylpyrrolidone)[J]. Crystal Growth & Design, 2006, 6 (4): 818-821.
    [13] Sun X, Dong S, Wang E. High-yield Synthesis of Large Single-crystalline Gold Nanoplates through a Polyamine Process[J]. langmuir, 2005, 21 (10): 4710-4712.
    [14] Tian X, Chen K, Cao G. Seedless, Surfactantless Photoreduction Synthesis of Silver Nanoplates[J]. Materials Letters, 2006, 60 (6): 828-830.
    [15] Chen S, Carroll D L. Synthesis and Characterization of Truncated Triangular Silver Nanoplates[J]. Nano Letters, 2002, 2 (9): 1003-1007.
    [16] Hao E, Kelly K L, Hupp J T, etc. Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates[J]. Journal of the American Chemical Society, 2002, 124 (51): 15182-15183.
    [17] Chen S, Fan Z, Carroll D L. Silver Nanodisks: Synthesis, Characterization, and Self-Assembly[J]. The Journal of Physical Chemistry B, 2002, 106 (42): 10777-10781.
    [18] Pal A, Esumi K, Pal T. Preparation of Nanosized Gold Particles in a Biopolymer Using UV Photoactivation[J]. J. Colloid Interface Sci., 2005, 288 (2): 396-401.
    [19] Link S, El-sayed M A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods[J]. Journal of Physical Chemistry B, 1999, 103 (40): 8410-8426.
    [20] El-sayed M A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes[J]. Accounts of Chemical Research, 2001, 34 (4): 257-264.
    [21] Jana N R, Gearheart L, Murphy C J. Seed-mediated Growth Approach for Shape-controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template[J]. Advanced materials, 2001, 13 (18): 1389-1393.
    [22] Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles[J]. Langmuir, 2001, 17: 6782-6786.
    [23] Yu Y Y, Chang S S, Lee C L, etc. Gold Nanorods: Electrochemical Synthesis and Optical Properties[J]. Journal of Physical Chemistry B, 1997, 101 (34): 6661-6664.
    [24] Han M Y, Quek C H, Huang W, etc. A Simple and Effective Chemical Route for the Preparation of Uniform Nonaqueous Gold Colloids[J]. Chemistry Materials, 1999, 11 (4): 1144-1147.
    [25] Nikoobakht B, El-sayed M A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method[J]. Chemistry Materials, 2003, 15 (10): 1957-1962.
    [26] Gai P L, Harmer M A. Surface Atomic Defect Structures and Growth of Gold Nanorods[J]. Nano Letters, 2002, 2 (7): 771-774.
    [27] Pei L H, Mori K, Adachi M. Formtion Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization[J]. Langmuir, 2004, 20: 7837-7843.
    [28] Lisiecki I, Billoudet F, Pileni M P. Control of the Shape and the Size of Copper Metallic Particles[J]. Journal of Physical Chemistry, 1996, 100 (10): 4160-4166.
    [29] Schmid G. Large clusters and colloids. Metals in the embryonic state[J]. Chem. Rev., 1992, 92 (8): 1709-1727.
    [30] Chen S, Wang Z L, Ballato J, etc. Monopod, Bipod, Tripod and Tetrapod Gold Nanocrystals[J]. Journal of the American Chemical Society, 2003, 125: 16186-16187.
    [31] Kuo C H, Huang M H. Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach[J]. Langmuir, 2005, 21: 2012-2016.
    [32] Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science, 2002, 298 (5601): 2176-2179.
    [33] Sun Y, Xia Y. Triangular Nanoplates of Silver: Synthesis, Characterization, and Their Use asSacrificial Templates in Generating Triangular Nanorings of Gold[J]. Advanced Materials, 2003, 15 (9): 695-699.
    [34] Jiang L P, Xu S, Zhu J M, etc. Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings[J]. Inorgic Chemistry, 2004, 43 (19): 5877-5883.
    [35] Metraux G S, Cao Y C, Jin R, etc. Triangular Nanoframes Made of Gold and Silver[J]. Nano Letters, 2003, 3 (4): 519-522.
    [36] Kuo C H, Chiang T F, Chen L J, etc. Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate[J]. Langmuir, 2004, 20 (18): 7820-7824.
    [37] Longenberger L, Mills G. Formation of Metal Particles in Aqueous Solutions by Reactions of Metal Complexes with Polymers[J]. Journal of Physical Chemistry, 1995, 99 (2): 475-478.
    [38] Leontidis E, Kyprianidou-leodidou T, Caseri W, etc. From Beads-on-a-String to Colloidal Aggregation: Novel Crystallization Phenomena in the PEO-SDS System[J]. Langmuir, 1999, 15 (10): 3381-3385.
    [39]方云,刘雪锋,夏咏梅,等.十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的1H和13C及2D-NMR表征[J].高等学校化学学报, 2006, 27 (4): 731-734.
    [40]黄盛友,方云,陈方博,等.碱金属硫酸盐-十二烷基硫酸钠-聚乙二醇三元复合体系的束缚胶束特性[J].高等学校化学学报, 2005, 26 (9): 1881-1885.
    [41] Wang L, Chen X, Zhan J, etc. Synthesis of Gold Nano- and Microplates in Hexagonal Liquid Crystals[J]. Journal of Physical Chemistry B, 2005, 109 (8): 3189-3194.
    [42] Wei H, Shen Q, Zhao Y, etc. Crystallization Habit of Calcium Carbonate in the Presence of Sodium Dodecyl Sulfate and/or Polypyrrolidone[J]. Journal of Crystal Growth, 2004, 260: 511-516.
    [43] Chari K, Antalek B. The Viscosity of Polymer-surfactant Mixtures in Water[J]. Journal of Chemical Physics, 1994, 100 (7): 5294-5300.
    [44] Hao E, Bailey R C, Schatz G C, etc. Synthesis and Optical Properties of“Branched”Gold Nanocrystals[J]. Nano Letters, 2004, 4 (2): 327-330.
    [45] Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles[J]. Langmuir, 2001, 17 (22): 6782-6786.
    [46] Yonezawa T, Onoue S, Kimizuka N. Metal Coating of DNA Molecules by Cationic, Metastable Gold Nanoparticles[J]. Chemistry Letters, 2002, 31 (12): 1172-1173.
    [47] Sakai T, Alexandridis P. Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymer Solutions at Ambient Temperature[J]. Langmuir, 2004, 20 (20): 8426-8430.
    [48]夏咏梅,方云,刘雪锋,等.阴离子表面活性剂与非离子水溶性大分子二元体系的临界类胶束聚集数[J].高等学校化学学报, 2002, 23 (10): 1911-1914.
    [49] Wang L, Chen X, Zhan J, etc. Controllable Morphology Formation of Gold Nano- and Micro-plates in Amphiphilic Block Copolymer-based Liquid Crystalline Phase[J]. Chemistry Letters, 2004, 33 (6): 720-721.
    [50] Qi L, Li J, Ma J. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers[J]. Advanced Materials, 2002, 14 (4): 300-303.
    [1] Hao E, Bailey R C, Schatz G C, etc. Synthesis and Optical Properties of“Branched”Gold Nanocrystals[J]. Nano Letters, 2004, 4 (2): 327-330.
    [2] Cui Y, Wei Q Q, Park H K, etc. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species[J]. Science, 2001, 293: 1289-1292.
    [3] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews, 2004, 104 (1): 293-346.
    [4] Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles[J]. Langmuir, 2001, 17 (22): 6782-6786.
    [5] Nikoobakht B, El-sayed M A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method[J]. Chemistry Materials, 2003, 15 (10): 1957-1962.
    [6] Pei L, Mori K, Adachi M. Formtion Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization[J]. Langmuir, 2004, 20: 7837-7843.
    [7] Simakin A V, Voronov V V, Shafeev G A, etc. Nanodisks of Au and Ag produced by laser ablation in liquid environment[J]. Chemical Physics Letters, 2001, 348 (3-4): 182-186.
    [8] Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science, 2002, 298 (5601): 2176-2179.
    [9] Chen S, Wang Z L, Ballato J, etc. Monopod, Bipod, Tripod and Tetrapod Gold Nanocrystals[J]. Journal of the American Chemical Society, 2003, 125: 16186-16187.
    [10] Sau T K, Murphy C J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution[J]. Journal of the American Chemical Society, 2004, 126: 8648-8649.
    [11] Kuo C, Huang M H. Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach[J]. Langmuir, 2005, 21: 2012-2016.
    [12] Cao X, Yu F, Li L, etc. Copper Nanorod Junctions Templated by a Novel Polymer-surfactant Aggregate[J]. Journal of Crystal Growth, 2003, 254: 164-168.
    [13] Tsuji M, Hashimoto M, Nishizawa Y, etc. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution[J]. Chemistry- A European Journal, 2005, 11: 440-452.
    [14] Mallikarjuna N N, Varma R S. Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties[J]. Crystal Growth & Design, 2007, 7 (4): 686-690.
    [15] Munoz R A, Correia P R, Nascimento A N, etc. Electroanalysis of Crude Oil and Petroleum-Based Fuel for Trace Metals: Evaluation of Different Microwave-Assisted Sample Decompositions and Stripping Techniques[J]. Energy & Fuels, 2007, 21 (1): 295-302.
    [16] Harpeness R, Gedanken A. Microwave Synthesis of Core-Shell Gold/Palladium Bimetallic Nanoparticles[J]. Langmuir, 2004, 20 (8): 3431-3434.
    [17] Leontidis E, Kyprianidou-leodidou T, Caseri W, etc. From Beads-on-a-String to Colloidal Aggregation: Novel Crystallization Phenomena in the PEO-SDS System[J]. Langmuir, 1999, 15 (10): 3381-3385.
    [18] Zhang D, Qi L, Ma J. Synthesis of Submicrometer-sized Hollow Silver Spheres in Mixed Polymer-surfactant Solutions[J]. Advanced Materials, 2002, 14 (20): 1499-1502.
    [19] Norwood D P, Minatti E, Reed A W F. Surfactant/Polymer Assemblies. 1. Surfactant Binding Properties[J]. Macromolecules, 1998, 31 (9): 2957-2965.
    [20] Minatti E, Norwood D P, Reed Y F. Surfactant/Polymer Assemblies. 2. Polyelectrolyte Properties[J]. Macromolecules, 1998, 31 (9): 2966-2971.
    [21] Smitter L M, GuédezJF, MüllerAJ, etc. Interactions between Poly(ethylene Oxide) and Sodium Dodecyl Sulfate in Elongational Flows[J]. Journal of Colloid and Interface Science, 2001, 236 (2): 343-353.
    [22] Jiang W H, Han S J. Viscosity of Nonionic Polymer/Anionic Surfactant Complexes in Water[J]. Journal of Colloid and Interface Science, 2000, 229: 1-5.
    [23] Pei L, Mori K, Adachi M. Formtion Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization[J]. Langmuir, 2004, 20 (18): 7837-7843.
    [24] Sun X, Dong S, Wang E. High-yield Synthesis of Large Single-crystalline Gold Nanoplates through a Polyamine Process[J]. langmuir, 2005, 21 (10): 4710-4712.
    [25]方云,蔡琨,宗李燕,等.水溶性非离子大分子与烷基硫酸钠同系物团簇化的比饱和簇集量[J].高等学校化学学报, 2004, 25 (5): 888-891.
    [26]方云,刘雪锋,夏咏梅,等.十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的1H和13C及2D-NMR表征[J].高等学校化学学报, 2006, 27 (4): 731-734.
    [27] Biggs S, Mulvaney P, Zukoski C F, etc. Study of Anion Adsorption at the Gold-Aqueous Solution Interface by Atomic Force Microscopy[J]. Journal of the American Chemical Society, 1994, 116: 9150.
    [28] Lan X, Jin Z, Zhao X, etc. Preparation of Nanogold Colloid by Chemical Reducing with PVP Protection[J]. Rare Metal Materials and Engineering, 2003, 32 (1): 50-53.
    [29] Nakanishia M, Takatania H, Kobayashib Y, etc. Characterization of Binary Gold/Platinum Nanoparticles Prepared by Sonochemistry Technique[J]. Applied Surface Science, 2005, 241: 209–212.
    [30] Pastoriza-santos I, Liz-marzan L M. Formation of PVP-Protected Metal Nanoparticles in DMF[J]. Langmuir, 2002, 18 (7): 2888-2894.
    [31] Park J, Atobe M, Fuchigami T. Synthesis of Multiple Shapes of Gold Nanoparticles with Controlled Sizes in Aqueous Solution Using Ultrasound[J]. Ultrasonics Sonochemistry, 2006, 13: 237-241.
    [32] Kuo C H, Chiang T F, Chen L J, etc. Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate[J]. Langmuir, 2004, 20 (18): 7820-7824.
    [33] Park J, Atobe M, Fuchigami T. Synthesis of Multiple Shapes of Gold Nanoparticles with Controlled Sizes in Aqueous Solution Using Ultrasound[J]. Ultrasonics Sonochemistry, 2006, 13: 237-241.
    [34] Kim F, Song J H, Yang P. Photochemical Synthesis of Gold Nanorods[J]. Journal of the American Chemical Society, 2002, 124: 14316-14317.
    [35] Yu Y Y, Chang S S, Lee C L, etc. Gold Nanorods:Electrochemical Synthesis and Optical Properties[J]. Journal of Physical Chemistry B, 1997, 101 (34): 6661-6664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700