用户名: 密码: 验证码:
部分高强耐热稀土镁合金体系的相关系及其凝固组织分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:镁合金是目前实际应用中最轻的金属结构材料,具有比重轻、比强度和比刚度高、良好的电磁屏蔽能力、阻尼减震性好、易切削加工性和可再生利用性等优异性能,在汽车、航空航天及电子产品等领域具有重要的应用价值和广阔的应用前景,被誉为“21世纪绿色工程材料”。然而,镁合金室温强度不高、高温强度低、抗蠕变性能差等缺点,严重阻碍了镁合金的应用。稀土加入镁合金中能够提高其力学性能、抗蠕变性能及耐腐蚀性能等,Mg-Zn合金中添加稀土元素会显著改善合金的力学性能和耐热性。本文结合国家自然科学基金项目(No.50731002):新型镁合金结构材料相图与合金化研究,通过实验测定和相图计算(CALPHAD)方法,对Mg-Ce-Gd-La-Nd-Pr-Sm-Zn多元系中部分二元、三元系的相关系进行了研究,根据所建立的热力学数据库模拟了典型Mg-Zn-RE合金凝固过程中的组织演变,为镁合金的设计提供理论依据,主要研究工作如下:
     (1)采用合金法,通过X-射线衍射分析(XRD)、扫描电子显微镜(SEM)和电子探针显微分析(EPMA)等检测分析手段,测定了Mg-Zn-Gd三元系673K富镁角的等温截面。实验证实了存在三元相X相(14H长程有序结构)、W相(面心立方结构)和I相(二十面体准晶结构),检测到三个两相区:(Mg)+X、(Mg)+W、(Mg)+I;四个三相区:(Mg)+X+Mg5Gd、(Mg)+X+W、(Mg)+W+I、L+(Mg)+I。其中Mg5Gd相、W和I相都有一定溶解度范围。
     结合实验结果和文献信息,运用CALPHAD方法优化计算了Gd-Zn二元系和Mg-Zn-Gd三元系,其中液相采用替换溶液模型,有序相BCC_B2与无序相BCC_A2采用了同一个吉布斯自由能表达式,以处理BCC_B2与BCC A2之间的有序无序转变关系。计算结果与实验数据吻合。
     (2)采用同(1)实验方法测定了Mg-Gd-Nd三元系673K富镁角的等温截面。实验检测到三元相p,检测到两个三相区:(Mg)+Mg41Nd5+β Mg5Gd+Mg41Nd5+β;两个两相区:(Mg)+Mg5Gd、(Mg)+Mg41Nd5。二元化合物Mg5Gd、Mg41Nd5有较大的溶解度范围。
     结合实验结果和文献信息,运用CALPHAD方法优化计算了Gd-Nd二元系和Gd-Mg-Nd三元系。计算结果与实验信息吻合。
     (3)结合实验信息,选择合理的热力学模型,采用CALPHAD方法优化计算了Mg-Zn-La、Mg-Zn-Ce、Mg-Zn-Nd、Mg-Zn-Pr和Mg-Zn-Sm三元系,其中所有有序相BCC_B2与无序相BCC_A2都采用了同一个吉布斯自由能表达式来处理BCC_B2和BCC_A2之间的有序无序转变。每一个三元合金体系都得到一套自洽的热力学参数。
     (4)建立了Mg-Ce-Gd-La-Nd-Pr-Sm-Zn多元系的热力学数据库,可应用于稀土镁合金的成分和热处理工艺设计。
     (5)采用扫描电子显微镜和X-射线衍射分析等检测分析手段,观察了几个典型的Mg-Zn-RE (RE=Ce、Nd、Gd和Sm),Mg-Gd-Nd合金的铸态组织。采用所建立的热力学数据库,模拟了这些合金的平衡凝固和Scheil凝固过程,并与实验观察到的相关合金铸态微观组织进行了对比分析,合理地解释了实验合金在凝固过程中的组织演化过程。
ABSTRACT:As the lightest metal structure material, magnesium alloys have been widely applied in automotive, aerospace and electronic industries because of a number of desirable features, such as light weight, high specific strength and stiffness, excellent electro-magnetic shielding, good damping characteristic, good machinability, etc. Magnesium alloys have great application prospect, known as the "21st Century Green Engineering Materials". However, the limited mechanical strength of magnesium alloys, especially at elevated temperature, has retarded their application. It has been demonstrated that rare earth metals (RE) are the most effective elements to improve the strength of magnesium especially at high temperatures. The RE addition in Mg-Zn based alloys would enhance the high-temperature strength and creep resistance. The precision thermodynamic description of the multi-component magnesium system is crucially necessary for the design and optimization of alloy compositions and manufacturing processes. Associated with the project "Study on the phase diagrams and alloying of Mg-based alloy systems" financed by National Science Foundation of China (No.50731002), experimental investigation and thermodynamic calculation (CALPHAD) were carried out on partial phase equilibria of Mg-Ce-Gd-La-Nd-Pr-Sm-Zn system. Based on the database, the equilibrium solidification and the solidification according to the Scheil model were calculated for some typical Mg-Zn-RE alloys. The major work of this study is as follows:
     (1) The phase relations of the Mg-Zn-Gd ternary system in the Mg-rich corner at673K were determined by means of alloying method, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and electron-probe microanalysis (EPMA). Three ternary phases, X-(Mg]2ZnGd,14H long period stacking ordered structure), W-(Mg3Zn3Gd2, fcc) and I-(Mg3Zn6Gd1, icosahedral quasicrystal structure), were identified. The experimental results showed that there are three two-phase regions,(Mg)+X,(Mg)+W,(Mg)+I, and four three-phase regions,(Mg)+X+Mg5Gd,(Mg)+X+W,(Mg)+W+I, L+(Mg)+I. Mg5Gd, W and I have extended homogeneities along Gd to Zn.
     Based on the experimental results and literature information, the Gd-Zn binary system and Mg-Zn-Gd ternary system were optimized by means of CALculation of PHAse Diagram (CALPHAD) method. In particular, the order/disorder transition between BCC_B2and BCC_A2in the system has been taken into account and their Gibbs energies were expressed with a single expression. Reasonable agreement between the calculated and experimental data was achieved.
     (2) The phase relations of the Mg-Gd-Nd system in the Mg-rich corner at673K were determined using the same method as above. Ternary phase (3was identified. The experimental results showed that there are two three-phase regions,(Mg)+Mg5Gd+Mg41Nd5, Mg5Gd+Mg41Nd5+β, and three two-phase regions,(Mg)+Mg5Gd, Mg41Nd5+Mg5Gd,(Mg)+Mg41Nd5. Mg5Gd and Mg41Nd5have largely extended homogeneities along Gd to Nd.
     Based on the experimental results and literature information, the Gd-Nd binary system and Mg-Gd-Nd ternary system were optimized by means of CALculation of PHAse Diagram (CALPHAD) method. The calculated phase diagrams were in good agreement with available experimental data.
     (3) Based on available experimental data and literature information, the ternary systems, Mg-Zn-La, Mg-Zn-Ce, Mg-Zn-Nd, Mg-Zn-Pr and Mg-Zn-Sm ternary systems have been optimized using CALPHAD method. In order to treat the order/disorder transition between BCC B2and BCC_A2, the Gibbs energy of the ordered BCC_B2phase in all these systems was deseribed with a2-sublattice model and the same to the one of the disordered BCC_A2phase. A set of self-consistent thermodynamic parameters of individual ternary system was obtained.
     (4) The thermodynamic database of Mg-Ce-Gd-La-Nd-Pr-Sm-Zn has been established, using to design the composition and heat treatment process of magnesium alloys.
     (5) Using scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD), the cast samples of some typical Mg-Zn-RE(RE=Ce, Nd, Gd and Sm), Mg-Gd-Nd alloys were observed. Based on the thermodynamic database, the equilibrium solidification and the solidification according to the Scheil model were calculated for these alloys to understand the experimental microstructures during solidification.
引文
[1]E. Aghion, B. Bronfin and D. Eliezer, The role of the magnesium industry in protecting the environment. Journal of Materials Processing Technology,2001, 117:p.381-385.
    [2]B.L. Mordike and T. Ebert, Magnesium:Properties-applications-potential. Materials Science and Engineering A,2001,302:p.37-45.
    [3]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2001.
    [4]陈振华.镁合金.北京:化学工业出版社,2004.
    [5]Achim Wendt, Konrad Weiss, Arye Ben-Dov,et al. Magnesium castings in aeronautics applications-special requirements. Magnesium Technology 2005, Edited by N.R. Neelameggham, H.I. Kaplan and B.R. Powell, TMS (The Minerals, Metals & Materials Society),2005, p.269-273.
    [6]黎文献.镁及镁合金.长沙:中南大学出版社,2005.
    [7]丁文江.镁合金科学与技术.北京:科学出版社,2007.
    [8]S. Schumann, H. Friedrich. Current and future use of magnesium in the automobile industry. Materials Science Forum,2003,51:p.419-422.
    [9]C.K. Chung. The market survey of magnesium applications for vehicle industry. Sinomag Die Casting Magnesium Seminar, Beijing, Nov.22nd-24th,2002.
    [10]袁序弟.镁合金在汽车工业的应用前景.汽车制造与装备,2005,4:p.66-69.
    [11]F.V. Buch, S.Schumann. New high temperature die casting magnesium alloys for power-train application. Sinomag Die Casting Magnesium Seminar, Beijing, Nov. 22nd-24th,2002.
    [12]杜文博等.镁合金在交通工具中的应用现状.世界有色金属,2006,2:p.19-21.
    [13]王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用.材料导报,2004,14(6):p.22-24.
    [14]G.A. Chadwick, A. Bloyce, in:B.L. Mordike (Ed.), Magnesium alloys and their applications, DGM GmbH, Oberursel,1992, p.93-100.
    [15]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景.航空工程与维修,2002,4:p.41-42.
    [16]F. Witte, N. Hort and C. Vogt et al. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008,12:p.63-72.
    [17]Akiko Yamamoto. Biomedical application of magnesium alloys. Journal of Japan Institute of Light Metals,2008,58(11):p.570-576.
    [18]闫蕴琪,张延杰,邓炬等.耐热镁合金的研究现状与发展方向.稀有金属材料与工程,2004,33:p.561-565.
    [19]U.F. Kocks, Kinetics of solution hardening. Metall.Trans.A,1985,16A: p.2109-2129.
    [20]L.L. Rokhlin. Magnesium alloys containing rare earth metals, London:Taylor and
    Francis,2003.
    [21]W. Hume-rothery, The structure of metals and alloys,2nd, London:The Institute of Metal,1944.
    [22]Z.P. Luo, S.Q. Zhang, Y.L. Tang, et al. Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents, J.Alloys. Compd.,1994,209:p.275.
    [23]D.H. Bae, M.H. Lee, K.T. Kim, W.T. Kim, D.H. Kim. Application of Qusicryrstalline Partieles As a Strengthening Phase in Mg-Zn-Y Alloys. Journal of Alloys and Compounds,2002,342:p.445.
    [24]关绍康,王迎新.高温镁合金的研究进展及其在汽车工业中的应用.机械工程材料,2003,27:p.1-4.
    [25]J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn, Scripta Materialia,2005,53: p.1049-1053.
    [26]I.P. Moreno, T.K. Nandy, J.W. Jones et al., Microstructural stability and creep of rare-earth containing magnesium alloys, Scripta Materialia,2003,48: p.1029-1034.
    [27]平修二.金属材料的高温强度理论设计.北京:科学出版社,1983.
    [28]B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A,2002,324:p.103-112.
    [29]刘光华.稀土材料与应用技术.北京:化学工业出版社,2005.
    [30]李大全,王渠东,丁文江.稀土在变形镁合金中的应用.轻合金加工技术,2006,37(12):p.5-8.
    [31]余琨,黎文献,李松瑞等.含稀土镁合金的研究与开发.特种铸造及有色合金,2001,1:p.41-44.
    [32]郭旭涛,李培杰,刘树勋等.稀土耐热镁合金发展现状及展望.铸造,2002,2: p.68-71.
    [33]陈振华.耐热镁合金.北京:化学工业出版社,2007.
    [34]余琨,稀土变形镁合金组织性能及加工工艺研究[博士论文],长沙:中南大学,2002.
    [35]梁维中,吉泽升,左锋等.耐热镁合金的研究现状及发展趋势.特种铸造及有色合金,2003,2:p.39-41.
    [36]王渠东,吕宜振,曾小勤等.稀土在铸造镁合金中的应用.特种铸造及有色合金,1999,1:p.40-43.
    [37]P. Lyon, New Magnesium Alloy for Aerospace and Speciality Applications, Magnesium Technology 2004, Edited by A. A. Luo, TMS,2004, p.311-315
    [38]R. Ferro, A. Saccone, G. Borzone. Rare earth metals in light alloys, J. Rare Earth, 1997,15(1):p.45-47.
    [39]A. Bussiba, A.B. Artzy, A. Shtechman, Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studies. Materials Science and Engineering:A, 2001,302(1):p.56-62.
    [40]Q. Li, Q.D. Wang, X.Q. Zeng, et al. Microstructure and mechanical properties of extruded Mg-Zn-Nd-Y-Zr-Ca alloy. Material Science Forum,2005,488-489: p.385-388.
    [41]黄伯杰,聂邦盛等.Mg-Nd-Zn-Zr耐热高强度镁合金.特种铸造及有色合金.1998,6:p.1-3.
    [42]陶春虎,张少卿.Mg-Zn-Zr-RE系镁合金的显微组织.航空学报,1989,5:p.16-19.
    [43]D. Shechtman, C. Liang. Project of NIST national institute of standards and technology-high specific strength magnesium alloy produced by RSP(R).1999.
    [44]Y. Liu, G.Y. Yuan, C. Lu, W.J. Ding. Microstructure and mechanical properties of Mg-Zn-Gd-based alloys strengthened by quasicrystals and Laves phases. Trans. Nonferrous Met. Soc. China,2007,17:p.353-357.
    [45]Y. Negishi, T. Nishimura, M. Kiryuu, S. Kamado, Y. Kojima, R. Ninomiya. Aging characteristics and tensile properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr alloys, Japanese of Light Metals,1994,44(10),555-561.
    [46]E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, Long-period ordered structure in a
    high-strength nanocrystalline Mg-lat%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM, Acta Materialia,2002,50:p.3845-3857.
    [47]Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto, H. Tsubakino. Novel equilibrium two phase Mg alloy with the long-period ordered structure, Scripta Materialia,2004,51:p.711-714.
    [48]M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature, Acta Materialia, 2007,55:p.6798-6805.
    [49]A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi and J. Koike. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. Journal of Materials Research,2001,16:p.1894-1900.
    [50]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998.
    [51]潘复生.铝合金及应用.化学工业出版社,2006.
    [52]J. Buha. Reduced temperature (22-100℃) aging of an Mg-Zn alloy, Materials Science and Engineering A,2008,492:p.11-19.
    [53]付彭怀,Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究[博士论文],上海:上海交通大学,2009.
    [54]P.A. Nuttall, T.J. Pike, B. Noble, Metallography of dilute Mg-Nd-Zn alloys, Metallography,1980,13:p.3-20.
    [55]D.H. Ping, K. Hono, J.F. Nie. Atom probe characterization of plate-like precipitates in a Mg-Zn-Zr casting alloy, Scr Mater,2003,48:p.1017-1022.
    [56]P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer, Precipitation Reactions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium, Scripta Materialia,2003,48:1023-1028.
    [57]J.C. Zhao, ed. Methods for Phase Diagram Determination.2007, Elsevier Ltd.: Amsterdam.505.
    [58]Z.P. Jin, ed. Phase diagram:determination, calculation, optimization, and application.1987, Central South University of technology:Changsha.206.
    [59]Z.P. Jin. A study of the Range of Stability of s phase in some ternary stystem. Scand J Metallurgy 1981,10:p.279.
    [60]金展鹏.三元扩散偶及其在相图研究中的应用.中南矿冶学院学报,1984,1:p.27-35.
    [61]J.J.V. Laar, Melting or solidification curves in binary system. Z. Physik. Chem., 1908,63:p.216-257.
    [62]J.L. Meijering, Calculation of the nickel-chromium-copper phase diagram from binary data. Acta metallurgica,1957,5(5):p.257-264.
    [63]L. Kaufman, H. Bernstain. Computer Calculation of Phase Diagram. New York: Academic Press,1970.
    [64]P. Spencer, A brief history of CALPHAD. Calphad,2007.
    [65]梁敬魁.相图与相结构(上册).科学出版社,1993.
    [66]金姗.部分稀土永磁材料体系的相平衡优化及应用[硕士论文],长沙:中南大学,2009.
    [67]柳春雷,金展鹏,刘华山.相图计算在电子材料焊接中的应用.中国有色金属学报,2003,13(6):p.1343-1349.
    [68]J.H. Perepezko and W.J. Boettinger, in Alloy Phase Diagrams, Mat. Res. Soc. Sympl Proc., L.H. Bennett, T.B. Massalski, and B.C. Giessen, eds., Elsevier Publishing Co., Inc.,1983,19:p.223.
    [69]J.C. Zhao, A combinatorial approach for structural materials. Advanced Engineering Materials,2001,3(3):p.143-147.
    [70]J.T. Louis, W. Bill, K. Alison et al., Synergistic computational/experimental efforts supporting stockpile stewardship:pit lifetimes, Presentation to the Committee on Integrated Computational Materials Engineering-Meeting 2, March 13,2007.
    [71]郝士明.镁的合金化与合金相图.材料与冶金学报,2002,3:p.166-170.
    [72]L.L. Roklin, Magnesium Alloys Containing Rare Earth Metals, Taylor and Francis, London,2003.
    [73]J. Grobner, D. Kevorkov and R. Schmid-Fetzer. Magnesium alloy development guided by thermodynamic calculations. Hryn, J, eds. Magnesium technology. Warrendale, TMS,2001, p.105-112.
    [74]R. Ferro, A. Saccone and G. Borzone. Rare earth metals in light alloys. Journal of Rare Earths,1997,15 (1):p.45-61.
    [75]Z.K. Liu, Y. Zhong, D.G. Schlom, X.X. Xi, Q. Li. Computational thermodynamic modeling of the Mg-B system. Calphad,2001,25(2):p.299-303.
    [76]Y.N. Zhang, D. Kevorkov, F. Bridier and M. Medraj, Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys,Science and Technology of Advanced Materials,2011,12 (2):p.1-13.
    [77]Y.P. Ren, G.W. Qin, W.L. Pei, H.D. Zhao, Y. Guo, H.X. Li, M. Jiang and S.M. Hao, Isothermal section of the Mg-Al-Mn ternary system at 400 ℃, Journal of Alloys and Compounds,2009,479(1-2), p:237-241.
    [78]郭翠萍.镁基合金体系的热力学研究[博士论文],北京:北京科技大学,2007.
    [79]孟凡桂.部分稀土镁合金体系相关系的研究[博士论文],长沙:中南大学,2006.
    [80]B. L. Mordike and T. Ebert, Magnesium:Properties-applications-potential, Mater. Sci. Eng. A,302 (2001),37-45.
    [81]董定乾,稀土La对Mg-4.5%Zn合金铸态组织细化的影响,轻合金加工技术,2008,36:p.11-14.
    [82]T. V. Dobatkina, E. V. Melnik, A. T. Tyvanchuk, E. V. Muratova, Phase Equilibriums in the System Mg-Zn-La, Nauka, Stable and Metastable Phase Equilibria in Metallic Systems (Eng. Trans),1985, p75-79.
    [83]T. V. Dobatkina, E. V. Muratova, E. I. Drozdova, Crystallization Characteristics of Magnesium Alloys in the System Mg-La-Zn, Izv. Akad. Nauk SSSR, Met, 1(1987),205-207.
    [84]H. X. Li, M. L. Huang, Q. Chen, Y.P. Ren, S. M. Hao, SOLID-STATE PHASE EQUILIBRIA IN THE Mg-RICH CORNER OF THE Mg-Zn-La SYSTEM, Acta Metallurgica Sinica (China). Vol.43, no.7,2007, p749-752.
    [85]H. X. Li, Y.P. Ren, M. L. Huang, Q. Chen, S. M. Hao, Phase equilibria in the Mg-rich corner of the Mg-Zn-La system at 350℃, Rare Metals (English Edition). Vol.25, no.5, p572-575. Oct.2006
    [86]M. L. Huang, H. X. Li, Y.P. Ren, H. Ding, S. M. Hao, H. Chen, Isothermal section of Mg-Zn-La system in Mg-rich corner at 400℃, Trans. Nonferrous Met. Soc. China 17(2007), s8-sl 1.
    [87]A. Berche, M.C. Record, J. Rogez, Triangulation of the La-Mg-Zn system. Archives of Metallurgy and Materials,2008,4:p.1141-1148.
    [88]P Liang, T Tarfa, J. A. Robinson, S Wagner, P Ochin, M. G. Harmelin et al., Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system. Thermochim Acta,1998,314(1-2),87-110.
    [89]C. Guo and Z. Du, Thermodynamic Assessment of the La-Mg System, J. Alloys Compd.,2004,385:p.109-113.
    [90]Du Zhenmin, Guo Cuiping, Li Changrong and Zhang Weijing, Thermodynamic modeling of the La-Mg-Y system and Mg-based alloys database, Rare Metals, 2006,25:p.492-500.
    [91]郭翠萍.镁基合金体系的热力学研究:[博士论文].北京:北京科技大学,2007.
    [92]A.A. Nayeb-Hashemi, J.B. Clark, The La-Mg system. Binary Alloy Phase Diagrams,1988, p.172-178.
    [93]P. Manfrinetti, K.A. Gschneidner, Jr., Phase equilibrium in the La-Mg and Gd-Mg system. J. Less-Common Met.,1986,123:p.267-276.
    [94]G. Canneri, The alloys of Lanthanides. Metall. Ital.,1931,23:p.803-823.
    [95]F. Weibke and W. Schmidt, On the solubility of Lanthum in Aluminium, Magnesium and homogeneous alloys of Magnesium and Aluminium. Z. Electrochem.,1940,46:p.359-362.
    [96]R. Vogel and T. Heumann, Determination of Ce-Mg and La-Mg systems. Z. Metallkd.,1947,38:p.1-8.
    [97]J.J. Park and L.L. Wyman, Phase relationships in Magnesium alloys. WACD Tech. Rep.,1957,57-504:p.33.
    [98]Joseph, R.R., Gschneidner jr., K.A., Trans. Metall. Soc. AIME,1965,233:p. 2063.
    [99]B. Darriet, M. Pezat, A. Hbika, and P. Hagenmuller, The Mg-rich alloys of Rare Earth-Magnesium and their applications for hydrogen storge. Mater. Res. Bull., 1979,14:p.377-385.
    [100]M. Giovannini, A. Saccone, R. Marazza, R. Ferro, The isothermal section at 500℃ of the Y-La-Mg ternary system. Metall. Mater. Trans. A,1995,26 (1):p. 5-10.
    [101]Y.A. Afanasyev, A.P. Bayanov, Y.A. Frolov:Izv. Akad. Nauk SSSR, Met. (1973) 186-190; transl.:Russ. Metall. (1973) 155-158.
    [102]R. Agarwal, H. Feufel, F. Sommer:J. Alloys Comp.217 (1995) 59-64.
    [103]L. Rolla, A. Iandelli, Contribution to the Knowledge of Metals and Rare Earth Group, Part 1, The Lanthanum-Zinc System. Ric. Sci,1941,20:p.1216-1226.
    [104]K.A. Gschneidner Jr., in T.B. Massalski (Ed), Binary alloy phase diagrams, ASM, OH,3 (1990),2442.
    [105]H. Nowotny, Crystal Structure of Ni5Ce, Ni5La, Ni5Ca, Cu5La, Cu5Ca, Zn5La, Zn5Ca, Ni2Ce, MgCe, MgLa, and MgSr. Z. Metallkd.1942,35:p.247-253.
    [106]P. I. Kripyakevich, Yu. B. Kuzma and N. S. Ugrin, Zh. Strukt. Khim,8 (1967), 703.
    [107]M. J. Sanderson, N. C. Baenziger, Acta Cryst,6 (1953),627.
    [108]A. Iandelli and A. Palenzona, J. Less-Common Met,12 (1967),333-343.
    [109]K. A. Gschneidner, Rare Earth Alloys, Van Nostrand, New York,1961.
    [110]A. Berche, Ph.D. Thesis, Paul Cezanne University-Marseille,2007.
    [111]R. K. Mullayanov, V. A. Lebedev and Y. P. Kanashin, Zh. Fiz. Khim,43 (1969), 2776-2779.
    [112]V. A. Lebedev, I. F. Nichkov, and S. P. Raspopin, Zh. Fiz. Khim,45 (1971), 1983-1985.
    [113]P. F. Lesourd and J. A. Plambeck, Canad. J. Chem,47 (1969),3389-3391.
    [114]P. I. Johnson and R. M. Yonco, Metall. Trans.,1 (1970),905-910.
    [115]A. V. Kovalevskii, V. A. Lebedev and I. F. Nichkov, Izv. Akad. Nauk SSSR, Metal.,1,(1972)183-187.
    [116]M. Morishita, K. Koyama and K. Tsuboki, Z. Metallkd,95 (2004),708-712.
    [117]M. Morishita, H. Yamamoto and K. Tsuboki, Mater Trans,6 (2006), 1555-1559.
    [118]A. Berche, F. Marinelli, G. Mikaelian, J. Rogez, M. C. Record, J. Alloys Compds.,475 (2009),79-85
    [119]A.P. Tsai, A. Niikura, A. Inoue, T. Masumoto, Philos. mag. Lett.1994,70: p.169-175.
    [120]P. Villars, K. Cenzual, Pearson's Crystal data, Release 2008/9, ASM international, Ohio, USA.
    [121]SGTE Pure Elements (Unary) Database (version v 4.6), developed by SGTE (Scientific Group Thermodata Europe),1991-2008, and provided by TCSAB (Jan.2008). SGTE website, http://www.sgte.org.
    [122]M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations:Their Thermodynamic Basis.1998, Cambridge:Cambridge University Press.
    [123]O. Redlich, A. Kister, Thermodynamics of Nonelectrolyte Solutions-xyt relations in a Binary System. Industrial & Engineering Chemistry,1948,40(2):p. 341-345.
    [124]N. Dupin and I.Ansara. On the sublattice formalism applied to the B2 phase. Zeitschrift fur Metallkunde,1999,90(1):p.76-84.
    [125]O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry.1979, New York:Pergamon Press London, Oxford.
    [126]B. Sundman, B. Jansson and J.O. Andersson, The Thermo-Calc databank system, CALPHAD,9 (1985),153-190.
    [127]J. O. Anderson, T. Helander, L. Hoglund and et al., Thermo-Calc & DICTRA, computational tools for materials science. CALPHAD 26,273-312 (2002).
    [128]P AND AT software for muticomponent phase diagram calculations by CompuTherm, LLC, Madison, WI, since 2007.
    [129]W. Cao, S. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, W. Oates, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad,2009,33(2):p.328-342.
    [130]P. Bakke, H. Westengen, The role of rare earth elements in structure and property control of magnesium die casting alloys, Magnesium Technology 2005, Proceedings of the Symposium Sponsored by the Magnesium Committee of the Light Metals Division (LMD) of TMS with the International Magnesium Association. Warrendale:Minerals, Metals & Materials Society,2005:p.291-296.
    [131]L.Y. Wei, G.L. Dunlop, H. Westengen, Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys. Metallurgical and Materials Transactions,1995,26A(7): 1705-1716.
    [132]Yu Kun, Li Wen-xian, Wang Ri-chu. Mechanical properties and microstructure of as-cast and extruded Mg-(Ce,Nd)-Zn-Zr alloys. Journal of Central South University of Technology:English Edition,2005,12(5):499-502.
    [133]Y. Chino, K. Sassa, M. Mabuchi, Tensile properties and stretch formability of Mg-1.5 mass% Zn-0.2 mass% Ce sheet rolled at 723 K, Mater Trans,2008,49: p.1710-1712.
    [134]吴安如,古一,夏长清,Mg-RE(Ce, Nd, Y)-Zn-Zr合金显微组织及力学性能研究,热加工工艺,2004,12:p.21-23.
    [135]A.M. Korolkov, Ya.P. Saldau, Solubility of Zn and Ce in Mg in the solid state. Izv. Sekt. Fiziko-Khimich Analiza Akad. Nauk SSSR,1946,16:p.295-306.
    [136]E.V. Melnik, O.F. Zmii, E.E. Cherkasim, On the structure of the Ce2Mg3Zn3 Compound, Vsetn. L viv. Univ. Ser. Khim.,1977,19:p.34-36.
    [137]E.V. Melnik, M.F. Kostina, Ya.P. Yarmolyuk, O.F. Zmii, Study of Magnesium-Zinc-Cerium and Magnesium-Zinc-Calcium ternary systems, in: Mater. Vses. Soveshch. Issled., Razrab. Primen. Magnievyhk Splavov 1978: p.95-99.
    [138]E.V. Melnik, O.F. Zmii, E.B. Muratova, Interaction between IMC in Ternary Mg-Zn-{In, La, Ce} Systems, Tezisy Doklad., Ⅳ Vsesoyuzn. Konfer. Po Kristallokhimii Intermetallich. Soyedin., L vov, L vov Univ.,1983,38.
    [139]M.E. Drits, E.I. Drozdova, I.G. Korolkova, V.V. Kinzhibalo, A.T. Tyvanchuk, Investigation of Polythermal Sections of the Mg-Zn-Ce System in the Magnesium-rich region. Russ. Metall.,1989,2:p.198-200.
    [140]U. Kolitsch, P. Bellen, S. Kaesche, D. Maccio, N. Bochvar, Y. Liberov, Cerium-Magnesium-Zinc. In:Petzow G, Effenberg G, editors. Ternary alloys:a comprehensive compendium of evaluated constitutional data and phase diagrams, vol.17. Stuttgart, Germany:Weinheim:VCH Verlagsgesellschaft, MSI GmbH; 2000. p.168-176.
    [141]M. L. Huang, H. X. Li, H. Ding, Y.P. Ren, G.W. Qin, S. M. Hao, Partial phase relationships of Mg-Zn-Ce system at 350℃, Trans. Nonferrous Met. Soc. China2009,19:p.681-685.
    [142]李晓明,Mg-ZnCe系富镁侧三元化合物及相平衡的研究:[硕士论文].东北大学,2008.
    [143]C.N. Chiu, J. Grobner, A. Kozlov, R. Schmid-Fetzer, Experimental study and thermodynamic assessment of ternary Mg-Zn-Ce phase relations focused on Mg-rich alloys, Intermetallics,2010,18:p.399-405.
    [144]D. Kevorkov, M. Pekguleryuz, Experimental study of the Ce-Mg-Zn phase diagram at 350℃ via diffusion couple techniques. J. Alloys Compd.,2009,478: p.427-436.
    [145]V. Pavlyuk, B. Marciniak, E. Rozycka-Sokolowska, The isothermal section of the phase diagram of Ce-Mg-Zn ternary system at 470K, Intermetallics,2012,20: 8-15.
    [146]A.A. Nayeb-Hashemi and J. B. Clark, The Ce-Mg system. Binary Alloy Phase Diagrams,1988, p.162-172.
    [147]A. Saccone, D. Maccio, S. Delfino, F.H. Hayes, R. Ferro, Mg-Ce alloys experimental investigation by Smith thermal analysis. J. Therm. Anal. Calorim., 2001,66:p.47-57.
    [148]A.P. Bayanov, Yu.A. Frolov, A.Yu. Afanasev, Determination of the thermodynamic properties of Ce-Mg melts. Izv. Akad. Nauk SSSR Met.,1975,3: p.91-95.
    [149]J. E. Pahlman and J. F. Smith, Thermodynamics of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary systems in the temperature range 650 to 930 K. Metall. Trans.,1972,3:p.2423-2432.
    [150]G. Cacciamani, A. Saccone, R. Ferro, in:I. Ansara, A.T. Dinsdale, M.H. Rand (Eds.), COST507:Thermochemical Database for Light Metal Alloys, vol.2, European Commission,1998, p.137-140.
    [151]孟凡桂.部分稀土镁合金体系相关系的研究:[博士论文].长沙:中南大学,2006.
    [152]H. Zhang, Y. Wang, S.L. Shang, L.Q. Chen, Z.K. Liu, Thermodynamic modeling of Mg-Ca-Ce system by combining first-principles and CALPHAD method, J. Alloys Compd.,2008,463:p.294-301.
    [153]P. Chiotti, J.T. Mason, Trans. Metall. Soc. AIME 233 (4) (1965) 786-795.
    [154]H. Okamoto, Desk Handbook-Phase Diagrams for Binary Alloys, ASM International,2000.
    [155]G. Bruzzone, M.L. Fornasini, F. Merlo, J. Less-Common Met.22 (3) (1970)253-264.
    [156]E. Veleckis, C.L. Rosen, H.M. Feder, J. Phys. Chem.65 (2) (1961)127-2131.
    [157]P.I. Kripyakevich, Yu.B. Kuz'ma, N.S. Ugrin, TR:J. Struct. Chem.8 (4)(1967) 632-633.
    [158]I. Johnson, R.M. Yonco, U.S. Atomic Energy Commission Research and Development ReportANL6231, Office of Technical Services, U.S. Department of Commerce, Washington 25, DC,1960, p.78.
    [159]I. Johnson, R.M. Yonco, Met. Trans.1 (4) (1970) 905-910.
    [160]C.P. Wang, X. Chen, X.J. Liu, F.S. Pan, K. Ishida, Thermodynamic modeling of the Ce-Zn and Pr-Zn systems. J. Alloys Compd.,2008,458:p.166-173.
    [161]A. Pisch, J. Grobner, R. Schmid-Fetzer, Application of computational thermochemistry to Al and Mg alloy processing with Sc additions. Materials Science & Engineering A,2000,289(1-2):p.123-129.
    [162]G. Shao, V. Varsani, Y. Wang, M. Qian, Z. Fan, On the solidification microstructure of Mg-30Zn-2.5 Y metal-intermetallic alloy. Intermetallics,2006, 14(6):p.596-602.
    [163]G. Levi, S. Avraham, A. Zilberov, M. Bamberger, Solidification, solution treatment and age hardening of a Mg-6 wt.% Ca-2 wt.% Zn alloy. Acta Materialia,2006,54(2):p.523-530.
    [164]E. Scheil, Bemerkungen zur schichtkristallbildung. Zeitschrift fur Metallkunde, 1942,34(3):p.70-72.
    [165]T.E. Leontis, Effect of rare-earth metals on the properties of extruded magnesium, J. Metals,1951,3(11),987-993.
    [166]T.J. Pike, B. Noble, The formation and structure of precipitates in a dilute magnesium-neodymium alloy, Journal of the Less-Common metals,1973,30, 63-74.
    [167]Massaki Hisa, John C. Barry, Gordon L. Dunlop, New type of precipitate in Mg-rear-earth alloys, Philosophical Magazine,2002,82,497-510.
    [168]黄伯杰,聂邦盛,贾延杰等,Mg-Nd-Zn-Zr耐热高强铸造镁合金,特种铸造及有色合金,1998,6(6),40-42.
    [169]M.E. Drits, E.M. Padezhnova and N.V. Miklina, Izv. Vyss. Uchebn. Zaved., Tsvet. Metall.,4 (1971) 103-107.
    [170]M.E. Drits, E.M. Padezhnova and N.V. Miklina, Technol. Legk. Splavov,2 (1971)32-35.
    [171]M.E. Drits, E.M. Padezhnova and N.V. Miklina, Russ. Metall.,143-146 (1974) translated from Izv. Akad. Nauk SSSR, Met.,3 (1974) 225-229.
    [172]V.V. Kinzhibalo, A.T. Tyvanchuk and E.V. Melnik, A Study of the Ternary System Mg-Zn-Pr and Mg-Zn-Nd. Nauka, Moscow,1985:p.70-74.
    [173]M.L. Huang, J.Y. Yang, H.X. Li, Y.P. Ren, H. Ding, S.M. Hao, Journal of Materials and Metallurgy 7 (2008) 126-142.
    [174]M.L. Huang, H.X. Li, J.Y. Yang, Y.P. Ren, H. Ding, S.M. Hao, Acta Metall. Sin.44 (2008) 385-390.
    [175]M.L. Huang, H.X. Li, H. Ding, Z.Y. Tang, R.B. Mei, H.T. Zhou, R.P. Ren and S.M. Hao, J. Alloys Compd.489 (2010) 620-625.
    [176]S. Gorsse, C.R. Hutchinson, B. Chevalier and J.F. Nie, J. Alloys Compd. 392(2005)253-262.
    [177]F.G. Meng, H.S. Liu, L.B. Liu and Z.P. Jin, Trans. Nonferrous Met. Soc. China 17(2007)77-81.
    [178]C. Guo and Z. Du, Z. Metallkd 97(2006)130-135.
    [179]H.Y. Qi, Z.P. Jin, L.B. Liu, H.S. Liu, J. Alloys Compd.458(2008)184-188.
    [180]H.O. Li, X.P. Su, Y. Liu, Z. Li, X.M. Wang, J. Alloys Compd. 457(2008)344-347.
    [181]X.J. Liu, X. Chen, C.P. Wang, J. Alloys Compd.468(2009)115-121.
    [182]A.A. Nayeb-Hashemi and J.B. Clark, The Mg-Nd system, Bulletin of Alloy Phase Diagrams,1988,9(5):618-623.
    [183]R.R. Joseph and K.A. Gschneidner, Jr., Trans AIME 223(1965)2063-2069.
    [184]R.R. Park and L.L. Wyman, WACD Tech Rep 33(1957)57-504.
    [185]S. Delfino, A. Saccone and R. Ferro, Met. Trans. A 21(1990)2109-2114.
    [186]H. Okamoto, J. Phase Equilib.12(1991)249-250.
    [187]J.E. Pahlman and J.F. Smith, Metall.Trans.3(1972)2423-2432.
    [188]J.R. Ogren, N.J. Magnani and J.F. Smith, Trans. AIME 239(1967)766-771.
    [189]Y.B. Kuz'ma, P.I. Kripyakevich, D.F. Frankevich, Izv. Akad. Nauk SSSR. Neorg. Mater.1 (1965) 1547-1553.
    [190]Y.B. Kuz'ma, P.I. Kripyakevich, N.S. Ugrin, Inorg. Mater.2 (1966)544-548.
    [191]A. Iandelli, A. Palenzona, J. Less-Common Met.9 (1965) 1-6.
    [192]A. Iandelli, A. Palenzona, J. Less-Common Met.12 (1967) 333-343.
    [193]M.L. Fornasini, F. Merlo, Rend. Acad. Naz. Lincei 43 (1967) 357-363.
    [194]D.J. Michel, E. Ryba, P.K. Kejriwal, J. Less-Common Met.11 (1966)67-69.
    [195]E. Veleckis, R.V. Schablaske, I. Johnson, H.M. Feder, Trans. TMS-AIME 239 (1967) 58-63.
    [196]G. Bruzzone, M.L. Fornasini, F. Merlo, J. Less-Common Met.22 (1970)253-264.
    [197]J.T. Mason, P. Chiotti, Metall. Trans.3 (1972) 2851-2855.
    [198]J.T. Mason, K.S. Stree Harsha, P. Chiotti, Acta Crystallogr. B 356-361.
    [199]J.T. Mason, P. Chiotti, Acta Crystallogr. B 27 (1971) 1789-1792.
    [200]P. Chiotti, J.T. Mason, Metall. Trans.4 (1973) 1527-1531.
    [201]J.T. Mason, P. Chiotti, Metall. Trans.3 (1972) 2851-2855.
    [202]H. Okamoto, Desk Handbook-Phase Diagrams for Binary Alloys, ASM International,2000.
    [203]G. Borzone, G. Cacciamani, R. Ferro, J. Charles, J. Hertz, J. Less-Common Met. 22(1970)253-264.
    [204]H.Y. Qi, G.X. Huang, H. Bo, G.L. Xu, L.B. Liu and Z.P. Jin "Thermodynamic optimization of Mg-Nd-Zn binary system" Journal of Alloys and Compounds, Volume 509, Issue 7,17 February 2011, Pages 3274-3281.
    [205]Haiying Qi, Zhanpeng Jin, Libin Liu, Huashan Liu, "Thermodynamic assessment of the Nd-Zn binary system" Journal of Alloys and Compounds, Volume 458, Issues 1-2,30 June 2008, Pages 184-188.
    [206]C.P. Guo, Z.M.Du and C.R. Li, A thermodynamic description of the Mg-Pr-Y system. CALPHAD,2008,32:p.177-187.
    [207]X.M. Huang, L.B. Liu, L.G. Zhang, B.R. Jia, Z.P. Jin, F. Zheng, Thermodynamic assessment of the Pr-Zn binary system. J. Alloys Compd.,2008, 459:p.191-195.
    [208]A.A. Nayeb-Hashemi, J.B. Clark, The Mg-Pr system. Binary Alloy Phase Diagrams,1989,10:p.23-27.
    [209]A. Saccone, A.M. Cardinale, S. Delfino, R. Ferro, A contribution to the Rare Earth intermetallic chemistry:Pr-Mg alloy system. Intermetallics,1993,1:p. 151-158.
    [210]A. Saccone, D. Maccio, J.A.J. Robinson, F.H. Hayes, R. Ferro, Smith thermal analysis of selected Pr-Mg alloys. J. Alloys Compd.,2001,317-318:p.497-502.
    [211]G. Canneri, A. Rossi, The heat of formation of compounds of Praseodymium with Magnesium and of Praseodymium with Aluminum. Gazz. Chim. Ital.,1933, 63:p.182-185.
    [212]J.T. Mason, P. Chiotti, Met. Trans.1 (8) (1970) 2119-2123.
    [213]A. Saccone, A.M. Cardinale, S. Delfino, G. Cacciamani, R. Ferro, J. Alloys Compd.317/318 (2001) 503-512.
    [214]P. Chiotti, J.T. Mason, Met. Trans.2 (4) (1971) 967-973.
    [215]谢燮揆译,王祝堂校,塑性变形对Mg-3.6%Sm合金机械性能和组织的影响,轻金属,1995,10,61-62
    [216]Kazumasa Sugiyana, Kenichi Yasuda, Yasuyoshi Horikawa et al. Crystal structure of μ7-MgZnSm, Journal of alloys and compounds,1999,285,172-178.
    [217]M.E. Drits, L.L. Rokhlin, N.P. Abrukina, Phase Equilibria in the Mg-Sm-Zn System. Russ. Metall.,1985,6:p.194-200.
    [218]M.E. Drits, L.L. Rokhlin, N.P. Abrukina, Investigation of the Combined Solubility of Samarium and Znic in Solid Magnesium. Izv. Vyss. Uchebn. Zaved., Tsvet. Metall.,1986,2:p.83-87.
    [219]B.R. Jia, L.B. Liu, D.Q. Yi, Z.P. Jin, J.F. Nie, Thermodynamic assessment of the Al-Mg-Sm system. J. Alloys Compd.,2008,459:p.267-273.
    [220]C.P. Guo, Z.M. Du, C.R. Li, A thermodynamic description of the Gd-Mg-Sm system. CALPHAD,2010,34:p.90-97.
    [221]X.J. Liu, X. Chen, C.P. Wang, Thermodynamic modeling of the Sm-Zn and Nd-Zn systems. J. Alloys Compd.,2009,468:p.115-121.
    [222]B.R. Jia, L.G. Zhang, G.X. Huang, H.Y. Qi, H. Yang, L.B. Liu, Z.P. Jin, F. Zheng, Thermodynamic modeling of the Sm-Zn binary system. J. Alloys Compd., 2009,473:p.176-179.
    [223]A. Iandelli, A. Palenzona, Atomic size of rare earths in intermetallic compounds: MX compounds of CsCl type. J. Less-Common Met.,1965,9:p.1-6.
    [224]L.L.Rokhlin, E.M.Padezhnova, L.S. Guzei, Study of the Solubility of Sm in a Mg-Based Solid Solution. Russian Metallurgy,1976,6:p.204-208.
    [225]V.V. Kinzhibalo, L.L. Rokhlin, N.P. Abrukina, Crystalline Structure of the Magnesium-Rich Compound in the System Mg-Sm. Izv. Akad. Nauk. SSSR, Met.,1985,1:p.204-205.
    [226]A.A. Nayeb-Hashemi, J.B. Clark, The Mg-Sm system. Binary Alloy Phase Diagrams,1988, p.289-292.
    [227]A. Saccone, S. Delfino, G. Borzone, and R. Ferro, The Samarium-Magensium system:A phase diagram. J. Less-Common Met.,1989,154(1):p.47-60.
    [228]P. Chiotti, J.T. Mason, Trans. Met. Soc. AIME 239 (1967) 547-552.
    [229]H. Okamoto, Desk Handbook-Phase Diagrams for Binary Alloys, ASM International,2000.
    [230]Lorimer G W, Apps P J, Karimzadeh H, et al. Improving the performance of Mg-Rare Earth Alloys by the use of Gd or Dy Additions, Materials Science Forum,2003,419-422,279-284.
    [231]Luo Z P, Song D Y, Zhang S Q, Strengthening effects of rare earths on wrought Mg-Zn-Zr-RE alloys, J. Alloys Compd.,1995,203(2),109-114.
    [232]G. Cacciamani, A. Saccone, G. Borzone, S. Delfino, R. Ferro, Computer Coupling of thermodynamics and phase diagrams:the Gd-Mg system as example. Thermochim. Acta.,1992,199:p.17-24.
    [233]C.P. Guo, Z.M. Du, C.R. Li, Thermodynamic optimization of Gd-Mg-Y system. Calphad,2007,31(1):p.75-88.
    [234]E.M. Savitskii, V.F. Terekhova, J.V. Burov, J.A. Morkova, Preparation and properties of Rare-Earth metal single crystal. Zh. Neorg. Khim.,1961,6:p. 1734-1740.
    [235]R.R. Joseph, K.A. Gschneidner, Jr., Solid solubility of Magnesium in some Lanthanide metals. Trans. Metall. Soc. AIME,1965,233:p.2063-2069.
    [236]L.L. Rokhlin, N.I. Nikitina. Solubility of Gd in Mg. IZV. VUZ Tsvetn. Met., 1977,1:p.167-168.
    [237]P. Manfrinetti, K.A. Gschneidner, Jr., Phase equilibrium in the La-Mg and Gd-Mg system. J. Less-Common Met.,1986,123:p.267-276.
    [238]A.A. Nayeb-Hashemi, J.B. Clark, The Gd-Mg system. Binary Alloy Phase Diagrams,1988, p.1895.
    [239]J. E. Pahlman and J. F. Smith, Thermodynamics of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary systems in the temperature range 650 to 930 K. Metall. Trans.,1972,3:p.2423-2432.
    [240]T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams (Second Edition), ASM International, Materials Park, Ohio, 1990.
    [241]G. Bruzzone, M.L. Fornasini,2F. Merlo, J. Less-Common Met.22 (1970) 253-264.
    [242]A. Sccone, A.M. Cardinale, S. Delfino, R. Ferro, Z. Metallkd.92 (2001) 959-965.
    [243]P. Chiotti, J.T. Mason, Metall. Trans.4 (1973) 1527-1531.
    [244]M. Yamasaki, M. Sasaki, M. Nishijima et al. Acta Mater.55 (2007) 6798-6805.
    [245]Y.J. Wu, D.L. Lin, X.Q. Zeng, L.M. Peng, W.J. Ding, J. Mater. Sci.44 (2009) 1607-1612.
    [246]Y.J. Wu, L.M. Peng, X.Q. Zeng, D.L. Lin, W.J. Ding, Mater. Sci. Forum 654-656(2010)623-626.
    [247]Y. Liu, G.Y. Yuan, C. Lu, W.J. Ding, Scr. Mater.55 (2006) 919-922.
    [248]Y. Liu, G.Y. Yuan, W.J. Ding, C. Lu, J. Alloys Compd.427 (2007) 160-165.
    [249]E.M. Padezhnova, E.V. Mel'nik, R.A. Miliyevskiy, T.V. Dobatkina, V.V. Kinzhibalo, Russian Metallurgy (Metally) 4 (1982) 185-188.
    [250]Luo Z P, Zhang S Q. Quasicrystals in as-cast Mg-Zn-RE alloys. Scripts Metallurgical et Materials,1993,22(12):1513-1518.
    [251]E. Abe, T.J. Sato, A.P. Tsai, Mater. Sci. Eng. A 294-296 (2000) 29-32.
    [252]刘勇,自生准晶增强Mg-Zn-Gd基合金组织和力学性能的研究:[博士论文].上海交通大学,2007.
    [253]A.A. Luo and M.O. Pekguleryuz, Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science,1994,29:p.5259-5271.
    [254]www.magnesium-elektron.com.
    [255]V.N. Svechnikov, G.F. Kobzenko, and E.L. Martynchuk, Dop. Akad. Nauk Ukr. RSR,B,79(1975).
    [256]K.A. Gschneidner Jr., F.W. Calderwood, Bull. Alloy Phase Diagrams 3 (1982) 351.
    [257]J.D. Speight, J. Less-Common Met.,20,251 (1970).
    [258]C.E. Lundin, AD-633558 (also given as DRI-2326), final report, Denver Res. Inst., Univ. Denver, Denver, CO (1966).
    [259]Y. Shoji, T. Matsui, K. Nakamura, T. Inoue, J. Nucl. Mater,247 (1997) 37-40.
    [260]C.E. Lundin, A.S. Yamamoto, DRI-2437, final report, Denver Research Institute, University of Denver, Denver,1967.
    [261]Y. Negishi, T. Nishimura, M. Kiryuu, S. Kamado, Y. Kojima, R. Ninomiya. Phase diagrams of magnesium rich portion, aging characteristics and tensile properties of Mg-heavy rare earth metal (Gd, Dy)-Nd alloys, Japanese of Light Metals,1995,452,276-281.
    [262]郑开云,Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究:[博士论文].上海交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700